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Abstract

Given an integer base b ≥ 2, a hyper b-ary representation of a positive integer

n is a representation of n as a linear combination of nonnegative powers of b, with

integer coefficients between 0 and b. We use a system of recurrence relations to define

a sequence of polynomials in b variables and with b parameters, and we show that all

hyper b-ary representations of n are characterized by the polynomial with index n+1.

This extends a recent result of Defant on the number of hyper b-ary representations

based on a b-ary analogue of Stern’s diatomic sequence. The polynomials defined

here extend this numerical sequence, and they can be seen as generalized b-ary Stern

polynomials.
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1 Introduction

A hyperbinary representation of an integer n ≥ 1 is an expansion of n as a sum of powers of
2, each power being used at most twice. For instance, n = 12 can be written as

8 + 4 = 8 + 2 + 2 = 8 + 2 + 1 + 1 = 4 + 4 + 2 + 2 = 4 + 4 + 2 + 1 + 1,

so 12 has five hyperbinary representations.
A useful tool in the study of hyperbinary representations is the Stern (diatomic) sequence

which can be defined by s(0) = 0, s(1) = 1, and

s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1) (n ≥ 1). (1)

This sequence, which appears in different notations in the literature, is sequence A002487 in
[9], where numerous properties and references can be found. The first few nonzero terms of
the sequence (1) are easily seen to be 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5,. . . , where
those with an index that is a power of 2 are shown in bold.

The first complete connection between hyperbinary representations and the Stern se-
quence was established by Reznick [10, Theorem 5.2] who proved that the number of hy-
perbinary representations of an integer n ≥ 1 is given by the Stern number s(n + 1). For
example, we have s(13) = 5, which is consistent with the introductory example. More re-
cently, Reznick’s result was refined by the introduction of various polynomial extensions of
the Stern sequence. We will return to this topic later.

In analogy to hyperbinary representations, a hyperternary representation of an integer
n ≥ 1 is an expansion of n as a sum of powers of 3, each power used at most three times. The
generalization of this concept to any integer base b ≥ 2 is one of the fundamental concepts
of this paper.

Definition 1. For a fixed integer b ≥ 2, a hyper b-ary representation of an integer n ≥ 1 is
a representation of n as a sum of powers of b, each power repeated at most b times. In other
words, it is an expansion of the form

n =
ν

∑

j=0

djb
j, 0 ≤ dj ≤ b for 0 ≤ j ≤ ν, and dν 6= 0. (2)

Sometimes such a representation is called a base b over-expansion of the integer n; see,
e.g., Defant [3].

Example 2. Let b = 3 and n = 36. Then the hyperternary representations of n are
33 + 32, 33 + 3 + 3 + 3, 33 + 3 + 3 + 1 + 1 + 1, 32 + 32 + 32 + 3 + 3 + 3,
32 + 32 + 32 + 3 + 3 + 1 + 1 + 1.

Thus we have a total of five such representations, the first one being the unique representation
of n in base b = 3.
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Perhaps not surprisingly, there is a generalized concept of the Stern sequence (1) that
plays a similar role in the study of hyper b-ary representations as the numbers s(n) do in
relation to hyperbinary expansions. The following definition and notation are based on [3].

Definition 3. For a fixed integer b ≥ 2 we define the generalized Stern sequence sb(n) by
sb(0) = 0, sb(1) = 1, and for n ≥ 1 by

sb(bn− j) = sb(n) (j = 0, 1, . . . , b− 2), (3)

sb(bn+ 1) = sb(n) + sb(n+ 1). (4)

It is clear that the case b = 2 is the original Stern sequence (1). The sequence for
b = 3 is listed as A054390 in [9], where various properties are given, including a close
connection with hyperternary representations. It is, in fact, stated there that the number
of hyperternary representations of n is s3(n + 1). Indeed, using Definition 3 with b = 3, we
compute s3(37) = 5, which is consistent with Example 2.

Generalizing this connection between hyperternary representations and a generalized
Stern sequence, Defant [3] stated the following result, along with the sketch of a proof.

Theorem 4 (Defant). Given a base b ≥ 2, the number of hyper b-ary representations of an

integer n ≥ 1 is equal to sb(n+ 1).

It is the main purpose of this paper to introduce a refinement of Theorem 4, where we
actually obtain the individual hyper b-ary representations of the integers n ≥ 1. This is
achieved by way of a polynomial analogue of the numerical sequence sb(n) of Definition 3.
This is a sequence of polynomials in b variables and with b positive integer parameters. It
generalizes a sequence of bivariate polynomials that was recently introduced by the authors
[4] to characterize all hyperbinary representations of an integer n ≥ 1.

In order to motivate our main results, we recall the definition of this bivariate polynomial
sequence in Section 2, along with the characterization of hyperbinary representations. In
Section 3 we then define a ternary analogue, followed by the general b-ary case. Finally our
main result, characterizing the hyper b-ary representation, and its proof are presented in
Section 4.

2 Bivariate Stern polynomials

We begin by recalling the definition of a bivariate polynomial analogue of the Stern sequence
(1). It was first introduced in the recent paper [4], and was further studied in [5].

Definition 5. Let s and t be fixed positive integer parameters. We define the two-parameter
generalized Stern polynomials in the variables y and z by ωs,t(0; y, z) = 0, ωs,t(1; y, z) = 1,
and for n ≥ 1 by

ωs,t(2n; y, z) = y ωs,t(n; y
s, zt), (5)

ωs,t(2n+ 1; y, z) = z ωs,t(n; y
s, zt) + ωs,t(n+ 1; ys, zt). (6)
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Various properties, including an explicit formula, a generating function, and some special
cases, can be found in [4, Section 4]. For the sake of completeness and easy comparison with
the ternary case, we copied Table 1 from [4]; it contains the first 16 nonzero polynomials
ωs,t(n; y, z).

n ωs,t(n; y, z) n ωs,t(n; y, z)

1 1 9 ys
3

+ ys+s2z + ys
2

zt + zt
2

2 y 10 y1+s3 + y1+s2zt + yzt
2

3 ys + z 11 ys+s3 + ys
3

z + ys
2

z1+t + yszt
2

+ z1+t2

4 y1+s 12 y1+s+s3 + y1+szt
2

5 ys
2

+ ysz + zt 13 ys
2+s3 + ys+s3z + ys

3

zt + ysz1+t2 + zt+t2

6 y1+s2 + yzt 14 y1+s2+s3 + y1+s3zt + yzt+t2

7 ys+s2 + ys
2

z + z1+t 15 ys+s2+s3 + ys
2+s3z + ys

3

z1+t + z1+t+t2

8 y1+s+s2 16 y1+s+s2+s3

Table 1: ωs,t(n; y, z) for 1 ≤ n ≤ 16

By comparing Definition 5 with (1), we immediately see that for all n ≥ 0 we have

ωs,t(n; 1, 1) = s(n), (7)

where s and t are arbitrary. We also have

ω1,t(n; y, 1) = Bn(y), ω1,1(n; y, q) = Bn(q, y), ωs,2(n; 1, z) = a(n; z), (8)

where s and t are arbitrary, Bn(y) is the nth Stern polynomial introduced by Klavžar et
al. [7], Bn(q, y) is a q-analogue defined by Mansour [8], and a(n; z) is a different type of
Stern polynomial introduced in [6]. Finally, the case ωs,1(n; 1, z), with s again arbitrary,
is equivalent to sequences of polynomials that were independently introduced in [1] and
[11], where they were applied to obtain a refinement of Reznick’s result on hyperbinary
representations. A similar refinement was earlier obtained in [7]; see Section 2 of [4] for a
summary of these results.

The relevance of the polynomials ωs,t(n; y, z) lies in the following result; see [4, Theo-
rem 4.2].

Theorem 6. For an integer n ≥ 1 let Hn be the set of all hyperbinary representations of n.

Then we have

ωs,t(n+ 1; y, z) =
∑

h∈Hn

yph(s)zqh(t), (9)

where for each h in Hn, the exponents ph(s), qh(t) are polynomials in s and t respectively,

with only 0 and 1 as coefficients. Furthermore, if

ph(s) = sσ1 + · · ·+ sσµ , 0 ≤ σ1 < · · · < σµ, µ ≥ 0, (10)

qh(t) = tτ1 + · · ·+ tτν , 0 ≤ τ1 < · · · < τν , ν ≥ 0, (11)
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then the hyperbinary representation h ∈ Hn is given by

n = 2σ1 + · · ·+ 2σµ + (2τ1 + 2τ1) + · · ·+ (2τν + 2τν ). (12)

By convention we assume that µ = 0 in (10) indicates that ph(s) is the zero polynomial,
which in turn means that there is no non-repeated power of 2 in (12). We make a similar
assumption for ν = 0 in (11). This theorem also implies that for a given h ∈ Hn the
exponents σj and τk in (10) and (11) are all distinct.

Example 7. From Table 1 we have

ωs,t(15; y, z) = ys+s2+s3 + ys
2+s3z + ys

3

z1+t + z1+t+t2 ,

and the four terms of this polynomial correspond, in this order, to the hyperbinary repre-
sentations of n = 14, namely 2+ 4+8, 4+ 8+1+1, 8+ 1+1+2+2, 1+ 1+2+2+4+4.

3 b-ary Stern-type polynomial sequences

Just as we defined the sequence of bivariate polynomials ωs,t(n; y, z) in (5), (6) as a wide-
ranging extension of Stern’s diatomic sequence, we will now introduce a three-parameter
sequence of polynomials in three variables. This provides a polynomial extension of the
numerical sequence s3(n). For greater ease of notation, we let T denote the triple T = (r, s, t)
of positive integer parameters. In analogy to Definition 5 we then define the following
polynomial sequence.

Definition 8. Let r, s, t be fixed positive integer parameters. We define the polynomial
sequence ωT (n; x, y, z) by ωT (0; x, y, z) = 0, ωT (1; x, y, z) = 1, and for n ≥ 1 by

ωT (3n− 1; x, y, z) = xωT (n; x
r, ys, zt), (13)

ωT (3n; x, y, z) = y ωT (n; x
r, ys, zt), (14)

ωT (3n+ 1; x, y, z) = z ωT (n; x
r, ys, zt) + ωT (n+ 1; xr, ys, zt). (15)

The first 27 of the polynomials ωT (n; x, y, z) are listed in Table 2.
Definition 8 suggests that these polynomials can be further extended. We fix a base

b ≥ 2 and a b-tuple of positive integer parameters T = (t1, t2, . . . , tb). Then in analogy to
Definitions 5 and 8 we define the following sequence of polynomials in b variables.

Definition 9. Let t1, . . . , tb be fixed positive integer parameters. We define the polynomial
sequence ωT (n; z1, . . . , zb) in the b variables z1, . . . , zb by the initial conditions ωT (0; z1, . . . , zb)
= 0, ωT (1; z1, . . . , zb) = 1, and for n ≥ 1 by

ωT (b(n− 1) + j + 1; z1, . . . , zb) = zj ωT (n; z
t1
1 , . . . , z

tb
b ) (1 ≤ j ≤ b− 1), (16)

ωT (bn+ 1; z1, . . . , zb) = zb ωT (n; z
t1
1 , . . . , z

tb
b ) + ωT (n+ 1; zt11 , . . . , z

tb
b ). (17)
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n ωr,s,t(n; x, y, z) n ωr,s,t(n; x, y, z) n ωr,s,t(n; x, y, z)

1 1 10 xr2 + ysz + zt 19 xr2ysz + xr2zt + ys
2

2 x 11 x1+r2 + xzt 20 x1+r2zt + xys
2

3 y 12 xr2y + yzt 21 xr2yzt + y1+s2

4 xr + z 13 xr+r2 + xr2z + z1+t 22 xr2z1+t + xrys
2

+ ys
2

z

5 x1+r 14 x1+r+r2 23 x1+rys
2

6 xry 15 xr+r2y 24 xry1+s2

7 xrz + ys 16 xr+r2z + xr2ys 25 xrys
2

z + ys+s2

8 xys 17 x1+r2ys 26 xys+s2

9 y1+s 18 xr2y1+s 27 y1+s+s2

Table 2: ωT (n; x, y, z) for 1 ≤ n ≤ 27

We immediately see that for b = 2 and b = 3 we get Definitions 5 and 8, respectively.
From Definition 9 we obtain the following easy properties, instances of which can be observed
in Tables 1 and 2.

Lemma 10. With b and T as in Definition 9, we have

ωT (j; z1, . . . , zb) = zj−1 (2 ≤ j ≤ b), (18)

ωT (b+ 1; z1, . . . , zb) = zb + zt11 , (19)

ωT (b
ℓ; z1, . . . , zb) = z

1+tb−1+···+tℓ−1

b−1

b−1 (ℓ ≥ 1). (20)

Proof. The identity (18) follows immediately from (16) with n = 1. We obtain (19) from
(17) with n = 1, followed by (18) with j = 2. Finally, (20) is obtained by an easy induction,
where (18) with j = b is the induction beginning, and (16) with j = b − 1 provides the
induction step.

To conclude this section, we note that by comparing Definition 9 with Definition 3 we
see that for any b ≥ 2 and n ≥ 0 we have

ωT (n; 1, . . . , 1) = sb(n), (21)

where the b-tuple T is arbitrary. This extends the identity (7).

4 The main result

To state a general b-ary analogue of Theorem 6, we let Hb,n denote the set of all hyper b-ary
representations of the integer n ≥ 1, and as in Definition 9 we let T = (t1, . . . , tb) be a b-tuple
of positive integer parameters.
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Theorem 11. For any integer n ≥ 1 we have

ωT (n+ 1; z1, . . . , zb) =
∑

h∈Hb,n

z
ph,1(t1)
1 · · · z

ph,b(tb)

b , (22)

where for each h in Hb,n, the exponents ph,1(t1), . . . , ph,b(tb) are polynomials in t1, . . . , tb,

respectively, with only 0 and 1 as coefficients. Furthermore, if for 1 ≤ j ≤ b we write

ph,j(tj) = t
τj(1)
j + t

τj(2)
j + · · ·+ t

τj(νj)
j , 0 ≤ τj(1) < · · · < τj(νj), νj ≥ 0, (23)

then the powers that are used exactly j times in the hyper b-ary representation of n are

bτj(1), bτj(2), . . . , bτj(νj). (24)

If νj = 0 in (23), we set ph,j(tj) = 0 by convention, and accordingly (24) is the empty set.

By setting z1 = · · · = zb = 1 and using (21), we immediately obtain Defant’s Theorem 4,
and we see that Theorem 6 is the special case b = 2 with z1 = y, z2 = z, t1 = s, and t2 = t.

Before proving Theorem 11, we consider the following example.

Example 12. We choose b = 3 and n = 36. As in Definition 8 we use x, y, z for z1, z2, z3
and r, s, t for t1, t2, t3. Using (15) and the relevant entries in Table 2, we find

ωT (37; x, y, z) = z ωT (12; x
r, ys, zt) + ωT (13; x

r, ys, zt)

= xr2+r3 + xr3ysz1 + xr3zt + ysz1+t2 + zt+t2 .

The five terms in this polynomial correspond to the five hyperternary representations of
n = 36 (see Example 2) that are listed in Table 3.

h ph,1(r) ph,2(s) ph,3(t)
33 + 32 r2 + r3 0 0
33 + 3 + 3 + 1 + 1 + 1 r3 s1 t0

33 + 3 + 3 + 3 r3 0 t1

32 + 32 + 32 + 3 + 3 + 1 + 1 + 1 0 s1 t0 + t2

32 + 32 + 32 + 3 + 3 + 3 0 0 t1 + t2

Table 3: h ∈ H3,36 and ωT (37; x, y, z)

Proof of Theorem 11. We proceed by induction on n, and refer to a hyper b-ary representa-
tion as an HBR.

(a) To establish the induction beginning, we first assume that 1 ≤ n ≤ b− 1. In this case
the only HBR h of n is b0 + · · ·+ b0 (n summands).
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On the other hand, by (18) we have

ωT (n+ 1; z1, . . . , zb) = zn.

By (22) and (23) this means that

ph,n(tn) = 1 = t0n, ph,j(tj) = 0 (1 ≤ j ≤ b, j 6= n).

But this, by (24), is consistent with the expansion n = b0 + · · ·+ b0.
Second, let n = b. In this case two HBRs are given by h1 : n = b0 + · · · + b0 (with b

summands) and h2 : n = b1.
On the other hand, by (19) we have ωT (b + 1; z1, . . . , zb) = zb + zt11 , and this time (22)

and (23) imply that

ph1,b(tb) = 1 = t0b , ph1,j(tj) = 0 (1 ≤ j ≤ b− 1),

ph2,1(t1) = t1 = t11, ph2,j(tj) = 0 (2 ≤ j ≤ b).

This is consistent with the two HBRs, which completes the induction beginning, namely that
Theorem 11 holds for 1 ≤ n ≤ b.

(b) We now assume that the theorem is true for all n up to and including bk, for some
k ≥ 1. We wish to show that it holds also for n = bk + r, r = 1, 2, . . . , b. We need to
distinguish between the two cases (i) r = 1, 2, . . . , b− 1, and (ii) r = b.

(i) Let r be such that 1 ≤ r ≤ b − 1. Then each HBR of bk + r consists of exactly one
HBR of bk that has no part b0, plus r parts b0. Hence there is a 1-1 correspondence between
the HBRs of bk+ r and those of 1

b
bk = k. Using the induction hypothesis and (22), we have

ωT (k + 1; z1, . . . , zb) =
∑

h∈Hb,k

z
ph,1(t1)
1 · · · z

ph,b(tb)

b , (25)

with exponents ph,1(t1), . . . , ph,b(tb) as in (23). Now, in order to lift the HBRs of k to those
of bk + r, all powers of tj, 1 ≤ j ≤ b, in (23) are augmented by 1, and in addition we add t0r
to ph,r(tr). In other words, we get the polynomial

P :=
∑

h′∈Hb,n

z
ph′,1(t1)

1 · · · z
ph′,b(tb)

b , (26)

where
ph′,r(tr) = 1 + trph,r(tr), ph′,j(tj) = tjph,j(tj) (1 ≤ j ≤ b, j 6= r). (27)

Now with (25) and (27), the sum in (26) becomes

P = zr
∑

h∈Hb,k

(

zt11
)ph,1(t1)

· · ·
(

z
tb
b

)ph,b(tb)

= zrωT (k + 1; zt11 , . . . , z
tb
b ) = ωT (bk + r + 1; z1, . . . , zb),
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where in the last equation we have used (16). This concludes the induction step in the case
1 ≤ r ≤ b− 1.

(ii) Now let r = b. Then the HBRs of bk + b fall into two categories:
– those with b parts b0, and
– those with no parts b0.

For those HBRs that are in the first category, there is a 1-1 correspondence with the HBRs
of k. Just as in part (i), the induction hypothesis leads to the polynomial

P1 := zbωT (k + 1; zt11 , . . . , z
tb
b ). (28)

Similarly again, there is a 1-1 correspondence between the second category of HBRs of bk+b

and the HBRs of 1
b
(bk + b) = k + 1. Using the induction hypothesis again, followed by an

analysis similar to part (i), we get the polynomial

P2 := ωT ((k + 1) + 1; zt11 , . . . , z
tb
b ). (29)

Finally, with (28) and (29), the polynomial corresponding to all HBRs of bk + b is

P1 + P2 = zbωT (k + 1; zt11 , . . . , z
tb
b ) + ωT ((k + 1) + 1; zt11 , . . . , z

tb
b )

= ωT (bk + b+ 1; z1, . . . , zb),

where in the last equation we have used (17). This concludes the induction step in the case
r = b, and the proof is complete.

Independently of this paper, and in fact preceding our work, M. Ulas of Jagiellonian
University (private communication) used generating functions to define a sequence of b-ary
Stern polynomials that are identical with ωT (n; z1, . . . , zb) for T = (1, 1, . . . , 1). He proved
the following result which is a consequence of Theorem 11 above.

Corollary 13. Let n ≥ 1 and b ≥ 2 be integers, and let T = (1, . . . , 1) ∈ Z
b. If we write

ωT (n+ 1; z1, . . . , zb) =
∑

α∈Nb

cα(n)z
α1

1 · · · zαb

b , α = (α1, . . . , αb),

then cα(n) is the number of hyper b-ary representations of n for which αj powers of b are

used exactly j times, j = 1, 2, . . . , b.

Corollary 13 therefore generalizes the main results (for b = 2) in [1] and [11].

In closing, we remark that the polynomials ωT (n; z1, . . . , zb) are objects worth studying in
their own right, with numerous interesting properties; see, e.g., [2]. Some of these properties
extend known results from base b = 2 to arbitrary bases, while others become nontrivial
only for b ≥ 3. This will be the subject of a forthcoming paper.
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