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Abstract

Automorphic numbers (in a specified base) have the property that the expansion of
n
2 ends in that of n; Fairbairn characterized these numbers for all bases in 1969. Here

we consider some related sequences: those n for which the sum of the first n natural
numbers, squares, or cubes ends in n. For sums of natural numbers, these are Trigg’s
“trimorphic” numbers; for sums of squares, Pickover’s “square pyramorphic” numbers.
We characterize the trimorphic numbers for all bases, and the other two for base 10
and prime powers. We also solve a related problem due to Pickover.

1 Introduction

In decimal notation, the number 76 appears as the final digit string of its square, 5776.
Such numbers are called automorphic, circular, or cyclic (the inconsistent nomenclature was
already noted by Kraitchik [6, pp. 77–78], in 1942.) The sequence of decimal automorphic
numbers appears in the On-line Encyclopedia of Integer Sequences as sequence A003226.
Such numbers were characterized, in all bases, by Fairbairn [2] in 1969. He showed that if
B has k distinct prime factors, then there are 2k − 2 d-digit automorphic numbers (base B),
possibly including leading zeros, as well as the trivial 0 and 1. In particular, if B is a prime
power, there are no nontrivial automorphic numbers.
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When we wish a string of digits to be interpreted as a number in base B, we express the
base (as a decimal number) as a subscript. Thus, 100102, 2003, and 1612 all represent 18.
On one occasion we use A for the digit after 9.

It is clear that a number that ends its own square must end its own cube and all higher
powers, too. On the other hand, there are numbers (such as 49) which end their own cubes
and not their own squares. This justifies the 1974 introduction by Hunter [3] of the separate
term trimorphic for such numbers (A033819.) However, these numbers have also been called
“perissomorphic” [9], while “trimorphic” has also been used [1, 9, 10] for a number n that
ends the decimal representation of the nth triangular number.

To avoid ambiguity, given any function F : N → N, we say that the number n is F -
morphic in base B if the digit string for F (n) terminates in that for n. Thus, the decimal
automorphic numbers are n2-morphic (base 10). We state the following obvious lemmas for
completeness.

Lemma 1. A d-digit number is F -morphic (base B) if and only if

Bd | (F (n)− n).

Lemma 2. If d > 1, then Bd−1 < n < Bd.

In this paper we consider the sequences of such numbers generated in this way by the
following four functions:

• the triangular numbers T (n) :=
∑n

k=0 k = n(n+ 1)/2 (A000217);

• the pyramidal numbers P (n) :=
∑n

k=0 k
2 = n(n+ 1)(2n+ 1)/6 (A000330);

• the hyperpyramidal numbers H(n) :=
∑n

i=0 i
3 = (T (n))2 (A000537); and

• Pickover’s cake numbers K(n) := (n2 + n+ 2)/2 = T (n) + 1 (A000124).

In Section 2 we characterize the T -morphic numbers to any base B. If B is a prime
power, only 0 and 1 are T -morphic; otherwise infinitely many numbers have the property.
In Section 3, we characterize P -morphic numbers for prime power bases and for base 10. In
the latter case, we will see that the sequence of P -morphic numbers is the union of twelve
simpler sequences. In Section 4 we characterize H-morphic numbers, again for prime power
bases and base 10, and show that the sequence of decimal H-morphic numbers is the union
of ten simpler sequences. Finally, we settle a conjecture of Pickover by showing that there
are no decimal K-morphic numbers.

2 T -morphic numbers

If the digit string (base B) representing T (n) ends in the digit string representing n, we call
n T -morphic. For instance, T (25) = 3255, so 25 is T -morphic in base 10. The sequence of
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decimal T -morphic numbers is A067270; a comment in this OEIS entry credits David Wilson
with proving that every T -morphic number is automorphic. We show below that, conversely,
for odd bases all automorphic numbers are T -morphic.

Trigg [10] listed all the decimal T -morphic numbers with five or fewer digits: 1, 5, 25,
625, 9376, and 90625. He also listed the first five base-6 T -morphic numbers, and noted
(without proof, but correctly) that there are no T -morphic numbers in other bases less than
10. (This follows from Wilson’s observation, combined with Fairbairn’s proof that there are
no automorphic numbers to a prime-power base.)

Let T (n) = n(n + 1)/2 be the nth triangular number. To characterize the T -morphic
numbers, we follow the approach used by Fairbairn [2] for his study of automorphic numbers.

Lemma 3. Suppose that n is a d-digit T -morphic number (base B). Then:

(i) 2Bd | n(n− 1);

(ii) if B is odd, Bd | n(n− 1);

(iii) if p | B, it follows that p divides exactly one of n and n− 1.

Proposition 4. For a prime or prime power base, the only T -morphic numbers are 0 and
1.

Proof. For a prime power base B = pr, Lemma 3(i) implies that 2pdr | n(n− 1). As n and
n − 1 have no common factors, Bd = pdr divides either n or n − 1. But, for 0 ≤ n < Bd,
Bd | n implies n = 0, and Bd | n− 1 implies n = 1.

Proposition 5. If B is odd and has k distinct prime factors, there are 2k d-digit T -morphic
numbers (base B) if we permit leading zeros. If we do not permit leading zeros, there are
at most 2k one-digit T -morphic numbers and, for d > 1, at most 2k − 2 d-digit T -morphic
numbers.

Proof. If B is odd, then as shown above, a necessary and sufficient condition for a d-digit
number n (possibly with one or more leading zeros, which must also appear in T (n)) to be
T -morphic (base B) is that Bd | n(n− 1) . If this is so, then by Lemma 3(iii), n determines
a unique factorization Bd = CD, where C | n and D | (n− 1) are coprime.

There are 2k such factorizations. The improper factorization C = 1, D = Bd gives
Bd | n − 1; this has no solutions with Bd−1 ≤ n < Bd, except when d = 1 and n = 1. For
d > 1 this is still a solution if we permit leading zeros. The other improper factorization,
with C = Bd and D = 1, gives Bd | n, which has the one-digit solution n = 0. There are
2k − 2 proper ordered factorizations; given any such factorization, the Chinese remainder
theorem says that the system

C | n (1)

D | n− 1

has a unique solution n ∈ [0, Bd). If this solution is less than Bd−1, then n (without leading
zeros) is not a d-digit number, although n is still T -morphic.
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Example 6. Let B = 15. For d = 1, we have the special solutions 0 and 1 from improper
factorizations. The proper factorization C = 3, D = 5 gives the system of congruences 3 | n,
5 | (n− 1), with solution n = 6.

6 = 615; T (6) = 21 = 1615.

The proper factorization C = 5, D = 3 gives the system of congruences 5 | n, 3 | n − 1,
with solution n = 10 (which we represent in base 15 with the digit ‘A’.)

10 = A15; T (10) = 55 = 3A15.

For d = 2, we consider proper factorizations of 152 into coprime factors. The proper
factorization C = 9, D = 25 gives the system 9 | n, 25 | n− 1 with solution n = 126.

126 = 8615; T (126) = 16002 = 258615.

The proper factorization C = 25, D = 9 gives the system 25 | n, 9 | n− 1 with solution
n = 100.

100 = 6A15; T (100) = 5050 = 176A15.

(T (100) is, of course, the value apocryphally computed by the youthful Gauß.)

In base 10, Lemma 3(i) yields 2d+1 | n(n−1) and 5d | n(n−1). By Lemma 3(iii) we have
either

2d+1 | n (2)

5d | n− 1

or

2d+1 | n− 1 (3)

5d | n.

For any d, the systems (2) and (3) each have a unique solution in the interval [0, 2 · 10d).
We call these g(d) and g′(d) respectively;

they are T -morphic if and only if they are less than 10d. The first few solutions are

(g(d)) = (16, 176, 1376,9376, 109376, 1109376,7109376, 187109376, . . .);

(g′(d)) = (5,25,625, 10625,90625,890625, 12890625,12890625, . . .).
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The T -morphic numbers are shown in boldface; we note that, for any given g, exactly one
of {g(d), g′(d)} appears to be T -morphic. In fact this is the case: adding the congruences
(2,3), we get

2d+1 | g(d) + g′(d)− 1, (4)

5d | g(d) + g′(d)− 1,

whence g(d) + g′(d) ≡ 1 (mod 2 · 10d). As 0 < g(d), g′(d) < 2 · 10d, we must have

g(d) + g′(d) = 2 · 10d + 1.

By examining the last digits, we rule out the solution {10d, 10d + 1}.

Proposition 7. The decimal numbers 0, 1, and 5 are T -morphic; and for every d > 1 there
is at most one decimal T -morphic number with d digits. �

Remark 8. If we do not allow leading zeros, there may be no d-digit decimal T -morphic
number. This occurs first when d = 12: g(12) = 81787109376 < 1011 while g′(12) =
1918212890625 > 1012. If, e.g., g(d) < 10d−1, then g(d) is equal to g(d − 1), and is T -
morphic. In fact, more is true; g(d) is T -morphic even when written with a leading zero:

T (g(12)) = 3344565630081787109376.

In fact, as may be seen, g(11) = g(12) = g(13). If g(d) > 10d, then g(d) is T -morphic if
and only if g(d) = g(d+1). We conclude that every T -morphic number with d digits appears
as g(d) or g′(d).

Proposition 7 generalizes straightforwardly to bases with more prime factors.

Proposition 9. If B is even with exactly k distinct prime factors, for every d > 1 there are
at most 2k−1 − 1 T -morphic numbers (base B) with d digits. �

If we consider strings that differ only by leading zeros to be distinct, we have shown that
there are infinitely many T -morphic numbers. If we do not, we must show that there does
not exist some g(d) such that, for all d′ > d, g(d′) is obtained by prefixing d′ − d leading
zeros to g(d). But if this were so, we would have g(d)2 = g(d′)2 ≡ g(k) ≡ g(d) (mod Bk)
for all k. Hence g(d)2 = g(d), so that g(d) must be either 0 or 1. We conclude that even if
we do not consider numbers that differ only by a string of leading zeros to be distinct, there
must be infinitely many T -morphic numbers.

However, there appears to be no simple pattern determining which of g(d) and g′(d)
is T -morphic. The first thousand terms of the sequence A067270 show no obvious sign of
periodicity, asymptotic dominance by last digit 5 or 6, or other structure.
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3 P -morphic numbers

The nth square pyramidal number P (n) (A000330) is defined to be
∑n

i=0 i
2 = n(n+ 1)(2n+

1)/6. This sequence is so called because P (n) counts the number of spheres in a pyramidal
pile on an n× n square base. Pickover [8, p.160] and the notes on A093534 call the decimal
P -morphic numbers square pyramorphic. We have

P (n)− n =
n(n+ 1)(2n+ 1)

6
− n =

2n3 + 3n2 − 5n

6
=

n(n− 1)(2n+ 5)

6
,

and so n is P -morphic if and only if

6Bd | n(n− 1)(2n+ 5). (5)

The following lemma gathers useful and easily-proved facts about the right-hand side of
(5).

Lemma 10. Of the three numbers n, n− 1, and 2n+ 5:

(i) 2n+ 5 is always odd, and exactly one of the other two is even;

(ii) exactly one is divisible by 3;

(iii) only n and 2n+ 5 can both be divisible by 5, and they cannot both be divisible by 25;

(iv) only n − 1 and 2n + 5 can both be divisible by 7, and they cannot both be divisible by
49;

(v) no two have a common prime factor greater than 7.

We first consider the numbers which are P -morphic to prime power bases.

Proposition 11. The only P -morphic numbers (base 2r) are the trivial cases 0 and 1.

Proof. As observed above, only one of the first two factors of n(n− 1)(2n+ 5) can be even,
and 2n+5 must be odd. So if (5) is satisfied, 2 · (2r)d must divide n or n− 1, both of which
are, by Lemma 2, less than (2r)d. This is only possible in the trivial cases where n = 0 or
1.

Proposition 12. The only P -morphic numbers (base 3r) are the trivial cases 0 and 1, and
the special case a = 2 when r = 1.

Proof. For a number n to be P -morphic with d digits base 3r, it is necessary that one of the
following hold:

3 · 3rd | n (6)

3rd > n;
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3 · 3rd | n− 1 (7)

3rd > n;

or

3 · 3rd | 2n+ 5 (8)

3rd > n.

Neither the system (6) nor the system (7) have any solution except for the trivial n = 0
and n = 1 respectively. The system (8) requires that 3rd < 5, whence r = d = 1. Thus no
number is P -morphic base 3r except for 0 and 1 (any r) and 2 (base 3 only.)

Proposition 13. The only d-digit P -morphic numbers (base 5r) are the trivial cases 0 and
1, and, for rd > 1, the numbers c · 5rd−1 for c ∈ {1, 2, 3, 4}, and the numbers c · 5rd−1 +
(5rd−1 − 5)/2 for c ∈ {0, 1, 2, 3, 4}.

Proof. 5rd cannot (nontrivially) divide any of n, n − 1, or 2n + 5, for the same reasons as
above; but if rd > 1, then, by Lemma 10(iii), one of n and 2n+ 5 can be divisible by 5rd−1,
the other by 5. (In the case r = d = 1, 51 cannot be factorized.) In general, we have, for
rd > 1, the following two sets of solutions:

• 5rd−1 | n, whence 5 | 2n + 5; the constraint n < 5rd gives us solutions p5(c, rd) :=
c · 5rd−1, c ∈ {1, 2, 3, 4};

• 5rd−1 | 2n + 5, whence 5 | n; the constraint n < 5rd gives us solutions p′5(c, rd) :=
c · 5rd−1 + (5rd−1 − 5)/2, c ∈ {0, 1, 2, 3, 4}.

By Lemma 10(i,ii), 2 and 3 each divide one of n, (n− 1), and (2n+ 5); so (5) follows.

Corollary 14.

• There are, in base 5, two P -morphic numbers with one digit, four with two digits, and
eight with d digits for any d > 2.

• There are, in base 25, six P -morphic numbers with one digit and nine with d digits for
any d > 1.

• For r > 2 there are, in base 5r, eleven P -morphic numbers with one digit and nine
with d digits for any d > 1.

Proof. There are no one-digit base-5 P -morphic numbers except for 0 and 1, because 51·1 does
not factor. There are only four two-digit base-5 P -morphic numbers, because (52−1−5) = 0,
so that p5(c, 2) = p′5(c, 2) for c ∈ {1, 2, 3, 4}, while p′5(0, 2) = 0. For r > 2 the numbers
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p5(c, d) and p′5(c, d) are all distinct for c ∈ {1, 2, 3, 4}, but p′5(0, d) = p5(2, d − 1) (and has
d− 1 digits.)

In base 25, one-digit numbers have rd = 2; again, p5(c, 2) = p′5(c, 2) for c ∈ {1, 2, 3, 4},
and there are also the trivial solutions 0 and 1. For d > 2, p′5(0, 2d) = (52d−1− 5)/2 > 25d−1,
so that p′5(0, 2d) is a d-digit number. There are thus nine distinct d-digit solutions.

For k > 3, we always have rd > 2, so all five p′5(c, r) and four p5(c, r) are distinct from
each other and from the trivial solutions 0 and 1. For d > 1 the solutions are exactly the
five p′5(c, rd) and four p5(c, rd).

Example 15. The sequence of base-5 P -morphic numbers begins

(05, 15, 105, 205, 305, 405, 1005, 1205, 2005, 2205, 3005, 3205, 4005, 4205, . . .)

The situation for powers of 7 is very similar.

Proposition 16. The only P -morphic numbers (base 7r) are the trivial cases 0 and 1, and,
for rd > 1, the numbers c · 7rd−1 + 1 for c ∈ {1, 2, 3, 4, 5, 6}, and c · 7rd−1 + (7rd−1 − 5)/2 + 1
for c ∈ {0, 1, 2, 3, 4, 5, 6}.

Proof. This proceeds like the proof above, noting that, of the three factors, only n− 1 and
2n+ 5 can be simultaneously divisible by 7.

Corollary 17.

• There are, in base 7, two P -morphic numbers with one digit, six with two digits, and
twelve with d digits for any d > 2.

• There are, in base 49, eight P -morphic numbers with one digit and, for d > 1, thirteen
with d digits.

• For r > 2 there are, in base 7r, fifteen P -morphic numbers with one digit. For any
d > 1 there are thirteen with d digits. �

Proposition 18. If p is a prime greater than 7, the only P -morphic numbers (base pr) are
the trivial cases 0 and 1, and the numbers (prd − 5)/2.

Proof. No power of a prime p > 7 can divide two of the three factors of the right-hand side
of (5) nontrivially; it follows that we must have one of the following:

prd | n (9)

prd > n;

prd | n− 1 (10)

prd > n;
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or

prd | 2n+ 5 (11)

prd > n.

The first two systems give 0 and 1 respectively. In the third system, for m ≥ 3 we
have mprd > 3n > 2n + 5, while 2prd is even. We conclude that prd = 2n + 5, whence the
conclusion follows.

Corollary 19. For any base which is a power of a prime greater than 7, there are three
one-digit P -morphic numbers and one P -morphic number of every other length. �

Example 20. The base-11 P -morphic numbers are

(0, 1, 3, 5311, 55311, 555311, 5555311, . . . ,
11n − 5

2
, . . .).

The fact that there are four “special” prime numbers in the theory of P -morphic numbers
adds significantly to the complication when the base has more than one prime factor. We shall
consider the decimal case in detail; the same techniques can be applied to other composite
bases. We define the following sequences:

• a(d) := 4 · 10d−1;

• b(d) is the unique solution in [0, 2 · 10d) of the system 2d+1 | b(d), 5d | b(d)− 1;

• c(d) is the unique solution in [0, 4 · 10d−1) of the system 2d+1 | c(d), 5d−1 | 2c(d) + 5;

• c′(d) is the unique solution in [0, 4·10d−1) of the system 2d+1 | c′(d)−1, 5d−1 | 2c′(d)+5;

• c′′(d) is the unique solution in [0, 4 · 10d−1) of the system 2d+1 | c′′(d)− 1, 5d−1 | c′′.

Theorem 21. Every decimal P -morphic number belongs to one of the following twelve se-
quences:

1. (a(d) : d ≥ 2);

2. (2a(d) : d ≥ 2);

3. (b(d) : d ≥ 1);

4. (c(d) : d ≥ 2);

5. (c(d) + a(d) : d ≥ 2);

6. (c(d) + 2a(d) : d ≥ 2, c(d) + 2a(d) < 10d);
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7. (c′(d) : d ≥ 2);

8. (c′(d) + a(d) : d ≥ 2);

9. (c′(d) + 2a(d) : d ≥ 2, c(d) + 2a(d) < 10d);

10. (c′′(d) : d ≥ 2);

11. (c′′(d) + a(d) : d ≥ 2);

12. (c′′(d) + 2a(d) : d ≥ 2, c(d) + 2a(d) < 10d).

Proof. For n to be P -morphic to the base 10, we must have

6 · 10d = 2d+1 · 3 · 5d | (P (n)− n).

By Lemma 10(ii), the factor of 3 is always present. By Lemma 10(i), 2d+1 must divide n
or n− 1. We consider these two cases separately.

Case 1 (2d+1 | n). When d = 1, 5 may divide either n− 1 or both of n and 2n + 5; neither
of these yields a solution in [0, 10). For d > 1, either 5d | n − 1, or 5d−1 divides one of
{n, 2n+ 5}, and 5 divides the other.

Subcase 1.1 (2d+1 | n, 5d−1 | n, and d ≥ 2). We cannot have 5d | n (except in the trivial
case n = 0), as this would require 2 ·10d | n < 10d . For d > 1, however, we have 5 | (2n+5),
so that 5d | P (n). The system

2d+1 | n (12)

5d−1 | n

has solutions
a(d) := 4 · 10d−1 and 2a(d) = 8 · 10d−1,

both always less than 10d. The first few values of the sequences are

(a(d) : d ≥ 2) = (−, 40, 400, 4000, . . .) and (2a(d) : d ≥ 2) = (−, 80, 800, 8000, . . .)

respectively; note that a(1) = 4 and 2a(1) = 8 are not P -morphic.

Subcase 1.2 (2d+1 | n, 5d−1 | n − 1, and d ≥ 2). In this case, no other factor of P (n) − n
can be divisible by 5, so we must have 5d | n− 1. The system

2d+1 | n (13)

5d | n− 1

has a unique solution b(d) ∈ [0, 2 · 10d). The first few values in the sequence are

(b(d) : d ≥ 1) ∈ (16, 176, 1376,9376, 109376, 1109376,7109376, 187109376, . . .) ;

values less than 10d, shown in bold, are P -morphic.
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Subcase 1.3 (2d+1 | n, 5d−1 | 2n+5, and d ≥ 2). If d ≥ 2 we have 5 | n, whence 5d | P (n)−n;
and it suffices to solve the system

2d+1 | n (14)

5d−1 | 2n+ 5.

This system has a unique solution c(d) ∈ [0, 4 ·10d−1) and an arithmetic sequence of solutions
c(d) + ka(d). Of these, c(d) always has d or fewer digits; c(d) + a(d) always has exactly d
digits; c(d)+2a(d) has d or d+1 digits; and the others always have more than d digits. The
first few terms in the sequence (c(d)) are

(c(d) : d ≥ 1) = (0, 0, 160, 2560, 26560, 226560, 0226560 , 12226560, . . .).

The value c(6) = c(7) = 226560 may be considered as P -morphic with or without a leading
zero (see remark 8.)

Case 2 (2d+1 | n− 1).

Subcase 2.1 (2d+1 | n− 1 and 5d−1 | n− 1). In this case, 5 cannot divide n or 2n+5, so we
must have 5d | n− 1. But then 2 · 10d | n− 1 < 10d, giving only the trivial solution n = 1.

Subcase 2.2 (2d+1 | n− 1 and 5d−1 | 2n+ 5). The system

2d+1 | n− 1 (15)

5d−1 | 2n+ 5

yields solutions in [0, 4 · 10d+1) of the form

(c′(d) : d ≥ 1) = (1, 25, 385, 1185, 37185, 317185, 1117185, 25117185, . . .)

along with c′(d) + a(d) and sometimes c′(d) + 2a(d).

Subcase 2.3 (2d+1 | n− 1 and 5d−1 | n). The system

2d+1 | n− 1 (16)

5d−1 | n

has solutions in [0, 4 · 10d−1) of the form

(c′′(d) : d ≥ 1) ∈ (5, 25, 225, 2625, 10625, 090625 , 0890625 , 12890625, . . .),

along with c′′(d) + a(d) and sometimes c′′(d) + 2a(d).

Remark 22. For d > 3, if a d-digit P -morphic number n ends in

• 00: then n = a(d) or 2a(d);
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• 76: then n = b(k) for k ≥ d− 1;

• 60: then n = c(k) for k ≥ d, or n = c(d)+ a(d), or n = c(k)+ 2a(k) for k ∈ {d− 1, d};

• 85: then n = c′(k) for k ≥ d, or n = c′(d)+a(d), or n = c′(k)+2a(k) for k ∈ {d−1, d};

• 25: then n = c′′(k) for k ≥ d, or n = c′′(d)+a(d), or n = c′′(k)+2a(k) for k ∈ {d−1, d};

and these are the only two-digit strings that a P -morphic number larger than 100 can end
in.

Remark 23. It is possible for b(d), c(d), c′(d), or c′′(d) to be less than 10d−1. In such a case,
the number is always P -morphic; and if, e.g.,

10n−1 < b(d) < 10n for n < d,

then b(n) = b(n + 1) = · · · = b(d), and b(n) appears in P (b(n)) prefixed by d− n zeros. To
take the example above,

P (c(6)) = P (226560) = 3876424490226560.

It is also possible for b(d), c(d) + 2a(d), c′(d) + 2a(d), or c′′(d) + 2a(d) to be greater than
10d. In such a case the number is usually not P -morphic, but may be. For instance,

b(9) = 1787109376 > 109 but P (b(9)) = 1902532768569804241787019376.

If b(d) is P -morphic and greater than 10d, then b(d) must equal its successor in the same
sequence. If c(d) + 2a(d) is P -morphic and greater than 10d, then c(d) + 2a(d) = c(d + 1);
analogous statements hold for c′(d) + 2a(d) and for c′′(d) + 2a(d). We conclude that every
P -morphic number with d digits appears in its proper place in one of these sequences.

The only other identities between elements of these sequences are

a(1) = 2a(1) = c(1) = c(1) + a(1) = c(1) + 2a(1) = c(2) = 0;

c′(1) = c′(1) + a(1) = c′(1) + 2a(1) = 1;

c′′(1) = c′′(1) + a(1) = c′′(1) + 2a(1) = 5;

c′(2) = c′′(2) = 25.

Remark 24. The sequence of decimal P -morphic numbers appears in the OEIS as A093534.
The initial terms are (0, 1, 5, 25, 40, 65, 80, 160, 225, 385, 400, 560, 625, 785, 800, 960, 1185,
2560, 2625, 4000, 5185, 6285,6625, 8000, 9185, 9376, . . .).

Corollary 25. There are three single-digit P -morphic decimal numbers and four two-digit
P -morphic decimal numbers.

For any d > 2, there are at least eight and at most eleven distinct P -morphic decimal
numbers with d digits.
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Proof. For d = 1 and d = 2 this is true by inspection. For d > 2 the sequences a(d), 2a(d),
c(d) + a(d), c′(d) + a(d), and c′′(d) + a(d) always yield distinct P -morphic numbers of d
digits; and, additionally, at least one of {c(d), c(d) + 2a(d)}, of {c′(d), c′(d) + 2a(d)}, and
of {c′′(d), c′′(d) + 2a(d)} must have exactly d digits. This minimum is attained (see below):
however, at most five of

{c(d), c(d) + 2a(d), c′(d), c′(d) + 2a(d), c′′(d), c′′(d) + 2a(d)}

can be d-digit numbers. We note that

10d−1 < c(d), c(d) + 2a(d) < 10d ⇔ 10d−1 < c(d) < 2 · 10d−1 ;

and similarly for c′(d), c′′(d). It thus suffices to show that not all of c(d), c′(d), c′′(d) can be
in this interval. Suppose, for a contradiction, that they are; then

0 < c(d)− c′(d) + c′′(d) < 4 · 10d−1.

But if we combine the three congruences (14,15,16) we get

2d+1 | c(d)− c′(d) + c′′(d) (17)

5d−1 | c(d)− c′(d) + c′′(d),

whence 4 · 10d−1 | c(d)− c′(d) + c′′(d), a contradiction.

Remark 26. The minimum of eight d-digit P -morphic decimal numbers is attained for d = 6,
when we have only

226560, 317185, 400000, 490625, 626560, 717185, 800000, and 890625.

The maximum of eleven is first attained for d = 49; only c′′(49) + 2a(49) ≈ 1.0982× 1049 is
out of range.

4 H-morphic numbers

Let H(n) :=
∑n

k=0 k
3 (the “hyperpyramidal numbers”, A000537). If the base-B expansion

of H(n) ends in the base-B expansion of n, we call n H-morphic. By what may be viewed as
coincidence (or “the strong law of small polynomials”), H(n) = T (n)2; so as every T -morphic
number is automorphic, any such number must also be H-morphic.

Are there other H-morphic numbers? As

H(n)− n =
n(n− 1)(n2 + 3n+ 4)

4

has an irreducible quadratic factor h(n) := n2 + 3n+ 4, our methods to date will not work.
The following result from p-adic analysis will be useful.
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Theorem 27. [4, §1.7] or [5, p.10]: If F is a polynomial, F (x) = 0 in Z/pdZ, and F ′(x) 6= 0
in Z/pdZ, then x lifts to a zero x̂ of F in the field Qp of p-adic numbers.

Let πd be the canonical projection Qp → Z/pd(Z).

Proposition 28. For every d, the interval [0, 2d − 1] contains one even number n0(d), and
one odd number n1(d), satisfying 2d | h(n).

Proof. In Z/2Z, h(0) = h(1) = 0 and h′(0) = h′(1) = 1; thus, by Hensel’s lemma, there exist
0̂ := · · · 11110100100 and 1̂ := · · · 00001011001 in Q2 with h(0̂) = h(1̂) = 0; and these are
the only dyadic zeros of h. Then n0(d) = πd(0̂) and n1(d) = πd(1̂).

The first few values are

(n0(d) : d ≥ 1) = (0, 0, 4, 4, 4, 36, 36, 164, 420, 932, . . .);

(n1(d) : d ≥ 1) = (1, 1, 1, 9, 25, 25, 89, 89, 89, 89, . . .). (18)

Remark 29. Note that 0̂+1̂ = −3; thus their digits beyond the “2’s place” are complementary.
Similarly, n0(d) + n1(d) = 2d − 3 for d > 1.

Proposition 30.

(i) The only base-7 H-morphic numbers are 0, 1, and 2. For r > 1 the only H-morphic
numbers in base 7r are 0 and 1.

(ii) If an odd prime p is congruent to 3, 5, or 6 (mod 7), the only H-morphic numbers in
base pr are 0 and 1.

(iii) If an odd prime p is congruent to 1, 2, or 4 (mod 7) there is at least one and at most
two d-digit H-morphic numbers in base pr.

Proof. For p > 2, at most one of n, n − 1, or h(n) can be divisible by pr. But the system
prd | n, 0 ≤ n < prd has no solution except for n = 0; and prd | n − 1, 0 ≤ n < prd has
no solution except for n = 1. For any other H-morphic numbers to exist, we must have
pkd | h(n). We can use the quadratic formula to solve h(n) ≡ 0 mod pd if and only if −7 is a
quadratic residue mod p; that is, by the quadratic reciprocity theorem, when p ≡ 1, 2, or 4
(mod 7). We also have the special case p = 7 where h(2) ≡ h′(2) ≡ 0 (mod 7) but h(n) has
no zeros mod 49. Thus, 0, 1, and 2 are the only H-morphic numbers in base 7, and 2 is not
H-morphic base 7r for r > 1.

Suppose that p ≡ 1, 2, or 4 (mod 7). Then h(n) has two zeros, n and n′, in Z/pZ; and
for each d, Hensel’s lemma gives liftings to n̂, n̂′ ∈ Qp. These project to n(d) := πd(n̂) and
n′(d) := πd(n̂′) in [0, prd), such that prd divides both h(n(d)) and h(n′(d)). It follows that
n(d) and n′(d) are H-morphic, although they do not necessarily have d digits; and that no
other d-digit numbers are H-morphic.

By Vieta’s formula, n + n′ = −3 in Z/pZ. Thus n̂ + n̂′ = −3 in Qp, and n(d) + n′(d) =
prd− 3; it follows that at least one of n(d) and n′(d) is greater than pr(d−1), and has d digits.
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Example 31. The first odd prime base for which infinitely many H-morphic numbers exist
is 11. The zeros of h(n), mod 11, are 3 and 5. Hensel’s lemma lifts these to 3̂, 5̂ ∈ Q11,
giving base-11 H-morphic numbers

(πd(3̂)) = (3, 1311, 11311, 711311, 5711311 . . .)

and
(πd(5̂) = (5, 9511, 99511, 399511, 5399511 . . .).

As for T -morphic and P -morphic numbers, the situation is more complicated for bases
with more than one prime factor. We again restrict our attention to the decimal case. The
following lemma summarizes useful facts about H(n)− n, all easily proved.

Lemma 32.

(i) No two of n, n− 1 and h(n) can be divisible by 5.

(ii) Only one of n and n− 1 is even; h(n) is always even.

(iii) We have 4 | h(n) if and only if 4 | n or 4 | (n− 1).

(iv) We have 8 | h(n) if and only if 8 | (n− 4) or 8 | (n− 1).

(v) It is not possible for 16 to divide both n− 1 and h(n).

We define the following sequences, where n0(d), n1(d) are as defined in (18):

• p(d) is the unique solution in [0, 10d) of the system 2d | p(d)− n0(d), 5
d | p(d);

• For d ≥ 4, q(d) is the unique solution in [0, 5 · 10d−1) of the system 2d−1 | q(d) − 1,
5d | q(d);

• q′(d) is the unique solution in [0, 5 · 10d−1) of the system 2d−1 | q′(d)− n1(d), 5
d | q′(d);

• r(d) is the unique solution in [0, 10d) of the system 2d | r(d), 5d | r(d)− 1;

• r′(d) is the unique solution in [0, 10d) of the system 2d | r′(d)− n0(d), 5
d | r′(d)− 1;

• s(d) := 5 · 10d−1 + 1;

• t(d) is the unique solution in [0, 5 ·10d−1) of the system 2d−1 | t(d)−n0(d), 5
d | t(d)−1.

Theorem 33. The numbers 1, 5, and 25 are H-morphic base 10. The other base-10 H-
morphic numbers are those in the union of the following ten sequences:

1. (p(d) : d ≥ 1);

2. (q(d) : d ≥ 4);
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3. (q(d) + 5 · 10d−1 : d ≥ 4);

4. (q′(d) : d ≥ 4);

5. (q′(d) + 5 · 10d−1 : d ≥ 4);

6. (r(d) : d ≥ 2);

7. (r′(d) : d ≥ 2);

8. (s(d) : d ≥ 4);

9. (t(d) : d ≥ 5);

10. (t(d) + 5 · 10d−1 : d ≥ 5).

Proof.

Case 1 (5d | n).

Subcase 1.1 (5d | n and n is even).
By Lemma 32(ii) we have 2d+2 | nh(n). But by Lemma 2, 2d ∤ n, and by Lemma 32(iv),

8 cannot divide both of {n, h(n)}. It follows that if there is such a solution, 2d | h(n) (and,
if d ≥ 2, 4 | n.) By Proposition 28, n ≡ n0(d) (mod 2d). The system

2d | n− n0(d) (19)

5d | n

has a unique solution p(d) ∈ [0, 10d); p(d) is always H-morphic, but may have fewer than d
digits. The first few terms of this sequence are

(p(d) : d ≥ 1) = (0, 00 , 500, 2500, 62500, 062500 , 4062500, 14062500, 414062500, . . .).

Italics indicate terms (other than p(1) = 0) that are less than 10d−1. These are nonetheless
H-morphic, and remain so if padded out to d digits (or fewer) with leading zeros.

Subcase 1.2 (5d | n and n is odd). By Lemma 32(ii) we have 2d+2 | (n−1)h(n). For d = 1, 2,
Lemma 32(iii) implies that both n − 1 and h(n) are divisible by 4; these give the solutions
5 and 25 respectively. For d = 3 both are divisible by 8, which gives the solution 625. For
d > 3, Lemma 32(iv,v) imply that one is divisible by 2d−1 and the other (necessarily) by 8.

Subcase 1.2.1 (5d | n, 2d−1 | (n− 1), and d ≥ 4). The system

2d−1 | n− 1 (20)

5d | n
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has solutions q(d) ∈ [0, 5 · 10d−1) and q(d) + 5 · 10d−1 ∈ [5 · 10d−1, 10d). The first few of these
are

(q(d) : d ≥ 1) = (0, 25,−, 0625 , 40625, 390625, 2890625, 12890625 . . .)

(q(d) + 5 · 10d−1 : d ≥ 1) = (5,−, 625, 5625, 90625, 890625, 7890625, 62890625, . . .).

Dashes represent early terms that are not H-morphic and, as above, terms that need a
leading zero to have the right number of digits are shown in italic. The terms q(1) = 0,
q(1) + 5 = 5, q(2) = 25, and q(3) + 500 = 625 are shown above to be H-morphic, even
though 8 ∤ h(n). On the other hand, q(2) + 50 = 75 and q(3) = 125 are not.

Subcase 1.2.2 (5d | n, 2d−1 | h(n), and d ≥ 4). Lemma 32(iv) implies that 8 | (n− 1), so
n is odd and we have

2d−1 | n− n1(d) (21)

5d | n.

This has two solutions in [0, 10d), namely q′(d) ∈ [0, 5 · 10d−1), and q′(d) + 5 · 10d−1 ∈
[5 · 10d−1, 10d). The first few terms of these sequences are

(q′(d) : d ≥ 1) = (−, 25,−, 0625 , 15625, 265625, 2265625, 47265625, . . .),

(q′(d) + 5 · 10d−1 : d ≥ 1) = (5,−, 625, 5625, 65625, 765625, 7265625, 97265625, . . .).

For d > 4, q(d) ends in 0625, while q′(d) ends in 5625. We conclude that q(d) 6= q′(d) for
d > 4.

Case 2 (5d | n− 1). We consider the parity of n.

Subcase 2.1 (5d | n − 1, n even). In this case 2d+2 divides nh(n). For d = 1 there are no
solutions. For d ≥ 2, Lemma 32(iii) requires both n and h(n) to be divisible by 4, while
Lemma 32(iv) says that one of them is not divisible by 8, so that the other must be divisible
by 2d.

Subcase 2.1.1 (5d | n− 1, 2d | n, and d ≥ 2). By Lemma 32(iii), we have that 4 | h(n).
We obtain the system

2d | n (22)

5d | n− 1.

This has a unique solution r(d) in (0, 10d) which is always automorphic [2]. The first few
terms are

(r(d) : d ≥ 1) = (−, 76, 376, 9376, 09376 , 109376, 7109376, 87109376, . . .).

Note that while 6 is a solution to (22) for d = 1, h(6) = 58 is not divisible by 4, and 6 is not
H-morphic.
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Subcase 2.1.2 (5d | n− 1, 2d | h(n), and d ≥ 2). We obtain the system

2d | n− n0(d) (23)

5d | n− 1.

This has unique solutions r′(d) in (0, 10d), the first few of which are

(r′(d) : d ≥ 1) = (−, 76, 876, 1876, 71876, 171876, 1171876, 01171876 , . . .).

Again, r(2) = r′(2) but, for d > 2, r(d) ends in 376 while r′(d) ends in 876; we conclude that
for d ≥ 3 the sequences (r(d)) and (r′(d)) are disjoint.

Subcase 2.2 (5d | n− 1, n− 1 even). In this case 2d+2 divides (n− 1)h(n). For d = 1 the
only solution is n = 1. For d = 2, by Lemma 32(iii) both n − 1 and h(n) must be divisible
by 4, and again n = 1 is the only solution.

For d ≥ 3, by Lemma 32(iv) both n− 1 and h(n) must be divisible by 8. For d = 3 this
gives n = 1 yet again. For d > 3, we apply Lemma 32(v) to show that one of n− 1 and h(n)
is divisible by 8, the other by 2d−1.

Subcase 2.2.1 (5d | n−1, 2d−1 | n−1, and d ≥ 4). We get solutions s(d) := 5 ·10d−1+1:
the first few values are

(s(d) : d ≥ 1) = (−,−,−, 5001, 50001, 500001, . . . , 5 · 10d−1, . . . ; .)

We note that 6, 51 and 501 are not H-morphic.

Subcase 2.2.2 (5d | n− 1, 2d−1 | h(n), and d ≥ 4). We have

2d−1 | n− n1(d)

5d | n− 1, (24)

which has a unique solution t(d) ∈ [0, 5 · 10d−1) and another solution in [5 · 10d−1, 10d), both
H-morphic for d > 4. (For d = 2, 3, 4 we get t(d) = 1, and 51, 501 are not H-morphic.) The
first few values are

(t(d) : d ≥ 1) = (1, 01 , 001 , 0001 , 25001, 375001, 4375001, 34375001, . . .)

(t(d) + 5 · 10d−1 : d ≥ 1) = (−,−,−, 5001, 75001, 875001, 9375001, 84375001, . . .)

Remark 34. The initial elements (less than 100,000) of the sequence of decimal H-morphic
numbers are (0, 1, 5, 25, 76, 376, 500, 625, 876, 1876, 2500, 5001, 5625, 9376, 15625 ,25001,
40625, 50001, 62500, 65625, 71876, 75001, 90625, . . .). This sequence has been added to the
OEIS as A301912.
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Remark 35. For d > 4, the last four digits of p(d), q(d), q′(d), r(d), r′(d), s(d), and t(d) are
2500, 0625, 5625, 9376, 1876, 0001, and 5001 respectively. Thus, for d > 4, the dth terms of
the ten sequences of Proposition 33 are distinct. We may have equalities within a sequence
(e.g, p(5) = p(6)); and we may also have equalities between differently-indexed terms of
related sequences: e.g., q(4) = q(3) + 5 · 10d−1.

Corollary 36. For d > 4, there are at most 10 and at least 5 decimal H-morphic numbers
with d digits.

Proof. The maximum follows from the theorem above; every d-digit H-morphic number is
the d-th element of one of the ten subsequences. None of these subsequences ever has a d-th
element larger than 10d, but some may be less than 10d, in which case that subsequence has
no d-digit term.

This cannot happen for s(d), q(d) + 5 · 10d, q′(d) + 5 · 10d, or t(d) + 5 · 10d. Furthermore,
adding the residues from (20,22), we get

2d−1 | q(d) + r(d)− 1 (25)

5d | q(d) + r(d)− 1,

so that 5 · 10d−1 always divides q(d)+ r(d)− 1. As 0 < q(d), r(d), at least one of {q(d), r(d)}
must be greater than 25 · 10d−2, and a fortiori must have d digits.

Remark 37. The maximum is first attained when d = 7, and all six of p(7) = 4062500,
q(7) = 2890625, q′(7) = 2265625, r(7) = 7109376, r′(7) = 1171876, and t(7) = 4375001 are
greater than 106.

The minimum is first attained when d = 168, and p(168) ≈ 0.2896 × 10167, q′(168) ≈
0.0695 × 10167, r(168) ≈ 0.1197 × 10167, r′(168) ≈ 0.4093 × 10167, t(168) ≈ 0.1892 × 10167,
while q(168) ≈ 4.880× 10167.

Remark 38. Recall that 0̂ + 1̂ = −3 in Q2; and (for d > 1), n0(d) + n1(d) = −3 in Z/2dZ.
Taking a linear combination of the residues from (19,20,21), we obtain

2d−1 | (p(d) + q′(d) + 3q(d)) (26)

5d | (p(d) + q′(d) + 3q(d)).

Hence, p(d) + q′(d) + 3q(d) is positive and divisible by 5 · 10d−1, so that at least one of p(d),
q(d), and q′(d) is larger than 10d−1. Thus, if for some d > 3 there are only five d-digit
H-morphic numbers, they are

{q(d), q(d) + 5 · 10d, q′(d) + 5 · 10d, s(d), t(d) + 5 · 10d}.

Remark 39. Pickover [8, page 158], defines cake numbers to be those of the form K(n) =
(n2 + n + 2)/2 = T (n) + 1, the number of pieces into which a pancake may be cut with n
cuts. (The sequence appears in OEIS as A000124, though the name is used for a different
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sequence.) Pickover conjectures, on the basis of a computer search, that no decimal K-
morphic numbers exist. Applying the methods of this paper, a d-digit number is K-morphic
(base B) if and only if 2Bd | k(n) where k(n) := n2 − n+ 2.

By coincidence, the discriminant of k (like that of h) is −7. The polynomial k(n) is
identically zero (and its derivative is always nonzero) on Z/2Z. It follows that, like h, k(n)
has zeros modulo any power of 2. Moreover, k(n) has a nonliftable zero (this time, 4) in
Z/7Z; has liftable zeros modulo any power of any odd prime that is congruent to 1,2 or 4
(mod 7); and has no zeros modulo any other prime power. Finally, k(n) is even for every
n, so the extra factor of 2 is automatically provided. We conclude that the sequences of
K-morphic numbers base 2, 4, 8, 11, 16, 22, 23, . . . are infinite, while 4 is the unique base-7 K-
morphic number. However, k(n) has no zeros modulo any power of 5, and hence no decimal
numbers are K-morphic.

5 Relations between sequences

Proposition 40. In any base, every T -morphic number is automorphic; and the converse
also holds in any odd base.

Proof. This follows immediately from Fairbairn’s observation [2] that, in base B, a d-digit
number n is automorphic if and only if Bd | n(n− 1).

Proposition 41. For any base not divisible by 3, all T -morphic numbers are P -morphic.

Proof. By Lemma 10(ii), we have 3 | n(n− 1)(2n+ 5). If 3 does not divide B, then

2Bd | n(n− 1) ⇒ 6Bd | n(n− 1)(2n+ 5),

and the result follows.

When the base is divisible by 3, the result may fail. For instance, T (4) = 10 = 146, and
P (4) = 30 = 506; so 4 is T -morphic but not P -morphic (base 6).

Combining these yields a stronger result.

Corollary 42. If B ≡ 1 or 5 (mod 6), every automorphic number (base B) is P -morphic.

There is an analogous result for H-morphic numbers.

Proposition 43.

(i) In any odd base, every automorphic number is H-morphic;

(ii) In any even base, every automorphic number of two or more digits is H-morphic;

(iii) If 4 | B, every automorphic number is H-morphic.
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Proof. We always have 4 | n(n− 1)(n2 + 3n+ 4); if B is odd,

Bd | n(n− 1)(n2 + 3n+ 4) ⇒ 4Bd | n(n− 1)(n2 + 3n+ 4).

If B is even, a d-digit automorphic number n is congruent to 0 or 1 (mod 2d); in particular,
for d ≥ 2, n ≡ 0 or 1 (mod 4). Then 4 | n2 + 3n + 4, so again 4Bd | n(n− 1)(n2 + 3n + 4).
A similar argument applies when 4 | B.

The exception is nonvacuous; in particular, 6 is automorphic but not H-morphic (base
10). However, no other base-10 number has this property.

Finally, combining the above with remarks 22 and 35, we find that

A093534 ∩ A301912 = A067270.

Proposition 44. A decimal number n is T -morphic if and only n is P -morphic and H-
morphic.

We ask whether this is true in other bases.

6 Conclusion

We have generalized the methods of Fairbairn [2] and used them to characterize T -morphic
mumbers to any base, and decimal and prime-power-base P - and H-morphic numbers. For
a prime power base, the sequences obtained are fairly straightforward; for composite bases,
the sequence is typically the union of several subsequences, which may themselves be more
or less regular.

We have also derived various inclusions between the sequences of automorphic, T -morphic,
P -morphic, and H-morphic numbers, mostly base-dependent.
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