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Abstract

In this paper we study the reciprocal sums of products of two different Fibonacci
numbers. We obtain some identities related to the numbers ⌊(

∑

∞

k=n
1/FkFk+m)−1⌋,

m ≥ 1, where ⌊·⌋ indicates the floor function.

1 Introduction

As is well known, the Fibonacci numbers Fn are generated from the recurrence relation

Fn = Fn−1 + Fn−2 (n ≥ 2),

with initial condition F0 = 0 and F1 = 1.
Recently Ohtsuka and Nakamura [7] found interesting properties of the Fibonacci num-

bers and proved Theorem 1 below.

Theorem 1. For the Fibonacci numbers, the following identities hold:
⌊(

∞
∑

k=n

1

Fk

)

−1⌋

=

{

Fn − Fn−1, if n ≥ 2 and n is even;

Fn − Fn−1 − 1, if n ≥ 3 and n is odd,
(1)

⌊(

∞
∑

k=n

1

F 2
k

)

−1⌋

=

{

Fn−1Fn − 1, if n ≥ 2 and n is even;

Fn−1Fn, if n ≥ 3 and n is odd.
(2)
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Following the paper of Ohtsuka and Nakamura [7], diverse results in the same direction
have been reported in the literature [1, 2, 3], [5], [8, 9, 10, 11, 12, 13]. Among them, Liu
and Wang [5] considered the product of two reciprocal Fibonacci numbers, and obtained
several interesting results. For example, they proved Theorem 2 below for the products of
two consecutive Fibonacci numbers.

Theorem 2. Let m ≥ 2. Then

⌊(

mn
∑

k=n

1

FkFk+1

)

−1⌋

=

{

F 2
n
, if n ≥ 2 and n is even;

F 2
n
− 1, if n ≥ 3 and n is odd.

(3)

Motivated by Theorem 2, we study the reciprocal sums of products of two different
Fibonacci numbers in this paper. We obtain some identities related to the numbers

⌊(

∞
∑

k=n

1

FkFk+m

)

−1⌋

, m ≥ 1.

Remark 3. The following identity was conjectured by Ohtsuka and proved by Bruckman [6]:

(

∞
∑

k=n

1

FkFk+m

)

−1

=
n−1
∑

k=1

FkFk+m −
1

3
Fm−2(−1)n +O

(

1

F 2
n

)

, m ≥ 0.

For the case where m = 0 and n is large, (2) also can be derived from the above result.

2 Main results

We will use Lemma 4 below to prove our main results.

Lemma 4 (Koshy [4]). For the Fibonacci numbers, we have

FmFn − Fm+kFn−k = (−1)n−kFm−n+kFk.

Our main results are stated in the following theorem.

Theorem 5. For the Fibonacci numbers, (a), (b) and (c) below hold:
(a) Let m ≥ 1. If

2Fm − Fm+1

3
/∈ Z,

then there exist positive integers n0 and n1 such that

⌊(

∞
∑

k=n

1

FkFk+m

)

−1⌋

=

{

Fn+m−1Fn + gm − 1, if n ≥ n0 and n is even;

Fn+m−1Fn − gm, if n ≥ n1 and n is odd,
(4)
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where

gm =

⌊

2Fm − Fm+1

3

⌋

+ 1.

(b) For m = 2,

⌊(

∞
∑

k=n

1

FkFk+m

)

−1⌋

= Fn+m−1Fn, for n ≥ 1. (5)

(c) Let m ≥ 3. If
2Fm − Fm+1

3
∈ Z,

then there exist positive integers n2 and n3 such that

⌊(

∞
∑

k=n

1

FkFk+m

)

−1⌋

=

{

Fn+m−1Fn + ĝm − 1, if n ≥ n2 and n is even;

Fn+m−1Fn − ĝm − 1, if n ≥ n3 and n is odd,
(6)

where

ĝm =
2Fm − Fm+1

3
.

Proof. (a) To prove (4), consider

X1 =
1

Fn+m−1Fn + (−1)ngm
−

1

Fn+m+1Fn+2 + (−1)ngm
−

1

FnFn+m

−
1

Fn+1Fn+m+1

=
X̂1

{Fn+m−1Fn + (−1)ngm}{Fn+m+1Fn+2 + (−1)ngm}FnFn+mFn+1Fn+m+1

,

where, by the identity Fn+m+1Fn+2 − Fn+m−1Fn = FnFn+m + Fn+1Fn+m+1

X̂1 = (FnFn+m + Fn+1Fn+m+1)X̃1,

with

X̃1 = FnFn+1Fn+mFn+m+1 − Fn+m−1Fn+m+1FnFn+2

−(−1)ngm(Fn+m−1Fn + Fn+m+1Fn+2)− g2
m
.

From Lemma 4, we have

Fn+1Fn+m − Fn+m+1Fn = (−1)nFm,

Fn+m+1Fn − Fn+m−1Fn+2 = (−1)n(Fm − Fm+1),

Fn+m+1Fn−1 − Fn+mFn = (−1)nFm+1.
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Then

FnFn+1Fn+mFn+m+1 − Fn+m−1Fn+m+1FnFn+2

= Fn+m+1Fn

{

Fn+m+1Fn + (−1)nFm

}

−Fn+m+1Fn

{

Fn+m+1Fn + (−1)n(Fm+1 − Fm)
}

= (−1)nFn+m+1Fn(2Fm − Fm+1),

and

Fn+m−1Fn + Fn+m+1Fn+2 = 3Fn+m+1Fn + Fn+m+1Fn−1 − Fn+mFn

= 3Fn+m+1Fn + (−1)nFm+1.

Hence

X̃1 = (−1)nFn+m+1Fn(2Fm − Fm+1 − 3gm)− gmFm+1 − g2
m
.

Assume that n is even. Since gm > 0 and 2Fm − Fm+1 − 3gm < 0, then X1 < 0 and

1

Fn+m−1Fn + gm
−

1

Fn+m+1Fn+2 + gm
<

1

FnFn+m

+
1

Fn+1Fn+m+1

.

Repeatedly applying the above inequality, we have

1

Fn+m−1Fn + gm
<

∞
∑

k=n

1

FkFk+m

, if n ≥ 2 and n is even. (7)

Similarly, if n is odd, then there exists a positive integer m1 such that, for n ≥ m1, X1 > 0
and

1

FnFn+m

+
1

Fn+1Fn+m+1

<
1

Fn+m−1Fn − gm
−

1

Fn+m+1Fn+2 − gm
,

from which we obtain

∞
∑

k=n

1

FkFk+m

<
1

Fn+m−1Fn − gm
, if n ≥ m1 and n is odd. (8)

Next, consider

X2 =
1

Fn+m−1Fn + (−1)ngm − 1
−

1

Fn+mFn+1 + (−1)n+1gm − 1
−

1

FnFn+m

=
X̂2

{Fn+m−1Fn + (−1)ngm − 1}{Fn+mFn+1 + (−1)n+1gm − 1}FnFn+m

,
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where

X̂2 = FnF
2
n+m

Fn+1 − Fn+mFn+m−1FnFn+1 − F 2
n
Fn+m−1Fn+m

−(−1)ngm(2FnFn+m − Fn+m−1Fn + Fn+mFn+1)

+Fn+m−1Fn + Fn+mFn+1 + g2
m
− 1.

From Lemma 4, we have

Fn+m−1Fn − Fn+m−2Fn+1 = (−1)n+1Fm−2 = (−1)n(Fm+1 − 2Fm).

Then

FnFn+mFn+1Fn+m − Fn+mFn+m−1FnFn+1 − F 2
n
Fn+m−1Fn+m

= FnFn+m(Fn+1Fn+m−2 − FnFn+m−1)

= (−1)nFnFn+m(2Fm − Fm+1),

and

2FnFn+m + Fn+mFn+1 − Fn+m−1Fn

= 3FnFn+m + Fn+mFn−1 − Fn+m−1Fn

= 3FnFn+m + (−1)n(2Fm+2 − Fm+3).

Hence

X̂2 = (−1)nFnFn+m(2Fm − Fm+1 − 3gm) + Fn+m−1Fn + Fn+mFn+1

−gm(2Fm+2 − Fm+3) + g2
m
− 1.

Suppose that n is even. Since

−2 ≤ 2Fm − Fm+1 − 3gm ≤ −1,

then

FnFn+m(2Fm − Fm+1 − 3gm) + (Fn+m−1Fn + Fn+mFn+1)

≥ −2FnFn+m + FnFn+m−1 + Fn+1Fn+m

= (Fn−1 − Fn)(Fn+m−1 + Fn−m−2) + FnFn+m−1

= Fn−1Fn+m−1 − Fn−2Fn+m−2

> 0,

and there exists a positive integer m2 such that, for n ≥ m2, X2 > 0 and

1

FnFn+m

<
1

Fn+m−1Fn + (−1)ngm − 1
−

1

Fn+mFn+1 + (−1)n+1gm − 1
.
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Repeatedly applying the above inequality, we have

∞
∑

k=n

1

FkFk+m

<
1

Fn+m−1Fn + gm − 1
, if n ≥ m2 and n is even. (9)

On the other hand,

X3 =
1

Fn+m−1Fn + (−1)ngm + 1
−

1

Fn+mFn+1 + (−1)n+1gm + 1
−

1

FnFn+m

=
X̂3

{Fn+m−1Fn + (−1)ngm + 1}{Fn+m−1Fn+1 + (−1)n+1gm + 1}FnFn+m

,

where

X̂3 = X̂2 − 2(Fn+m−1Fn + Fn+mFn+1)

= (−1)nFnFn+m(2Fm − Fm+1 − 3gm)− Fn+m−1Fn − Fn+1Fn+1

−gm(2Fm+2 − Fm+3) + g2
m
− 1.

Suppose that n is odd. As shown above, we have

−FnFn+m(2Fm − Fm+1 − 3gm)− Fn+m−1Fn − Fn+mFn+1 < Fn−2Fn+m−2 − Fn−1Fn+m−1.

Hence there exists a positive integer m3 such that, for n ≥ m3, X3 < 0 and

1

Fn+m−1Fn + (−1)ngm + 1
−

1

Fn+mFn+1 + (−1)n+1gm + 1
<

1

FnFn+m

,

from which we have

1

Fn+m−1Fn − gm + 1
<

∞
∑

k=n

1

FkFk+m

, if n ≥ m3 and n is odd. (10)

Then, (4) follows from (7), (8), (9) and (10).

(b) Since Fn+2Fn+3 − FnFn+1 = FnFn+2 + Fn+1Fn+3, we have

1

FnFn+1

−
1

Fn+2Fn+3

−
1

FnFn+2

−
1

Fn+1Fn+3

=
Fn+2Fn+3−FnFn+1−(FnFn+2+Fn+1Fn+3)

FnFn+1Fn+2Fn+3

=0,

i.e.,
1

FnFn+1

−
1

Fn+2Fn+3

=
1

FnFn+2

+
1

Fn+1Fn+3

.

Repeatedly applying the above equality, we obtain (5).
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(c) Let m ≥ 3 and assume that

ĝm =
2Fm − Fm+1

3
∈ Z.

We recall the proof of (a). Replacing gm by ĝm in X̃1, we have

X̃1 = −ĝmFm+1 − ĝ2
m
< 0.

Then X1 < 0 if n ≥ 2 and n is even or if n ≥ m4 and n is odd for some positive integer m4,
and we have

1

Fn+m−1Fn + (−1)nĝm
<

∞
∑

k=n

1

FkFk+m

, if n ≥ 2 (n is even) or if n ≥ m4 (n is odd). (11)

Similarly there exist positive integers m5 and m6 such that X2 > 0 if n ≥ m5 and n is even,
or if n ≥ m6 and n is odd, from which we have

∞
∑

k=n

1

FkFk+m

<
1

Fn+m−1Fn + (−1)nĝm − 1
, if n ≥ m5 (n is even) or if n ≥ m6 (n is odd).

(12)
Then, (6) follows from (11) and (12).

Remark 6. From Theorem 5, we have

⌊(

∞
∑

k=n

1

FkFk+1

)

−1⌋

=

{

F 2
n
, if n ≥ 2 and n is even;

F 2
n
− 1, if n ≥ 1 and n is odd,

⌊(

∞
∑

k=n

1

FkFk+6

)

−1⌋

=

{

Fn+5Fn, if n ≥ 2 and n is even;
Fn+5Fn − 2, if n ≥ 1 and n is odd,

etc.
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