

Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.2

On the Reciprocal Sums of Products of Fibonacci Numbers

Younseok Choo Department of Electronic and Electrical Engineering Hongik University Sejong 30016 Republic of Korea yschoo@hongik.ac.kr

Abstract

In this paper we study the reciprocal sums of products of two different Fibonacci numbers. We obtain some identities related to the numbers $\lfloor (\sum_{k=n}^{\infty} 1/F_k F_{k+m})^{-1} \rfloor$, $m \geq 1$, where $\lfloor \cdot \rfloor$ indicates the floor function.

1 Introduction

As is well known, the Fibonacci numbers F_n are generated from the recurrence relation

$$F_n = F_{n-1} + F_{n-2} \ (n \ge 2),$$

with initial condition $F_0 = 0$ and $F_1 = 1$.

Recently Ohtsuka and Nakamura [7] found interesting properties of the Fibonacci numbers and proved Theorem 1 below.

Theorem 1. For the Fibonacci numbers, the following identities hold:

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k}\right)^{-1} \right\rfloor = \begin{cases} F_n - F_{n-1}, & \text{if } n \ge 2 \text{ and } n \text{ is even};\\ F_n - F_{n-1} - 1, & \text{if } n \ge 3 \text{ and } n \text{ is odd}, \end{cases}$$
(1)

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k^2}\right)^{-1} \right\rfloor = \begin{cases} F_{n-1}F_n - 1, & \text{if } n \ge 2 \text{ and } n \text{ is even;} \\ F_{n-1}F_n, & \text{if } n \ge 3 \text{ and } n \text{ is odd.} \end{cases}$$
(2)

Following the paper of Ohtsuka and Nakamura [7], diverse results in the same direction have been reported in the literature [1, 2, 3], [5], [8, 9, 10, 11, 12, 13]. Among them, Liu and Wang [5] considered the product of two reciprocal Fibonacci numbers, and obtained several interesting results. For example, they proved Theorem 2 below for the products of two consecutive Fibonacci numbers.

Theorem 2. Let $m \ge 2$. Then

$$\left\lfloor \left(\sum_{k=n}^{mn} \frac{1}{F_k F_{k+1}}\right)^{-1} \right\rfloor = \begin{cases} F_n^2, & \text{if } n \ge 2 \text{ and } n \text{ is even;} \\ F_n^2 - 1, & \text{if } n \ge 3 \text{ and } n \text{ is odd.} \end{cases}$$
(3)

Motivated by Theorem 2, we study the reciprocal sums of products of two different Fibonacci numbers in this paper. We obtain some identities related to the numbers

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}\right)^{-1} \right\rfloor, \ m \ge 1.$$

Remark 3. The following identity was conjectured by Ohtsuka and proved by Bruckman [6]:

$$\left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}\right)^{-1} = \sum_{k=1}^{n-1} F_k F_{k+m} - \frac{1}{3} F_{m-2(-1)^n} + O\left(\frac{1}{F_n^2}\right), \quad m \ge 0.$$

For the case where m = 0 and n is large, (2) also can be derived from the above result.

2 Main results

We will use Lemma 4 below to prove our main results.

Lemma 4 (Koshy [4]). For the Fibonacci numbers, we have

$$F_m F_n - F_{m+k} F_{n-k} = (-1)^{n-k} F_{m-n+k} F_k.$$

Our main results are stated in the following theorem.

Theorem 5. For the Fibonacci numbers, (a), (b) and (c) below hold:

(a) Let $m \ge 1$. If

$$\frac{2F_m - F_{m+1}}{3} \notin \mathbb{Z}$$

then there exist positive integers n_0 and n_1 such that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}\right)^{-1} \right\rfloor = \begin{cases} F_{n+m-1} F_n + g_m - 1, & \text{if } n \ge n_0 \text{ and } n \text{ is even;} \\ F_{n+m-1} F_n - g_m, & \text{if } n \ge n_1 \text{ and } n \text{ is odd,} \end{cases}$$
(4)

where

$$g_m = \left\lfloor \frac{2F_m - F_{m+1}}{3} \right\rfloor + 1.$$

(b) For m = 2,

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}\right)^{-1} \right\rfloor = F_{n+m-1} F_n, \text{ for } n \ge 1.$$
(5)
(c) Let $m \ge 3$. If

$$\frac{2F_m - F_{m+1}}{3} \in \mathbb{Z},$$

then there exist positive integers n_2 and n_3 such that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}\right)^{-1} \right\rfloor = \begin{cases} F_{n+m-1} F_n + \hat{g}_m - 1, & \text{if } n \ge n_2 \text{ and } n \text{ is even;} \\ F_{n+m-1} F_n - \hat{g}_m - 1, & \text{if } n \ge n_3 \text{ and } n \text{ is odd,} \end{cases}$$
(6)

where

$$\hat{g}_m = \frac{2F_m - F_{m+1}}{3}.$$

Proof. (a) To prove (4), consider

$$X_{1} = \frac{1}{F_{n+m-1}F_{n} + (-1)^{n}g_{m}} - \frac{1}{F_{n+m+1}F_{n+2} + (-1)^{n}g_{m}} - \frac{1}{F_{n}F_{n+m}} - \frac{1}{F_{n+1}F_{n+m+1}}$$
$$= \frac{\hat{X}_{1}}{\{F_{n+m-1}F_{n} + (-1)^{n}g_{m}\}\{F_{n+m+1}F_{n+2} + (-1)^{n}g_{m}\}F_{n}F_{n+m}F_{n+1}F_{n+m+1}},$$

where, by the identity $F_{n+m+1}F_{n+2} - F_{n+m-1}F_n = F_nF_{n+m} + F_{n+1}F_{n+m+1}$

$$\hat{X}_1 = (F_n F_{n+m} + F_{n+1} F_{n+m+1}) \tilde{X}_1,$$

with

$$\tilde{X}_1 = F_n F_{n+1} F_{n+m} F_{n+m+1} - F_{n+m-1} F_{n+m+1} F_n F_{n+2} - (-1)^n g_m (F_{n+m-1} F_n + F_{n+m+1} F_{n+2}) - g_m^2.$$

From Lemma 4, we have

$$F_{n+1}F_{n+m} - F_{n+m+1}F_n = (-1)^n F_m,$$

$$F_{n+m+1}F_n - F_{n+m-1}F_{n+2} = (-1)^n (F_m - F_{m+1}),$$

$$F_{n+m+1}F_{n-1} - F_{n+m}F_n = (-1)^n F_{m+1}.$$

Then

$$F_{n}F_{n+1}F_{n+m}F_{n+m+1} - F_{n+m-1}F_{n+m+1}F_{n}F_{n+2}$$

$$= F_{n+m+1}F_{n}\left\{F_{n+m+1}F_{n} + (-1)^{n}F_{m}\right\}$$

$$-F_{n+m+1}F_{n}\left\{F_{n+m+1}F_{n} + (-1)^{n}(F_{m+1} - F_{m})\right\}$$

$$= (-1)^{n}F_{n+m+1}F_{n}(2F_{m} - F_{m+1}),$$

and

$$F_{n+m-1}F_n + F_{n+m+1}F_{n+2} = 3F_{n+m+1}F_n + F_{n+m+1}F_{n-1} - F_{n+m}F_n$$

= $3F_{n+m+1}F_n + (-1)^n F_{m+1}$.

Hence

$$\tilde{X}_1 = (-1)^n F_{n+m+1} F_n (2F_m - F_{m+1} - 3g_m) - g_m F_{m+1} - g_m^2$$

Assume that n is even. Since $g_m > 0$ and $2F_m - F_{m+1} - 3g_m < 0$, then $X_1 < 0$ and

$$\frac{1}{F_{n+m-1}F_n + g_m} - \frac{1}{F_{n+m+1}F_{n+2} + g_m} < \frac{1}{F_nF_{n+m}} + \frac{1}{F_{n+1}F_{n+m+1}}.$$

Repeatedly applying the above inequality, we have

$$\frac{1}{F_{n+m-1}F_n + g_m} < \sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}, \text{ if } n \ge 2 \text{ and } n \text{ is even.}$$
(7)

Similarly, if n is odd, then there exists a positive integer m_1 such that, for $n \ge m_1$, $X_1 > 0$ and

$$\frac{1}{F_n F_{n+m}} + \frac{1}{F_{n+1} F_{n+m+1}} < \frac{1}{F_{n+m-1} F_n - g_m} - \frac{1}{F_{n+m+1} F_{n+2} - g_m},$$

from which we obtain

$$\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}} < \frac{1}{F_{n+m-1} F_n - g_m}, \text{ if } n \ge m_1 \text{ and } n \text{ is odd.}$$

$$\tag{8}$$

Next, consider

$$X_{2} = \frac{1}{F_{n+m-1}F_{n} + (-1)^{n}g_{m} - 1} - \frac{1}{F_{n+m}F_{n+1} + (-1)^{n+1}g_{m} - 1} - \frac{1}{F_{n}F_{n+m}}$$
$$= \frac{\hat{X}_{2}}{\{F_{n+m-1}F_{n} + (-1)^{n}g_{m} - 1\}\{F_{n+m}F_{n+1} + (-1)^{n+1}g_{m} - 1\}F_{n}F_{n+m}},$$

where

$$\hat{X}_2 = F_n F_{n+m}^2 F_{n+1} - F_{n+m} F_{n+m-1} F_n F_{n+1} - F_n^2 F_{n+m-1} F_{n+m} - (-1)^n g_m (2F_n F_{n+m} - F_{n+m-1} F_n + F_{n+m} F_{n+1}) + F_{n+m-1} F_n + F_{n+m} F_{n+1} + g_m^2 - 1.$$

From Lemma 4, we have

$$F_{n+m-1}F_n - F_{n+m-2}F_{n+1} = (-1)^{n+1}F_{m-2} = (-1)^n (F_{m+1} - 2F_m).$$

Then

$$F_n F_{n+m} F_{n+1} F_{n+m} - F_{n+m} F_{n+m-1} F_n F_{n+1} - F_n^2 F_{n+m-1} F_{n+m}$$

= $F_n F_{n+m} (F_{n+1} F_{n+m-2} - F_n F_{n+m-1})$
= $(-1)^n F_n F_{n+m} (2F_m - F_{m+1}),$

and

$$2F_nF_{n+m} + F_{n+m}F_{n+1} - F_{n+m-1}F_n$$

= $3F_nF_{n+m} + F_{n+m}F_{n-1} - F_{n+m-1}F_n$
= $3F_nF_{n+m} + (-1)^n(2F_{m+2} - F_{m+3}).$

Hence

$$\hat{X}_{2} = (-1)^{n} F_{n} F_{n+m} (2F_{m} - F_{m+1} - 3g_{m}) + F_{n+m-1} F_{n} + F_{n+m} F_{n+1} - g_{m} (2F_{m+2} - F_{m+3}) + g_{m}^{2} - 1.$$

Suppose that n is even. Since

$$-2 \le 2F_m - F_{m+1} - 3g_m \le -1,$$

then

$$F_n F_{n+m} (2F_m - F_{m+1} - 3g_m) + (F_{n+m-1}F_n + F_{n+m}F_{n+1})$$

$$\geq -2F_n F_{n+m} + F_n F_{n+m-1} + F_{n+1}F_{n+m}$$

$$= (F_{n-1} - F_n)(F_{n+m-1} + F_{n-m-2}) + F_n F_{n+m-1}$$

$$= F_{n-1}F_{n+m-1} - F_{n-2}F_{n+m-2}$$

$$> 0,$$

and there exists a positive integer m_2 such that, for $n \ge m_2$, $X_2 > 0$ and

$$\frac{1}{F_n F_{n+m}} < \frac{1}{F_{n+m-1} F_n + (-1)^n g_m - 1} - \frac{1}{F_{n+m} F_{n+1} + (-1)^{n+1} g_m - 1}.$$

Repeatedly applying the above inequality, we have

$$\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}} < \frac{1}{F_{n+m-1} F_n + g_m - 1}, \text{ if } n \ge m_2 \text{ and } n \text{ is even.}$$
(9)

On the other hand,

$$X_{3} = \frac{1}{F_{n+m-1}F_{n} + (-1)^{n}g_{m} + 1} - \frac{1}{F_{n+m}F_{n+1} + (-1)^{n+1}g_{m} + 1} - \frac{1}{F_{n}F_{n+m}}$$

$$= \frac{\hat{X}_{3}}{\{F_{n+m-1}F_{n} + (-1)^{n}g_{m} + 1\}\{F_{n+m-1}F_{n+1} + (-1)^{n+1}g_{m} + 1\}F_{n}F_{n+m}}$$

where

$$\hat{X}_{3} = \hat{X}_{2} - 2(F_{n+m-1}F_{n} + F_{n+m}F_{n+1})
= (-1)^{n}F_{n}F_{n+m}(2F_{m} - F_{m+1} - 3g_{m}) - F_{n+m-1}F_{n} - F_{n+1}F_{n+1}
-g_{m}(2F_{m+2} - F_{m+3}) + g_{m}^{2} - 1.$$

Suppose that n is odd. As shown above, we have

$$-F_nF_{n+m}(2F_m - F_{m+1} - 3g_m) - F_{n+m-1}F_n - F_{n+m}F_{n+1} < F_{n-2}F_{n+m-2} - F_{n-1}F_{n+m-1}.$$

Hence there exists a positive integer m_3 such that, for $n \ge m_3$, $X_3 < 0$ and

$$\frac{1}{F_{n+m-1}F_n + (-1)^n g_m + 1} - \frac{1}{F_{n+m}F_{n+1} + (-1)^{n+1}g_m + 1} < \frac{1}{F_n F_{n+m}},$$

from which we have

$$\frac{1}{F_{n+m-1}F_n - g_m + 1} < \sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}, \text{ if } n \ge m_3 \text{ and } n \text{ is odd.}$$
(10)

Then, (4) follows from (7), (8), (9) and (10).

(b) Since
$$F_{n+2}F_{n+3} - F_nF_{n+1} = F_nF_{n+2} + F_{n+1}F_{n+3}$$
, we have

$$\frac{1}{F_nF_{n+1}} - \frac{1}{F_{n+2}F_{n+3}} - \frac{1}{F_nF_{n+2}} - \frac{1}{F_{n+1}F_{n+3}} = \frac{F_{n+2}F_{n+3} - F_nF_{n+1} - (F_nF_{n+2} + F_{n+1}F_{n+3})}{F_nF_{n+1}F_{n+2}F_{n+3}} = 0$$

i.e.,

$$\frac{1}{F_n F_{n+1}} - \frac{1}{F_{n+2} F_{n+3}} = \frac{1}{F_n F_{n+2}} + \frac{1}{F_{n+1} F_{n+3}}.$$

Repeatedly applying the above equality, we obtain (5).

(c) Let $m \ge 3$ and assume that

$$\hat{g}_m = \frac{2F_m - F_{m+1}}{3} \in \mathbb{Z}.$$

We recall the proof of (a). Replacing g_m by \hat{g}_m in \tilde{X}_1 , we have

$$\tilde{X}_1 = -\hat{g}_m F_{m+1} - \hat{g}_m^2 < 0.$$

Then $X_1 < 0$ if $n \ge 2$ and n is even or if $n \ge m_4$ and n is odd for some positive integer m_4 , and we have

$$\frac{1}{F_{n+m-1}F_n + (-1)^n \hat{g}_m} < \sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}}, \text{ if } n \ge 2 \ (n \text{ is even}) \text{ or if } n \ge m_4 \ (n \text{ is odd}).$$
(11)

Similarly there exist positive integers m_5 and m_6 such that $X_2 > 0$ if $n \ge m_5$ and n is even, or if $n \ge m_6$ and n is odd, from which we have

$$\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+m}} < \frac{1}{F_{n+m-1} F_n + (-1)^n \hat{g}_m - 1}, \text{ if } n \ge m_5 \text{ (n is even) or if $n \ge m_6$ (n is odd).}$$
(12)

Then, (6) follows from (11) and (12).

Remark 6. From Theorem 5, we have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+1}}\right)^{-1} \right\rfloor = \begin{cases} F_n^2, & \text{if } n \ge 2 \text{ and } n \text{ is even}; \\ F_n^2 - 1, & \text{if } n \ge 1 \text{ and } n \text{ is odd}, \end{cases} \\ \left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k F_{k+6}}\right)^{-1} \right\rfloor = \begin{cases} F_{n+5} F_n, & \text{if } n \ge 2 \text{ and } n \text{ is even}; \\ F_{n+5} F_n - 2, & \text{if } n \ge 1 \text{ and } n \text{ is odd}, \end{cases}$$

etc.

3 Acknowledgments

The author is thankful to the editor-in-chief and to the anonymous referee for their helpful comments which led to the improved presentation of the paper.

References

 Y. Choo, On the reciprocal sums of generalized Fibonacci numbers, Int. J. Math. Anal. 10 (2016), 1365–1373.

- [2] Y. Choo, On the finite sums of reciprocal Lucas numbers, Int. J. Math. Anal. 11 (2017), 519–529.
- [3] S. Holliday and T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers 11A (2011), Article 11.
- [4] T. Koshy, Fibonacci and Lucas numbers with Applications, Wiley, 2001.
- [5] R. Liu and A. Wang, Sums of products of two reciprocal Fibonacci numbers, Adv. Diff. Eqn. 16 (2016), Article 1136.
- [6] H. Ohtsuka, Problem H-698 (ii), Fibonacci Quart. 50 (2012), 284.
- [7] H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, *Fibonacci Quart.* 46/47 (2008/2009), 153–159.
- [8] A. Wang and P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, *J. Inequal. Appl.* **15** (2015), Article 73.
- [9] A. Wang and T. Yuan, Alternating sums of the reciprocal Fibonacci numbers, J. Integer Seq. 20 (2017), Article 17.1.4.
- [10] A. Wang and F. Zhang, The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl. 15 (2015), Article 376.
- [11] Z. Wu and W. Zhang, The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl. 12 (2012), Article 134.
- [12] A. Wang and F. Zhang, The reciprocal sums of the Fibonacci 3-subsequences, Adv. Diff. Eqn. 16 (2016), Article 27.
- [13] W. Zhang and T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput. 218 (2012), 6164–6167.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37. Keywords: Fibonacci number, reciprocal, floor.

(Concerned with sequence $\underline{A000108}$.)

Received July 17 2017; revised versions received December 29 2017; January 22 2018. Published in *Journal of Integer Sequences*, March 8 2018.

Return to Journal of Integer Sequences home page.