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Abstract

We study paths formed by integer n-tuples in an n-dimensional cubic lattice. We

establish some connections between these paths, Riordan arrays, coefficients of Cheby-

shev polynomials of the second kind, and k-colored Motzkin paths.

1

mailto:rigo.florez@citadel.edu
mailto:junes@calu.edu
mailto:jlramirezr@unal.edu.co


1 Introduction

A three-dimensional cubic lattice is a lattice in R
3 formed by integer triplets. We study

properties of three-dimensional lattice walks in the upper half of the three-dimensional cubic
lattice. In particular, we count the number of paths of length k that are in three-dimensional
cubic lattice beginning at the origin and ending on the xy-plane. This gives another answer
to a question raised by Deutsch [5] in 2000. The problem asks: A 3-dimensional lattice walk
of length n takes n successive unit steps, each in one of the six coordinate directions. How
many 3-dimensional lattice walks of length n are there that begin at the origin and never go
below the horizontal plane? The answer to Deutsch’s question is [1, 5]

n∑

k=0

(
n

k

)(
k

⌈k/2⌉

)
4n−k.

This problem generalizes, naturally, to an n-dimensional cubic lattice.
Deutsch’s problem is a generalization, to three dimensions, of the following problem pro-

posed by Sands [24] in 1990: What is the number of different walks, in the plane, with n steps
such that each step moves one unit either north, south, east, or west, starting at the origin
and remaining in the upper half-plane? Hirschhorn [12] proved in 1991 that the number of
such paths is

(
2n+1
n

)
. Later, Guy [9] gave a short proof of the same result. In the same paper,

Guy studied this problem from the point of view of one-dimensional and two-dimensional
arrays using the Pascal semi-triangle and Pascal semi-pyramid, respectively. He found some
interesting relations with Catalan numbers as well as several combinatorial identities that
were used in the entries of the mentioned arrays. Guy, Krattenthaler, and Sagan [10] gave
combinatorial proofs for several two-dimensional results. The three-dimensional case was
also studied by Guy [9].

In this paper we answer an open question that Guy proposed in [10]. Is it possible to
find a closed formula for the number of paths, in the three-dimensional cube, that can not go
below the plane z = 0? We give such a formula as well as other closed formulas. In addition,
Nkwanta [20] generalizes several problems proposed by Sands and Deutsch to n-dimensional
case using Riordan arrays. He also shows a bijection between the lattice paths of length k and
k-colored Motzkin paths. In 2017, Dershowitz [6] obtained a bijection between Dyck paths
and 2-dimensional lattice paths that end in the x-axis. He also considered the n-dimensional
case with the same condition. We provide several relations and counting results involving
walks in the n-dimensional cubic lattice and Riordan arrays.

We also study Riordan arrays from the perspective of the height of a path. The height at
which a path P ends, in the n-dimensional cubic lattice, is the last value of the last n-tuple
(vertex or point) of the path. For simplicity, we call this value the height of P . Those heights
give rise to a Riordan array A3. We have found that the entries of A−1

3 are the coefficients
of Chebyshev polynomials of the second kind (shifted four units up). Using the generating
function obtained from A3, we find a closed formula that answers the open question given
by Guy in [9]. Since A3 and A−1

3 are infinite matrices, we found a fractal associated to those
matrices. Visually, these fractals look like half of the Sierpiński fractal.
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Finally, we provide several sequences and conjectures about paths in the 3-dimensional
cubic lattice. These sequences/conjectures are based on numerical experimentation.

Most proofs in this paper use generating functions that are constructed using the symbolic
method introduced by Flajolet and Sedgewick [7].

2 Background

An n-dimensional cubic lattice is a lattice L in R
n formed by points in Z

n. If pi is a point in
Z

n with p0 = (0, 0, . . . , 0), then a path P = (p0, p1, . . . , pm) of length m is a concatenation
of p0, p1, . . . , pm where the distance between pi and pi+1 is one for i ∈ {0, 1, . . . ,m − 1}. A
step in P is a pair of two consecutive points (pi, pi+1) for i ∈ {0, . . . ,m − 1}. We identify
the path P = (p0, p1, . . . , pm) with its broken-line graph obtained by joining pi to pi+1 with
a line segment for i ∈ {0, . . . ,m − 1}. We denote by ei the n-tuple (0, . . . , 1, . . . , 0) where
1 is in the i-th position and zeros elsewhere for 1 ≤ i ≤ n. Since p0 = (0, 0, . . . , 0), we
have that p1 = ei for some 1 ≤ i ≤ n. It is easy to see that pj can be written in either
of the forms pj = pj−1 + er or pj = pj−1 − er, for some 1 ≤ r ≤ n and 1 ≤ j ≤ m.
Note that er gives the orientation of the step pj−1pj. For example, if a path P is in Z

3

with p5 = p4 + (0, 1, 0), then the step p4p5 is parallel to the positive direction of the y-
axis. Now it is easy to see that a path P = (p0, p1, p3, . . . , pm−1, pm) can be written in
the form P = (p0, p0 ± ej1 , p1 ± ej2 , . . . , pm−1 ± ejm) where ± indicates the orientation of
each step. For simplicity, we represent P = (p0, p0 ± ej1 , p1 ± ej2 , . . . , pm−1 ± ejm) as P =
(±ej1)(±ej2) · · · (±ejm) and we say that (±ej1), (±ej2), . . . , (±ejm) are the components of P ,
(see Figures 1 and 2).

We use C±
n (k) to mean the set of all paths of length k in the n-dimensional cubic lattice.

We divide C±
n (k) into subfamilies depending on the behavior of the path. We now give

definitions and notation for those families. If P = (±ej1)(±ej2) · · · (±ejk), then we define
Vr := (±ej1)+(±ej2)+ · · ·+(±ejr), the algebraic combination of the first r components of P
for 0 < r ≤ k, i.e., Vr is the sum of the components of any initial subpath of P with r steps.
We denote Cn(k) the subset of C±

n (k) formed by all paths P = (±ej1)(±ej2) · · · (±ejk) that
satisfy that the nth coordinate of Vk is zero. We use C≥

n (k) to denote all paths in C±
n (k) with

P = (±ej1)(±ej2) · · · (±ejk) and that nth coordinate of Vr is non-negative for all 0 < r ≤ k.
We now let C+

n (k) be C≥
n (k) ∩ Cn(k). Finally, we let Cn =

⋃∞
i=0 Cn(i); C≥

n =
⋃∞

i=0 C≥
n (i) and

C+
n =

⋃∞
i=0 C+

n (i).
For example, Figure 1 depicts the 14 paths in C+

2 (3). Figure 2 depicts the 17 paths in
C+
3 (2).
One of the goals of this paper is to study the enumerate problem of the families of lattice

paths C+
n (k), Cn(k), C≥

n (k) and C±
n (k). Most of the proofs in this paper are done using

generating functions according to paths length.
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Figure 1: All paths of C+
2 (3).

3 Special case of Generating function for paths in a

cube

In this section we count paths in the three-dimensional cube. We classify those paths in
families. For example, we have the family of paths where each path never goes below of the
plane z = 0 but ends on it. There is a family of paths where each path goes below z = 0 and
ends on it. There is another family of paths where each path ends above the plane z = 0
and so on. Therefore, we divide the section in several subsections depending on the nature
of the family of paths.

3.1 Counting paths that never go below the horizontal plane

The main theorem in this section counts the total number of lattice paths of length m, in
the three-dimensional cube that end at the xy-plane and never go below it. The proof uses
generating functions (the technique used to obtain the generating function is based on the
symbolic method introduced in [7]). We give some necessary notation. We denote by a3(m)
the total number of paths of length m in C+

3 (m). That is, a3(m) = |C+
3 (m)|.

Theorem 1. If Cn is the nth Catalan number, then

(1) the generating function for the total number of paths of length i in C+
3 is given by

T3(z) :=
∞∑

i=0

a3(i)z
i =

1− 4z −
√
1− 8z + 12z2

2z2
, (1)
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Figure 2: All paths of C+
3 (2).

(2) the number of paths, in the three-dimensional cube, of length m that end in the horizontal
plane and never go below it is given by

a3(m) =

⌊m/2⌋∑

i=0

Ci

(
m

2i

)
4m−2i.

Proof. From the first return decomposition a nonempty three-dimensional lattice path P in
C+
3 may be decomposed using one of the following forms

e3P
′(−e3)P

′′; e1P
′; −e1P

′; e2P
′; −e2P

′,

where P ′ and P ′′ are paths (possibly empty) in C+
3 (see Figure 3).

x

y

z

x

y

z

e3

−e3

e1

Figure 3: Factoring a path P in C+
3 .

Using the symbolic method we obtain

T3(z) = z2T 2
3 (z) + 4zT3(z) + 1. (2)
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This proves part (1).

Proof of part (2): It is easy to see that

T3(z) =
1

1− 4z
· 1−

√
1− 4z2/(1− 4z)2

2z2/(1− 4z)2
=

1

1− 4z
· 1−

√
1− 4u

2u
=

1

1− 4z
· C(u), (3)

where u = z2/(1− 4z)2 and C(z) is the generating function of the Catalan numbers. Thus,

C(z) :=
∞∑

n=0

Cnz
n =

1−
√
1− 4z

2z
.

Hence,

T3(z) =
∞∑

i=0

Ci

(
z2i

(1− 4z)2i+1

)
=

∞∑

i=0

∞∑

m=0

Ci

(
m+ 2i

m

)
4mz2i+m.

If we take s = 2i+m, then

T3(z) =
∞∑

i=0

∞∑

s=2i

Ci

(
s

s− 2i

)
4s−2izs.

This proves part (2), completing the proof of the theorem.

The following sequence gives some values for the total number of paths of length 0 − 9
in the three-dimensional cube, that end at the xy-plane and never go below the mentioned
plane. From (2) it is easy to see that

a3(1) = 1, and a3(n) = 4a3(n− 1) +
n−1∑

i=1

a3(i− 1)a3(n− i− 1).

This sequence appears in OEIS as A005572 [28]. So, a3(m) for m = 0, 1, . . . , 9 is given
by

1, 4, 17, 76, 354, 1704, 8421, 42508, 218318, 1137400.

3.2 Riordan arrays for paths in three-dimensional space

We give an informal definition of height of a path P in C≥
3 (n). It is the third entry of the

last vertex (point) of the path. That is, the value of the z coordinate of the ending point.
In this section we construct an infinite matrix using the height of all paths in C≥

3 (n). The
resulting matrix becomes a Riordan array. Theorem 6 gives a relationship between the sum
of the entries on the nth rising diagonal of the Riordan array (found in this section) and
the number of paths in C+

3 with no level steps at height 0 (it means no steps on the xy-
plane). We also provide a formula (given a length) that counts the total number of paths, in
three-dimensional cube, that never go below to xy-plane. Several authors have used Riordan
arrays as a technique to study lattice paths (see for example [3, 15, 20, 21, 22, 27]).
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3.2.1 A short background about Riordan arrays

We recall that an infinite lower triangular matrix is called a (proper) Riordan array [26] if
its kth column satisfies the generating function g(z) (f(z))k for k ≥ 0, where g(z) and f(z)
are formal power series with g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0. The matrix corresponding
to the pair f(z), g(z) is denoted by (g(z), f(z)). If we multiply (g, f) by a column vector
(c0, c1, . . . )

T with the generating function h(z), then the resulting column vector has gen-
erating function gh(f). This property is known as the Fundamental Theorem of Riordan
arrays or summation property.

The product of two Riordan arrays (g(z), f(z)) and (h(z), l(z)) is defined by

(g(z), f(z)) ∗ (h(z), l(z)) = (g(z)h (f(z)) , l (f(z))) .

We recall that the set of all Riordan matrices is a group under the operator “ ∗ ” [26].
The identity element is I = (1, z), and the inverse of (g(z), f(z)) is

(g(z), f(z))−1 =
(
1/
(
g ◦ f

)
(z), f(z)

)
, (4)

where f(z) is the compositional inverse of f(z).
Rogers [23] introduced the concept of an A-sequence. Specifically, Rogers observed that

every element dn+1,k+1 of a Riordan matrix (not belonging to 0 row or 0 column) could
be expressed as a linear combination of the elements in the preceding row. Merlini et
al. [14] introduced the Z-sequence, which characterizes 0 column, except for the element
d0,0. Therefore, the A-sequence, Z-sequence and the element d0,0 completely characterize a
proper Riordan array. Summarizing, we have the following theorem.

Theorem 2 ([14]). An infinite lower triangular array D = [dn,k]n,k∈N is a Riordan array if
and only if d0,0 6= 0 and there are sequences A = (a0 6= 0, a1, a2, . . . ) and Z = (z0, z1, z2, . . . )
such that if n, k ≥ 0, then

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · ,
dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · ,

or equivalently

g(z) =
g(0)

1− zZ(g(z))
and f(z) = z(A(f(z))),

where A and Z are the generating functions of the A-sequence and Z-sequence, respectively.

3.2.2 A Riordan array from heights of paths

If P = (±ej1)(±ej2) · · · (±ejk) is a path in the n-dimensional cube, then the height of P is the
nth coordinate of Vk where Vk = (±ej1) + (±ej2) + · · ·+ (±ejk) is the algebraic combination
of all components of P . We denote by A3(n, k) the subset of C±

3 (n) of all paths having height
k and not passing below the plane z = 0. If a3(n, k) denotes |A3(n, k)| and b3(n) denotes
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|C≥
3 (n)|, then a3(n) = a3(n, 0) and b3(n) =

∑n
k=0 a3(n, k). Note that the last component of

the last step of any path in A3(n, k) is one element of {±e1,±e2,±e3}. Therefore, a3(n, k)
satisfies the following third order recurrence relation.

a3(n, k) = a3(n− 1, k − 1) + 4a3(n− 1, k) + a3(n− 1, k + 1) (5)

with n, k ≥ 1, and the initial values a3(0, 0) = 1 and a3(n, k) = 0 if k > n (see Guy [9]). This
sequence gives rise to an infinite lower triangular matrix. It is denoted byA3 = [a3(n, k)]n,k≥0.
So,

A3 = [a3(n, k)]n,k≥0 =




1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0
17 8 1 0 0 0 0 0
76 50 12 1 0 0 0 0
354 288 99 16 1 0 0 0
1704 1605 700 164 20 1 0 0
8421 8824 4569 1376 245 24 1 0
42508 48286 28476 10318 2380 342 28 1

...
...

...
...

...
...

...
...




.

From Theorem 2 we can prove that the matrix A3 is a Riordan matrix. Guy [9] also found
a relation between this matrix and the sequences A005572, A005573, A052177, A052178 and
A052179.

Theorem 3. The infinite triangular matrix A3 = [a3(n, k)]n,k≥0 has a Riordan array expres-
sion given by

A3 = (T3(z), zT3(z)) ,

where

T3(z) =
1− 4z −

√
1− 8z + 12z2

2z2
.

Proof. From the recurrence relation (5), we know that the A-sequence is (1, 4, 1, 0, 0, . . . ).
Therefore, A(z) = 1 + 4z + z2. This implies that f(z) = z(1 + 4f(z) + f(z)2). Therefore,

f(z) =
1− 4z −

√
1− 8z + 12z2

2z
= zT3(z).

Now, it is easy to see that the generating function of the 0th column is T3(x).

The proof of Theorem 3 shows that the Riordan arrayA3 has A-sequence (1, 4, 1). Merlini
et al. [18] studied a lattice path model in the plane that has an associated Riordan matrix with
A-sequence (a, b, c). Merlini and Sprugnoli [16] study again this type model. In Section 5, we
show a relationship between the coloured Motzkin path and the paths in the n-dimensional
cube.
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Corollary 4. In the three-dimensional cube the following hold:

(1) the generating function for the total number of paths of length i in C≥
3 is given by

H3(z) :=
∞∑

i=0

b3(i)z
i =

T3(z)

1− zT3(z)
=

1− 6z −
√
1− 8z + 12z2

2z(6z − 1)
,

(2) the number of paths of length m such that the paths never go below the horizontal plane
is given by

b3(m) =
m∑

n=0

⌊m−n

2
⌋∑

k=0

(
n+ 2k + 1

k

)(
m

n+ 2k

)(
n+ 1

n+ 2k + 1

)
4m−n−2k.

Proof. From the Fundamental Theorem of Riordan arrays we have

(T3(z), zT3(z))
1

1− z
=

T3(z)

1− zT3(z)
=

∞∑

n=0

n∑

k=0

a3(n, k)z
n =

∞∑

n=0

b3(n)z
n = H3(z).

After simplification we obtain the result that proves part (1).

Proof of part (2): It is easy to see that

H3(z) =
T3(z)

1− zT3(z)
=

(1/(1− 4z))C(u)

1− (z/(1− 4z))C(u)
,

where u = z2/(1− 4z)2 and C(z) is the generating function of the Catalan numbers. There-
fore,

H3(z) =
1

1− 4z

∞∑

n=0

(
z

1− 4z

)n

Cn+1(u).

From [8, equation 5.70] we know that

Cn(z) =
∞∑

k=0

(
n+ 2k

k

)
n

n+ 2k
zk. (6)

This implies that

H3(z) =
∞∑

n=0

∞∑

k=0

(
n+ 2k + 1

k

)(
n+ 1

n+ 2k + 1

)(
zn

(1− 4z)n+1

)
uk

=
∞∑

n=0

∞∑

k=0

(
n+ 2k + 1

k

)(
n+ 1

n+ 2k + 1

)(
zn+2k

(1− 4z)n+2k+1

)

=
∞∑

n=0

∞∑

k=0

∞∑

l=0

(
n+ 2k + 1

k

)(
n+ 2k + l

l

)(
n+ 1

n+ 2k + 1

)
4lzn+2k+l.
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This with t = n+ 2k + l implies

H3(z) =
∞∑

n=0

∞∑

k=0

∞∑

t=n+2k

(
n+ 2k + 1

k

)(
t

n+ 2k

)(
n+ 1

n+ 2k + 1

)
4t−n−2kzt.

Therefore,

b3(m) = [zm]H3(z) =
m∑

n=0

⌊m−n

2
⌋∑

k=0

(
n+ 2k + 1

k

)(
m

n+ 2k

)(
n+ 1

n+ 2k + 1

)
4m−n−2k.

This proves part (2).

The following sequence gives some values for the total number of paths of length 0 − 9
in three-dimensional cube that never go below the xy-plane. This sequence appears in OEIS
as A005573. So, b3(m) for m = 0, 1, . . . , 9 is given by

1, 5, 26, 139, 758, 4194, 23460, 132339, 751526, 4290838.

The previous theorem gives a closed formula that answers Guy’s question. Theorem 5
gives a closed formula for all entries of A3.

Theorem 5. If m and n are non-negative integers, then

a3(n, k) =
k + 1

n+ 1

⌊n−k

2
⌋∑

l=0

(
n+ 1

n− k − l

)(
n− k − l

l

)
4n−k−2l.

Proof. Let M(z) = zT3(z) then from (2) we obtain

M(z) = z(M(z)2 + 4M(z) + 1) = zP (z),

where P (z) = z2 + 4z + 1. From the Lagrange Inversion Formula (cf. [17])

a3(n, k) = [zn]
(
zkT3(z)

k+1
)
= [zn+1]M(z)k+1

=
k + 1

n+ 1
[zn−k]

(
z2 + 4z + 1

)n+1

=
k + 1

n+ 1
[zn−k]

(
n+1∑

i=0

(
n+ 1

i

)
zi(z + 4)i

)

=
k + 1

n+ 1
[zn+1]

(
n+1∑

i=0

i∑

l=0

(
n+ 1

i

)(
i

l

)
4i−lzi+l+k+1

)

=
k + 1

n+ 1
[zn+1]




2n+2∑

m=0

⌊m

2
⌋∑

l=0

(
n+ 1

m− l

)(
m− l

l

)
4m−2lzm+k+1


 .

If we take m = n− k, we obtain the desired result.
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Theorem 6. In the three-dimensional cube the following hold:

(1) the generating function U3(z) for the total number of paths of length i in C+
3 with no

level steps at height 0 is given by

U3(z) :=
∞∑

n=0

u3(n)z
n =

1

1− z2T3(z)
,

(2) the sum of entries of the rising diagonal of the Riordan array A3 = [a3(n, k)]n,k≥0 is

u3(n+ 2) =

⌊n

2
⌋∑

i=0

a(n− i, i).

Proof. From the first return decomposition a nonempty three-dimensional lattice path P in
C+
3 with no level steps at height 0 may be decomposed as e3P

′(−e3)P
′′ where P ′ and P ′′

are three dimensional lattice paths (possibly empty) in C+
3 such that P ′′ does not have level

steps at height 0. Then

U3(z) = 1 + z2T3(z)U3(z).

This proves part (1).

Proof of part (2): From the definition of the Riordan array we have

L(z) =
∞∑

n=0

∞∑

k=0

a(n− k, k)zn

=
∞∑

n=0

∞∑

k=0

[zn−k]gfkzn

=
∞∑

n=0

∞∑

k=0

gfkzk

=
g

1− zf
=

T3(z)

1− z2T3(z)
.

Therefore, comparing coefficients we get that

U3(z) = z2L(z) + 1.

This proves part (2).

The following sequence gives some values for the total number of paths of length 0− 10
in paths C+

3 with no level steps at height 0. This sequence appears in OEIS as A185132. So,
u3(n) for n = 0, 1, . . . , 10 is given by

1, 4, 18, 84, 405, 2004, 10126, 52048, 271338, 1431400, 7627348.
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3.2.3 The inverse matrix of the Riordan array

Since A3 = [a3(n, k)]n,k≥0 is a Riordan matrix and the set of all Riordan matrices is a group,
the inverse matrix of A3 exists. So, it is natural to ask: what properties does the inverse
matrix of A3 satisfy? In this section we analyze the inverse matrix A−1

3 and in particular,
we study the combinatorial interpretation of the unsigned entries of the matrix A−1

3 . We
found that there is a combinatorial relation between the entries of A−1

3 and the words over
the alphabet {0, 1, 2, 3}. There is also another relation between the matrix A−1

3 and the
matrix of coefficients of Chebyshev’s polynomials of the second kind. Finally we present two
fractals resulting from both matrices A3 and A−1

3 .
From (4) we obtain that the inverse matrix A−1

3 is given by the Riordan matrix

F̃ :=
[
f̃(n, k)

]
n,k≥0

= A−1
3 =

(
1

1 + 4z + z2
,

z

1 + 4z + z2

)
. (7)

In general if a Riordan matrix [an,k]n,k≥0 = (g(z), f(z)) is given, then the alternating Ri-
ordan matrix defined by [(−1)n+kan,k]n,k≥0 can be found by the product of Riordan matrices
as follows

(1,−z)(g(z), f(z))(1,−z) = (g(−z),−f(−z)).

Now from (7) it is easy to see that g(z) = 1/(1 + 4z + z2) and f(z) = z/(1 + 4z + z2).
Therefore,

F := [f(n, k)]n,k≥0 :=
[
(−1)n+kf̃(n, k)

]
n,k≥0

=

(
1

1− 4z + z2
,

z

1− 4z + z2

)
.

We now express this matrix explicitly as follows (see also A207823).

F = [f(n, k)]n,k≥0 =




1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0
15 8 1 0 0 0 0 0
56 46 12 1 0 0 0 0
209 232 93 16 1 0 0 0
780 1091 592 156 20 1 0 0
2911 4912 3366 1200 235 24 1 0
10864 21468 17784 8010 2120 330 28 1

...
...

...
...

...
...

...
...




.

From the Fundamental Theorem of Riordan arrays we have

F (x, y) :=
∞∑

n=0

∞∑

m=0

f(n,m)xmzn =

(
1

1− 4z + z2
,

z

1− 4z + z2

)
1

1− xz

=
1

1− (4 + x)z + z2
.
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Therefore, the element f(n,m) satisfies the following recurrence relation.

f(n,m) = 4f(n− 1,m) + f(n− 1,m− 1)− f(n− 2,m), (8)

with n,m ≥ 1, and the initial values f(0, 0) = 1 and f(n,m) = 0 if m > n.
Note that from [11, Theorems 4.1 and 4.2] we obtain generating functions for the A-

sequence and the Z-sequence of the Riordan array F̃ (and therefore for F). So, we have

AF̃(z) =
z

zT3(z)
=

1− 4z +
√
1− 8z + 12z2

2

ZF̃(z) =
1

zT3(z)
(1− T3(z)) =

−1− 4z +
√
1− 8z + 12z2

2z

and

AF(z) =
z

zT3(−z)
=

1 + 4z +
√
1 + 8z + 12z2

2

= 1 + 4z − z2 + 4z3 − 17z4 + 76z5 − 354z6 + 1704z7 − 8421z8 + · · ·

ZF(z) =
1

zT3(−z)
(1− T3(−z)) =

−1 + 4z +
√
1 + 8z + 12z2

2z

= 4− z + 4z2 − 17z3 + 76z4 − 354z5 + 1704z6 − 8421z7 + · · ·

Therefore, the element f(n,m) can be calculated by a complex linear combination of elements
in the previous row:

f(n+ 1, k + 1) = f(n, k) + 4f(n, k + 1)− f(n, k + 2) + 4f(n, k + 3)− 17f(n, k + 4) + · · ·

This observation was made by the anonymous referee. The generating function AF(z) can
be also obtain from Theorem 3.2 of [14].

We observe that the matrix F is related to the coefficients of Chebyshev polynomials
of the second kind Un(x). Recall that those polynomials are defined recursively as follows:
U0(x) = 1, U1(x) = 2x and Un(x) = 2xUn−1(x)− Un−2(x) for n ≥ 2. Equivalently,

Un(x) =

⌊n

2
⌋∑

k=0

(−1)k
(
n− k

k

)
(2x)n−2k (9)

=
n∑

k=0

(−1)(n−k)/2

(
(n+ k)/2

k

)(
1 + (−1)n−k

2

)
(2x)k. (10)
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The ordinary generating function of the polynomials Un(x) is

U(x, z) :=
∞∑

n=0

Un(x)z
n =

1

1− 2xz + z2
.

Thus,

U

(
x+ 4

2
, z

)
=

1

1− (x+ 4)z + z2
= F (x, y).

Therefore, this proves the following theorem.

Theorem 7. If m and n are non-negative integers, then

f(n,m) = u(n,m), where u(n,m) = [znxm]U ((x+ 4)/2, z) .

The following theorem gives an explicit expression for the entries f(n,m).

Theorem 8. If m and n are non-negative integers, then

f(n,m) =
n∑

k=m

(−1)(n−k)/2

(
(n+ k)/2

k

)(
k

m

)(
1 + (−1)n−k

2

)
4k−m.

Proof. Theorem 7 and Equation (10) imply that

f(n,m) = [xm]Un

(
x+ 4

2

)

= [xm]
n∑

k=0

(−1)(n−k)/2

(
(n+ k)/2

k

)(
1 + (−1)n−k

2

)
(x+ 4)k

= [xm]
n∑

k=0

k∑

j=0

(−1)(n−k)/2

(
(n+ k)/2

k

)(
k

j

)(
1 + (−1)n−k

2

)
4k−jxj

= [xm]
n∑

j=0

[
n∑

k=j

(−1)(n−k)/2

(
(n+ k)/2

k

)(
k

j

)(
1 + (−1)n−k

2

)
4k−j

]
xj

=
n∑

k=m

(−1)(n−k)/2

(
(n+ k)/2

k

)(
k

m

)(
1 + (−1)n−k

2

)
4k−m.

This completes the proof.

Using the combinatorial interpretation given in the sequence A261711 we obtain the
following theorem.

Theorem 9. The entry f(n,m) of the matrix F counts the number of words over the alphabet
Σ := {0, 1, 2, 3} of length n+m having exactly m occurrences of the word 01.
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Proof. Let g(n,m) be the number of words over the alphabet Σ := {0, 1, 2, 3} of length
n+m with exactly m occurrences of the word 01. For example, g(3, 2) = 12 with the words
being

01010 01011 01012 01013 01001 01101

01201 01301 00101 10101 20101 30101.

We show that g(n,m) satisfies the recurrence relation given in (8) with the same initial
values. Let w be a word over the alphabet Σ where w has length n + m and with exactly
m occurrences of the word 01. Thus, |w| = n + m and |w|01 = m (the number of 01’s in
w). The word w can be written in the form w = w1a where a and w are words over Σ with
|a| = 1, |w1| = n +m − 1 and |w1|01 = m, then there are 4g(n − 1,m) ways. However, we
have to subtract the cases where the last symbol of w1 is 0 and a = 1. In this case we have
g(n− 2,m) ways.

On the other hand, the word w can also be written as w = w101 with |w1| = n+m− 2
and |w1|01 = m− 1. So, there are g(n− 1,m− 1) ways to do it. Hence,

g(n,m) = 4g(n− 1,m)− g(n− 2,m) + g(n− 1,m− 1) for n,m ≥ 1.

It is easy to see that that g(0, 0) = 1 and g(n,m) = 0 for m > n. Therefore, this holds
g(n,m) = f(n,m).

3.2.4 Fractals from the Riordan arrays

A natural question for infinite numerical arrays is: what is the parity behavior between the
entries of the numerical array? (See, for example, the Sierpiński fractal.) Trying to answer
this question for our matrices A3 and A−1

3 we evaluated (using Mathematica R©) their entries
mod 2 and we found two interesting fractals (see Figure 4). An easy way to construct both
fractals –without using Mathematica R©– is as follows. The entries of the fractal in Figure 4
part (a) are obtained by evaluating the equation (5) mod 2. The entries of the fractal in
Figure 4 part (b) are obtained by evaluating the equation (8) mod 2. Merlini and Nocentini
[13] have studied some relations between Riordan arrays and fractal patterns.

3.3 Counting paths in three-dimensional cube

The main theorem of this section counts the total number of paths, in three-dimensional cube,
of length m that end in the horizontal plane. Again the proof uses generating functions.

Theorem 10. In the three-dimensional cube the following hold:

(1) the generating function for the total number of paths of length i in C3 is given by

G3(z) :=
∞∑

i=0

g3(i)z
i =

1√
1− 8z + 12z2

,
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Figure 4: (a) Matrix A3 mod 2 (b) Matrix A−1
3 mod 2.

(2) the number of paths, in three-dimensional cube, of length m that end in the horizontal
plane is given by

g3(m) =
1

2m

m∑

k=0

(
2m− 2k

m− k

)(
2k

k

)
3k.

Proof. From the first return decomposition a nonempty three-dimensional lattice path T in
C3 may be decomposed as

e3P (−e3)T
′; (−e3)P (e3)T

′; e1T
′; −e1T

′; e2T
′; −e2T

′,

where P is a path (possibly empty) in C+
3 and T ′ is a path (possibly empty) in C3. Therefore,

G3(z) = 2z2T3(z)G3(z) + 4zG3(z) + 1.

So, from equation (1) on page 4 we obtain

G3(z) =
1

1− 4z − 2z2T3(z)
=

1√
1− 8z + 12z2

. (11)

This proves part (1).

Proof of part (2): Noe [19] showed that

∞∑

i=0

Tix
i =

1√
1− 2bx− (b2 − 4c)x2

,

where

Tn =
1

4n

n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
(b+ 2

√
c)k(b− 2

√
c)n−k.
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Therefore, setting b = 4 and c = 1 we obtain the equation in part (2), completing the proof
of the theorem.

Note that the number g3(m) is equal to the generalized central trinomial coefficient of
(1 + 4x+ x2)n. Then

g3(n) =

⌊n/2⌋∑

k=0

(
2k

k

)(
n

2k

)
4n−2k.

This sequence appears in OEIS as A081671. So, g3(n) for n = 0, 1, . . . , 10 is given by

1, 4, 18, 88, 454, 2424, 13236, 73392, 411462, 2325976, 13233628.

In the following theorem we obtain another formula to the sequence g3(m).

Theorem 11. The number of paths, in three-dimensional cube, of length m that end in the
horizontal plane is given by

g3(m) = 4m +
m∑

n=1

⌊m−2n

2
⌋∑

k=0

(
n+ 2k

k

)(
s

2n+ 2k

)(
n

n+ 2k

)
22m−4k−3n.

Proof. The Equations (3) and (11) imply that

G3(z) =
1

1− 4z − 2z2T3(z)
=

1

1− 4z − 2z2 (1/(1− 4z))C(u)

=
1

1− 4z

(
1

1− 2uC(u)

)
=

1

1− 4z

∞∑

n=0

(2uC(u))n,

where u = z2/(1− 4z)2 and C(z) is the generating function of the Catalan numbers. From
identity (6) we have

G3(z) =
1

1− 4z
+

∞∑

n=1

∞∑

k=0

(
n+ 2k

k

)(
n

n+ 2k

)(
z2n+2k

(1− 4z)2n+2k+1

)
2n

=
1

1− 4z
+

∞∑

n=1

∞∑

k=0

∞∑

l=0

(
n+ 2k

k

)(
2n+ 2k + l

l

)(
n

n+ 2k

)
2n+2lz2n+2k+l.

This with t = 2n+ 2k + l implies that

G3(z) =
1

1− 4z
+

∞∑

n=1

∞∑

k=0

∞∑

l=t−2n−2k

(
n+ 2k

k

)(
t

2n+ 2k

)(
n

n+ 2k

)
22t−3n−4kzt.

17

http://oeis.org/A081671


Therefore,

[zm]G3(z) = 4m +
m∑

n=1

⌊m−2n

2
⌋∑

k=0

(
n+ 2k

k

)(
m

2n+ 2k

)(
n

n+ 2k

)
22m−3n−4k.

This proves the theorem.

Theorem 12 studies the case in which a path does not need to end in the horizontal plane.
That is, we study the family of paths in C±

3 . Theorem 12 was originally proved by Guy.

Theorem 12. In three-dimensional cube it holds that

(1) The generating function for the total number of paths of length i in C±
3 is given by

W3(z) :=
∞∑

i=0

w3(i)z
i =

1

1− 6z
,

(2) the number of paths, in three-dimensional cube, of length m is given by

w3(m) = 6m.

Proof. First of all we note that from the first return decomposition a nonempty three-
dimensional lattice path J in C±

3 may be decomposed as

e3J
′; (−e3)J

′; e1J
′; (−e1)J

′; e2J
′; (−e2)J

′,

where J ′ is a path (possibly empty) in C±
3 . Therefore, we have that

W3(z) = 6zW3(z) + 1.

Therefore

W3(z) =
1

1− 6z
.

This proves part (1) and (2).

4 Generating functions for paths in the n-space

In this section we generalize the results given in Section 3 for paths in three-dimensional cube
to paths in the n-dimensional cube. In Section 3 we classify the families of paths depending
on the plane z = 0. The generalization is focused depending on the hyperplane xn = 0. Since
the results here are a natural generalization of Section 3, we omit some details. Whoever is
interested in these problems from the point of view of Riordan arrays can see Nkwanta [20].

18



Theorem 13. If Cn is the nth Catalan number, then

(1) the generating function for the total number of paths of length i in C+
n is given by

Tn(z) :=
∞∑

i=0

an(i)z
i =

1− 2(n− 1)z −
√

1− 4(n− 1)z + 4(n− 2)nz2

2z2

=
1

1− 2(n− 1)z −
z2

1− 2(n− 1)z −
z2

1− 2(n− 1)z −
z2

. . .

(2) the number of paths in C+
n (m) is given by

an(m) =

⌊m/2⌋∑

i=0

Ci

(
m

2i

)
(2(n− 1))m−2i. (12)

Proof. We prove part (1), the proof of part (2) is similar to Theorem 1 and we omit it.
From the first return decomposition a nonempty n-dimensional lattice path P in C+

n may be
decomposed as

enP
′(−en)P

′′, ±e1P
′, ±e2P

′, . . . ,±en−1P
′,

where P ′ is a path (possibly empty) in C+
n .

Therefore
Tn(z) = z2T 2

n(z) + 2(n− 1)zTn(z) + 1.

This proves part (1).

For example, if n = 2, we obtain

T2(z) =
1− 2z −

√
1− 4z

2z2
=

∞∑

n=0

Cn+1z
n.

Therefore, a2(m) = Cm+1, where Cm is the mth Catalan number. Moreover, from Equation
(12) we get

Cm+1 =

⌊m/2⌋∑

i=0

Ci

(
m

2i

)
2m−2i.

This identity is known as Touchard’s formula. In 2017 Dershowitz [6] found a bijection
between the paths of C+

2 and Dyck paths.
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If an(m, k) is the total number of lattice paths with height k in C+
n (m), then an(m, k)

satisfies the third order recurrence relation

an(m, k) = an(m− 1, k − 1) + 2(n− 1)a3(m− 1, k) + a3(m− 1, k + 1).

Therefore, the infinite triangular matrix An = [an(m, k)]m,k≥0 has the Riordan array expres-
sion

An = (Tn(z), zTn(z)) ,

with A-sequence equal to (1, 2(n− 1), 1).

Theorem 14. In the n-dimensional cube the following hold:

(1) the generating function for the total number of paths of length i in C≥
n is given by

Hn(z) :=
∞∑

i=0

bn(i)z
i =

Tn(z)

1− zTn(z)

=
1− 2nz −

√
1− 4(n− 1)z + 4(n− 2)nz2

2z(2nz − 1)

=
1

1− 2(n− 1)z −
z2

1− 2(n− 1)z −
z2

1− 2(n− 1)z −
z2

. . .

(2) the number of paths that belong to C≥
n (m) is given by

bn(m) =
m∑

i=0

⌊m−i

2
⌋∑

k=0

(
i+ 2k + 1

k

)(
m

i+ 2k

)(
i+ 1

i+ 2k + 1

)
(2(n− 1))m−2k−i. (13)

Proof. We prove part (1), the proof of part (2) is analogous to the proof of Corollary 4 and
we omit it.

From the first return decomposition a nonempty n-dimensional lattice path P in C≥
n may

be decomposed as P ′, P ′enH
′ where P ′ is a path (possibly empty) in C+

n and H ′ is a path
(possibly empty) in C≥

n .
Therefore

Hn(z) = Tn(z) + zTn(z)Hn(z).

This proves part (1).
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It is easy to see that using Guy [9, Equation (1)], the Equation (13) for n = 2 becomes

b2(m) =

(
2m+ 1

m

)
=

m∑

i=0

⌊m−i

2
⌋∑

k=0

(
i+ 2k + 1

k

)(
m

i+ 2k

)(
i+ 1

i+ 2k + 1

)
2m−2k−i.

Theorem 14 part (2) with n = 3 proves the the problem 10795 [5]. This problem
was originally proposed by Deutsch and solved by Brawner [1] (without using generating
functions).

Theorem 15. In the n-dimensional cube the following hold:

(1) the generating function for the total number of paths of length i in Cn is given by

Gn(z) :=
∞∑

i=0

gn(i)z
i =

1√
1− 4(n− 1)z + 4(n− 2)nz2

,

(2) the number of paths, in three-dimensional cube, of length m that end in the horizontal
plane is given by

gn(m) =
1

2m

m∑

k=0

(
2m− 2k

m− k

)(
2k

k

)
nk(n− 2)n−k.

Theorem 16. In the n-dimensional cube the following hold:

(1) the generating function for the total number of paths of length i in C±
n is given by

Wn(z) :=
∞∑

i=0

wn(i)z
i =

1

1− 2nz
,

(2) the number of paths, in the n-dimensional cube, of length m is given by

wn(m) = (2n)m.

5 A relation with the k-colored Motzkin paths

A Motzkin path of length n is a lattice path of Z× Z running from (0, 0) to (n, 0) that never
passes below the x-axis and whose permitted steps are the up diagonal step U = (1, 1),
the down diagonal step D = (1,−1) and the horizontal step H = (1, 0), called rise, fall,
and level step, respectively. The number of Motzkin paths of length n is the nth Motzkin
number mn, (see A001006). A grand Motzkin path of length n is a Motzkin path without
the condition that it never passes below the x-axis. The number of grand Motzkin paths of
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n Sequence A-Sequence
2 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796 A000108
3 1, 4, 17, 76, 354, 1704, 8421, 42508, 218318 A005572
4 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478 A025230
5 1, 8, 65, 536, 4482, 37968, 325509, 2821400 -

Table 1: Sequence an(m) for n = 2, 3, 4, 5.

length n is the nth grand Motzkin number gmn (see A002426). A k-colored Motzkin path
is a Motzkin path such that each horizontal step is colored with one of k specific colors.
The number of k-colored Motzkin paths of length n is the nth k-colored Motzkin number
mk,n. The generating functions of these type of lattices where also studied by Callan [2].
Analogously, we have k-colored grand Motzkin paths, the number of k-colored grand Motzkin
paths of length n is denoted by gmk,n.

It is easy to obtain a bijection between the 4-colored Motzkin paths of length m and
three-dimensional lattice path of C+

3 (m). That is, we identify the north-east step (U) with
e3 = (1, 0, 0), the south-east step (D) with −e3 and the 4-colored horizontal steps with ±e1
and ±e2. Therefore, we obtain Theorem 17 (it was proved originally by Nkwanta using
Riordan arrays). By similar reasons as we obtained Theorem 17, we obtain also Theorem
18. From Theorem 13 part (2), the bijection given in Theorem 17 and the recurrence relation
given in [29] (see also [25]) we obtain the Corollary 19.

Theorem 17. The number of lattice paths of length k in C+
n is equal to the number of

2(n− 1)-colored Motzkin paths of length k. Thus, an(k) = m2(n−1),k.

Theorem 18. The number of lattice paths of length k in Cn is equal to the number of
2(n− 1)-colored grand Motzkin paths of length k. Thus, gn(k) = gm2(n−1),k.

Corollary 19. The numbers an(m) given in Theorem 13 part (2), satisfy the recurrence
relation

(m+ 2)an(m) = 2(n− 1)(2m+ 1)an(m− 1) + (6− 2n)(m− 1)an(m− 2).

6 Tables and sequences from experimentation

From formula (12) we obtain the Table 1 (see Theorem 1 part (2), Theorem 13). That is, we
show the first few terms of the sequence an(m) for n = 2, 3, 4, 5. Note that a2(3) = 14 and
a3(3) = 17, (see Figures 1 and 2). From Theorem 14 part (2) we obtain the Table 2. That is,
we show the first few terms of the sequence bn(m) for n = 2, 3, 4, 5. From Theorem 15 part
(2) we obtain the Table 3. That is, we show the first few terms of the sequence gn(m) for
n = 2, 3, 4, 5. Note that the sequence A098410 is equal to the number of paths from (0, 0)
to (n, 0) using steps U = (1, 1), H = (1, 0) and D = (1,−1), the H steps can have 6 colors.
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n Sequence A-Sequence
2 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716 A001700
3 1, 5, 26, 139, 758, 4194, 23460, 132339, 751526, 4290838 A005573
4 1, 7, 50, 363, 2670, 19846, 148772, 1122995, 8525398, 65030706 -
5 1, 9, 82, 755, 7014, 65658, 618612, 5860611, 55784710, 533147438 -

Table 2: Sequence bn(m) for n = 2, 3, 4, 5.

n Sequence A-Sequence
2 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620 A000984
3 1, 4,18, 88, 454, 2424, 13236, 73392, 411462 A081671
4 1, 6, 38, 252, 1734, 12276, 88796, 652728 A098410
5 1, 16, 258, 4192, 68614, 1130976, 18766356 -

Table 3: Sequence gn(m) for n = 2, 3, 4, 5.

Proposition 20. For k ≥ 1, the number of paths in C+
3 (k) that are completely contained in

the xy-plane is 4k.

Proposition 20 is easy to prove, we omit it. Motivated by Proposition 20, we have the
following conjectures.
Conjecture 1: For k ≥ 1, the number of paths in C+

3 (k) that are completely contained in
the xz−plane is (see Table 4 first line)

k+1∑

i=1

(
2 i
i

) (
k

i−1

)

i+ 1
.

Conjecture 2: For k ≥ 1, the number of paths in C+
3 (k) that are completely contained in

the yz−plane is

k+1∑

i=1

(
2 i
i

)(
k

i−1

)

i+ 1
.

For the Conjecture 1 see Table 4 first line and for the Conjecture 2 see Table 4 second
line. Notice that first and second lines in Tables 4 are exactly the same.

The following sequences/conjectures are based on our experimentation. We do not prove
and/or provide any closed formulas for any of them here. We leave them as conjectures for
future work.

If we define the altitude of a path P in C+
3 (k) as the largest z-value of all the points in

P, then we have the following conjecture.
Conjecture 3: The number of paths in C+

3 (k) that have altitude 1 is

3k

2
− 4k +

5k

2
.
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plane Sequence A-Sequence
xz-plane 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369 A002212(k + 1)
yz-plane 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369 A002212(k + 1)

Table 4: Paths in C+
3 (k) completely contained in the xz-plane or the yz-plane.

h Sequence A-Sequence
0 4, 16, 64, 256, 1024, 4096, 16384, 65536 A002212
1 0, 1, 12, 97, 660, 4081, 23772, 133057, 724260 A016753
2 0, 0, 0, 1, 20, 243, 2324, 19271, 145404 -
3 0, 0, 0, 0, 0, 1, 28, 453, 5556 -

Table 5: All paths of altitude h in C+
3 (k).

We say that a path P = (p0, p1, . . . , pk) in C+
3 (k) has a right corner, if there are three

points pi, pi+1, pi+2 ∈ {p0, p1, . . . , pk} such that the vectors −−−→pipi+1 and −−−−−→pi+1pi+2 are perpen-
dicular. Using this definition, we have Table 6.

We say that a path P = (p0, p1, . . . , pk) in C+
3 (k) has an overlap, if there are four points

pi, pi+1, pi+2, pi+3 ∈ {p0, p1, . . . , pk} such that pi = pi+3 and pi+1 = pi+2. Using this definition,
we have Table 7.

Remark 21. Some of the results of this paper were discovered by using the counting automata
methodology (see De Castro et al. [4]).
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r Sequence A-Sequence
0 4, 9, 16, 34, 64, 133, 256, 526, 1024 -
1 0, 8, 40, 112, 304, 736, 1768, 4048, 9232 -
2 0, 0, 20, 136, 552, 1808, 5380, 14760, 38936 -
3 0, 0, 0, 72, 512, 2576, 9856, 33832, 104832 -

Table 6: All paths in C+
3 (k) with exactly “r” right corners.
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t Sequence A-Sequence
0 4, 12, 40, 152, 608, 2476, 10240, 42972, 182904 -
1 0, 5, 32, 132, 580, 2764, 13420, 64260, 306388 -
2 0, 0, 4, 65, 416, 2052, 10448, 55688, 297516 -
3 0, 0, 0, 5, 96, 953, 6212, 34904, 197824 -

Table 7: All paths in C+
3 (k) with exactly “t” overlaps.
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