

Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.4

Words and Linear Recurrences

Milan Janjić Department of Mathematics and Informatics University of Banja Luka Banja Luka, 78000 Republic of Srpska, BA agnus@blic.net

Abstract

In previous papers, we defined functions f_m and c_m based on an arithmetical function f_0 , and determined numbers of restricted words over a finite alphabet counted by these functions. In this paper, we examine the reverse problem: for each of the five specific types of restricted words, we find the initial function f_0 such that f_m and c_m enumerate these words. We derive explicit formulas for f_m and c_m .

Fibonacci, Mersenne, Pell, Jacosthal, Tribonacci, and Padovan numbers all appear as values of f_m . We derive their new combinatorial interpretations and the explicit formulas.

1 Introduction

We continue the investigation of restricted word enumeration from previous papers Janji, [2, 3, 4], where functions f_m and c_m were defined as follows. For an initial arithmetic function f_0 and $m \ge 1$, the function f_m is the m^{th} invert transform of f_0 . The function $c_m(n,k)$ was defined as

$$c_m(n,k) = \sum_{i_1+i_2+\dots+i_k=n} f_{m-1}(i_1) \cdot f_{m-1}(i_2) \cdots f_{m-1}(i_k), \tag{1}$$

where the sum is over positive integers i_1, i_2, \ldots, i_k .

The functions f_m and c_m depend only on the initial function f_0 and are related to the enumeration of weighted compositions. Namely, if the value of $f_{m-1}(i)$ is the weight of i, then the value of $f_m(n)$ is the number of weighted compositions of n, and the value of $c_m(n,k)$ is the number of weighted compositions of n into k parts. In [2, 3, 4] weighted compositions were related to restricted words over a finite alphabet. For a given initial function f_0 , we investigated restricted words counted by f_m and c_m . In this paper, we consider the reverse problem. For each of the five types of restricted words, we first find the initial function f_0 which counts these words. We then derive formulas for f_m and c_m and give their combinatorial meanings in term of restricted words.

To begin with, we restate the results from papers [2, 3, 4] that we will use in this work.

(A) [2, Theorem 6] Let f_0 be an arithmetic function and let k be a positive integer. Assume that there exist constants $a_0(1), a_0(2), \ldots, a_0(k)$ such that

$$f_0(n+k;k) = \sum_{i=1}^k a_0(i) f_0(n+k-i;k), (n \ge 1),$$

where $f_0(1;k), f_0(2;k), \ldots, f_0(k;k)$ are arbitrary numbers. Then, we have

$$f_1(i;k) = \sum_{j=1}^i f_0(j;k) f_1(i-j;k), (i = 1, 2, \dots, k),$$
$$f_1(n+k;k) = \sum_{i=1}^k a_1(i) f_1(n+k-i;k), (n \ge 1),$$

where

$$a_1(1) = a_0(1) + f_0(1;k),$$

$$a_1(i) = a_0(i) + f_0(i;k) - \sum_{j=1}^{i-1} a_0(j) f_0(i-j;k), (2 \le i \le k).$$

(B) [2, Corollary 9] If $f_0(1), f_0(2), a_0(1), a_0(2)$ are arbitrary, and

$$f_0(n+2) = a_0(1)f_0(n+1) + a_0(2)f_0(n),$$

then

$$f_m(1) = f_0(1), \ f_m(2) = mf_0(1)^2 + f_0(2),$$

$$f_m(n+2) = a_m(1)f_m(n+1) + a_m(2)f_m(n),$$

where

$$a_m(1) = a_0(1) + mf_0(1),$$

$$a_m(2) = a_0(2) - ma_0(1)f_0(1) + mf_0(2)$$

(C) [2, Proposition 23] Assume that $f_0(1) = 0$ and $f_0(i) = 1, (i > 1)$. Then, we have

$$f_m(1) = 0, f_m(2) = 1,$$

 $f_m(n+2) = f_m(n+1) + mf_m(n).$

(D) [3, Corollary 2] The following formula holds:

$$f_m(n) = \sum_{k=1}^n c_m(n,k)$$

(E) [4, Proposition 6] The following formula holds:

$$c_m(n,k) = \sum_{i=k}^n (m-1)^{i-k} \binom{i-1}{k-1} c_1(n,i), \ (1 \le k \le n).$$

(F) [4, Propositions 12] Assume that $f_0(1) = 1$, and that m > 1. Assume next that, for $n \ge 1$, we have $f_{m-1}(n)$ words of length n-1 over a finite alphabet α . Let x be a letter which is not in α . Then, the value of $c_m(n,k)$ is the number of words of length n-1 over the alphabet $\alpha \cup \{x\}$ in which x appears exactly k-1 times.

We proceed to consider the following five types of restricted words over a finite alphabet:

- 1. Words over $\{0, 1, \ldots, a-1, \ldots\}$ such that no two adjacent letters from $\{0, 1, \ldots, a-1\}$ are the same (Property \mathcal{P}_1).
- 2. Words over $\{0, 1, \ldots, a 1, \ldots\}$ such that letters $0, 1, \ldots, a 1$ avoid a run of odd length (Property \mathcal{P}_2).
- 3. Words over $\{0, 1, \ldots, a, \ldots\}$ avoiding subwords of the form $0i, (i = 1, \ldots, b)$ for b < a (Property \mathcal{P}_3).
- 4. Words over $\{0, 1, \ldots\}$ such that 0 and 1 appear only as subwords of the form 1*i*, where *i* is a run of zeros (Property \mathcal{P}_4).
- 5. Words over $\{0, 1, \ldots\}$ in which 0 appears only in a run of even length, and 1 appears only in a run of a length divisible by 3 (Property \mathcal{P}_5).

We also note that, in all types, the initial function f_0 is defined by a linear homogenous recurrence.

2 Type 1

In this case, we consider the following linear recurrence:

$$f_0(1) = 1, f_0(2) = a,$$

 $f_0(n+2) = (a-1)f_0(n+1), (n \ge 1).$

where a > 0. It is easy to see that

$$f_0(n) = a(a-1)^{n-2}, (n \ge 2).$$

Remark 1. This formula appears in Birmajer at al. [1, Example 17]. Also, the case a = 1 is considered in [4, Example 18].

The function f_0 has the following combinatorial interpretation.

Proposition 2. The value of $f_0(n)$ is the number of words of length n-1 over $\{0, 1, \ldots, a-1\}$ satisfying \mathcal{P}_1 .

Proof. We have $f_0(1) = 1$ since only the empty word has length 0. Also, $f_0(2) = a$ since a word of length 1 may consist of an arbitrary letter. To obtain a word of length n + 2 for n > 0, we need to insert a - 1 letters in front of each word of length n + 1.

As an immediate consequence of (B), we obtain the following result.

Corollary 3. For $m \ge 0$, the following recurrence holds:

$$f_m(1) = 1, f_m(2) = m + a,$$

 $f_m(n+2) = (m+a-1)f_m(n+1) + mf_m(n), (n \ge 1).$

We now describe words counted by f_m .

Proposition 4. The number of words of length n - 1 over the alphabet $\{0, 1, \ldots, a - 1, a, \ldots, m + a - 1\}$ satisfying \mathcal{P}_1 is the value of $f_m(n)$.

Proof. We have $f_m(1) = 1$, since only the empty word has length 0. Also, $f_m(2) = m + a$ since a word of length 1 may consist of any letter of the alphabet. Assume that n > 2. Consider a word of length n+1. At the front of such a word, we insert a letter different from the first letter of the word. In this way, we obtain all the words of length n+2 beginning with two different letters. The remaining words must begin with two identical letters. Since there are $mf_m(n)$ such words, the statement is true.

Remark 5. For a = 2, the continued fraction $[f_0(1), f_0(2), f_0(3), \ldots]$ equals $\sqrt{2}$. The sequence $f_1(1), f_1(2), \ldots, f_1(n)$ is the numerator of the *n*th convergent of $\sqrt{2}$. Also, the value of $f_1(n)$ is the number of ternary words of length n - 1 avoiding 00 and 11.

Since $f_m(1) = 1$, we may apply (F) to obtain the following result.

Proposition 6. The number of words of length n - 1 over $\{0, 1, \ldots, a - 1, \ldots, m + a - 1\}$ in which k - 1 letters equal m + a - 1, and which satisfy \mathcal{P}_1 equals the value of $c_m(n, k)$.

We next derive an explicit formula for $c_1(n, k)$.

Proposition 7. We have

$$c_1(n,n) = 1,$$

$$c_1(n,k) = \sum_{i=0}^{k-1} a^{k-i} (a-1)^{n-2k+i} \binom{k}{i} \binom{n-k-1}{k-i-1}, (k < n)$$

Proof. From (1), we first obtain $c_1(n,n) = 1$. Assume that k < n. Since at most k - 1 of $i_t, (t = 1, 2, ..., k)$ may equal 1, then

$$c_1(n,k) = \sum_{i=0}^{k-1} \binom{k}{i} \sum_{\substack{j_1+j_2+\dots+j_{k-i}=n-i\\ i}} f_0(j_1) f_0(j_2) \cdots f_0(j_{k-i})$$
$$= \sum_{i=0}^{k-1} \binom{k}{i} a^{k-i} (a-1)^{n-2k+i} \sum_{\substack{j_1+j_2+\dots+j_{k-i}=n-i\\ j_1+j_2+\dots+j_{k-i}=n-i}} 1,$$

where the last sum is taken over $j_t \geq 2$. Then we have

$$c_1(n,k) = \sum_{i=0}^{k-1} a^{k-i} (a-1)^{n-2k+i} \binom{k}{i} \binom{n-k-1}{k-i-1}.$$
(2)

Remark 8. In the preceding formula, terms in which i < 2k - n equal zero.

We use (E) to derive an explicit formula for $c_m(n,k)$. Extracting the term for i = n yields

$$c_m(n,k) = (m-1)^{n-k} \binom{n-1}{k-1} + \sum_{i=k}^{n-1} (m-1)^{i-k} \binom{i-1}{k-1} c_1(n,i).$$

Using (2), we obtain

$$c_m(n,k) = (m-1)^{n-k} \binom{n-1}{k-1} + \sum_{i=k}^{n-1} \sum_{j=0}^{i-1} (m-1)^{i-k} a^{i-j} (a-1)^{n-2i+j} \binom{i}{j} \binom{i-1}{k-1} \binom{n-i-1}{i-j-1}.$$

An explicit formula for $f_m(n)$ can easily be obtained from (C).

The following arrays in Sloane [5] are related to this type: <u>A154929</u>, <u>A113413</u>, <u>A054458</u>, <u>A116412</u>.

3 Type 2

Let *a* be a positive integer. Define f_0 by

$$f_0(1) = 1, f_0(2) = 0,$$

 $f_0(n+2) = af_0(n), (n \ge 1).$

Proposition 9. For a > 0, the value of $f_0(n)$ is the number of words of length n - 1 over the alphabet $\{0, 1, \ldots, a - 1\}$ satisfying \mathcal{P}_2 .

Proof. Let d(n) denote the number of words of length n which we wish to count. Firstly, d(0) = 1 since only the empty word has length 0. Next, d(1) = 0 as there are no runs of length 1. Assume that n > 2. A word of length n must begin with two identical letters. Hence, there are ad(n-2) such words. We conclude that the following recurrence holds:

$$d(0) = 1, d(1) = 0, d(n) = ad(n-2), (n \ge 2),$$
(3)

which yields $d(n-1) = f_0(n), (n \ge 1).$

From (3), we easily obtain the following explicit formula for f_0 .

$$f_0(n) = \begin{cases} 0, & \text{if } n = 2t; \\ a^t, & \text{if } n = 2t + 1. \end{cases}$$
(4)

Using (B), we obtain the following result.

Corollary 10. For $m \ge 0$, we have

$$f_m(1) = 1, f_m(2) = m,$$

$$f_m(n+2) = mf_m(n+1) + af_m(n), (n \ge 1).$$

Proposition 11. The value of $f_m(n)$ is the number of words of length n-1 over $\{0, 1, \ldots, a-1, \ldots, a+m-1\}$ which satisfy \mathcal{P}_2 .

Proof. We let d(n) denote the number of words of length n-1. It is clear that d(0) = 1 and d(1) = m. A word of length n + 1 may begin with a letter from $\{a, a + 1, \ldots, a + m - 1\}$. There are md(n) such words. If a word begins with a letter from $\{0, 1, \ldots, a-1\}$, the second letter must be the same. Hence, there are ad(n-1) such words. We conclude that next $d(n) = f_m(n+1)$.

Some well-known classes of numbers satisfy the recurrence from Corollary 10. We give the appropriate combinatorial meaning for the Fibonacci, the Pell, and the Jacobhstal numbers.

1. The case a = 1, m = 1 is related to the Fibonacci numbers. The number of binary words of length n - 1 in which 0 avoids a run of odd length is F_n .

- 2. The case a = 1, m = 2 is related to the Pell numbers P_n (A000129). The number of ternary words of length n 1 in which 0 avoids runs of odd length is P_n .
- 3. The case a = 2, m = 1 is related to the Jacobsthal numbers J_n (A001045). The number of ternary words of length n 1 in which 0 and 1 avoid runs of odd length is J_n .

From the combinatorial interpretation, we easily derive an explicit formula for $f_m(n)$.

Proposition 12. We have

$$f_m(n) = \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} m^{n-2j-1} a^j \binom{n-1-j}{j}.$$
 (5)

Proof. A word of length n-1 can contain 2j letters from $\{0, 1, \ldots, a-1\}$, so that each letter appears in a run of even length, where $0 \le j \le \lfloor \frac{n-1}{2} \rfloor$. The remaining n-1-2j places are filled by letters from $\{a, a+1, \ldots, a+m-1\}$ arbitrarily. For a fixed j, we have $a^j \cdot \binom{n-j-1}{j}$ subwords from $\{0, 1, \ldots, a-1\}$ and m^{n-1-2j} subwords from $\{a, a+1, \ldots, a+m-1\}$. Summing over j, we obtain (5).

As a consequence, we obtain the following explicit formulas for the Fibonacci, the Pell, and the Jacobsthal numbers:

$$F_{n} = \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n-j-1}{j}}, \quad P_{n} = \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} 2^{n-2j-1} {\binom{n-j-1}{j}},$$
$$J_{n} = \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} 2^{j} {\binom{n-j-1}{j}}.$$

From (F), we obtain the following result.

Proposition 13. The value of $c_m(n,k)$ is the number of words of length n-1 over the alphabet $\{0, 1, \ldots, a-1, \ldots, a+m-1\}$ in which the letter a+m-1 appears k-1 times and which satisfy \mathcal{P}_2 .

We now derive an explicit formula for $c_1(n, k)$.

Proposition 14. The following formula holds:

$$c_1(n,k) = \begin{cases} a^{\frac{n-k}{2}} {\binom{n+k}{2}-1}, & \text{if } n-k \text{ is even;} \\ 0, & \text{if } n-k \text{ is odd.} \end{cases}$$

Proof. According to (4), each term in formula (1) equals zero if some i_t is even. Hence, (1) becomes

$$c_1(n,k) = \sum_{2j_1+1+2j_2+1+\dots+2j_k+1=n} a^{j_1} \cdot a^{j_2} \cdots a^{j_k}$$
$$= a^{\frac{n-k}{2}} \sum_{s_1+s_2+\dots+s_k=\frac{n+k}{2}} 1 = a^{\frac{n-k}{2}} \binom{\frac{n+k}{2}-1}{k-1}.$$

Note that the last sum is over positive integers s_1, s_2, \ldots, s_k .

As a consequence of (D), we obtain the following explicit formulas for the Fibonacci and the Jacobsthal numbers:

$$F_{2n} = \sum_{k=1}^{n} \binom{n+k-1}{n-k}, \ F_{2n-1} = \sum_{k=1}^{n} \binom{n+k-2}{n-k},$$
$$J_{2n} = \sum_{k=1}^{n} 2^{n-k} \binom{n+k-1}{n-k}, \ J_{2n-1} = \sum_{k=1}^{n} 2^{n-k} \binom{n+k-2}{n-k}.$$

Now, we derive an explicit formula for $c_2(2n, k)$. Using (E), we obtain

$$c_{2}(2n,k) = \sum_{i=k}^{2n} {\binom{i-1}{k-1}} c_{1}(2n,i) = \sum_{j=\lceil \frac{k}{2} \rceil}^{n} {\binom{2j-1}{k-1}} c_{1}(2n,2j)$$
$$= \sum_{j=\lceil \frac{k}{2} \rceil}^{n} a^{n-j} {\binom{2j-1}{k-1}} {\binom{n+j-1}{n-j}}.$$

Furthermore,

$$c_{2}(2n-1,k) = \sum_{i=k}^{2n-1} {\binom{i-1}{k-1}} c_{1}(2n,i) = \sum_{j=\lceil \frac{k+1}{2}\rceil}^{n} {\binom{2j-2}{k-1}} c_{1}(2n-1,2j-1)$$
$$= \sum_{j=\lceil \frac{k+1}{2}\rceil}^{n} a^{n-j} {\binom{2j-2}{k-1}} {\binom{n+j-2}{n-j}}.$$

In particular, for a = 1, we obtain the following formulas for the Pell numbers:

$$P_{2n} = \sum_{k=1}^{2n} \sum_{j=\lceil \frac{k}{2} \rceil}^{n} \binom{2j-1}{k-1} \binom{n+j-1}{n-j}, \ P_{2n-1} = \sum_{k=1}^{2n-1} \sum_{j=\lceil \frac{k+1}{2} \rceil}^{n} \binom{2j-2}{k-1} \binom{n+j-2}{n-j}.$$

Remark 15. Using (E), we easily obtain an explicit formula for $c_m(n,k)$.

The following arrays in [5] are related to this type: <u>A000129</u>, <u>A001045</u>, <u>A168561</u>, <u>A037027</u>, <u>A054456</u>, <u>A132964</u>, <u>A073370</u>.

4 Type 3

Let a > b > 0 be integers. We define f_0 by

$$f_0(1) = 1, f_0(2) = a, f_0(n+2) = af_0(n+1) - bf_0(n), (n \ge 1).$$

Proposition 16. The value of $f_0(n)$ is the number of words of length n-1 over $\{0, 1, \ldots, a\}$ satisfying \mathcal{P}_3 .

Proof. We let d(n) denote the number of words of length n-1. Since only the empty word has length 0, we have d(0) = 1. Since there are no restrictions on words of length 1, we have d(1) = a. Assume that n > 1. We have $a \cdot d(n-1)$ words beginning with an arbitrary letter. From this number, we must subtract the number of words which begin with subwords 0i, (i = 1, 2, ..., b). Hence, d(n) satisfies the same recurrence as $f_0(n)$ does.

Example 17. 1. If a = 2, b = 1, we have

$$f_0(1) = 1, f_0(2) = 2, f_0(n+2) = 2f_0(n+1) - f_0(n), (n \ge 1)$$

which yields $f_0(n) = n$. Hence, n is the number of binary words of length n-1 avoiding 01, for obvious reasons.

2. If a = 3, b = 1, we have the well-known recurrence for the Fibonacci numbers F_{2n} :

$$f_0(1) = 1, f_0(2) = 3, f_0(n+2) = 3f_0(n+1) - f_0(n), (n \ge 1).$$

Thus, we obtain the following combinatorial interpretation of the bisection of the Fibonacci numbers.

Corollary 18. The number of ternary words of length n - 1 avoiding 01 is F_{2n} .

We now consider the case when a = b + 1.

Corollary 19. If b > 1 and a = b + 1, then

$$f_0(n) = \frac{b^n - 1}{b - 1}.$$

Proof. We denote $\frac{b^n-1}{b-1}$ by $g_0(n)$. We have $g_0(1) = 1, g_0(2) = 1 + b = a$. Furthermore,

$$(b+1) \cdot g_0(n+1) - b \cdot g_0(n) = (b+1) \cdot \frac{b^{n+1} - 1}{b-1} - b \cdot \frac{b^n - 1}{b-1} = \frac{b^{n+2} - 1}{b-1}.$$

By induction, we conclude that $g_0 = f_0$.

In particular, for a = 3, b = 2, we have $f_0(n) = 2^n - 1$, which yields the following result.

Corollary 20. The Mersenne number $2^n - 1$ is the number of ternary words of length n - 1 avoiding 01 and 02.

Using (B), we obtain

 $f_m(1) = 1, f_m(2) = m + a, f_m(n+2) = (a+m)f_m(n+1) - bf_m(n), (n \ge 1).$

This means that f_m counts the same sort of words as f_0 , with m + a instead of a.

Using (F) and (D), we obtain the following combinatorial interpretations of $c_m(n,k)$ and $f_m(n)$.

- **Corollary 21.** 1. The value of $c_m(n,k)$ is the number of words of length n-1 over $\{0,1,\ldots,b-1,b\ldots,m+a-1\}$ having k-1 letters equal m+a-1 which satisfy \mathcal{P}_3 .
 - 2. The value of $f_m(n)$ is the number of words of length n-1 over the alphabet $\{0, 1, \ldots, b-1, b, \ldots, m+a-1\}$ which satisfy \mathcal{P}_3 .

Next, we derive an explicit formula for $c_1(n,k)$. A generating function for the sequence $f_0(1), f_0(2), \ldots$ is $\frac{1}{bx^2 - ax + 1}$. According to [4, Equation (1)], we have

$$\frac{x^k}{(bx^2 - ax + 1)^k} = \sum_{n=k}^{\infty} c_1(n,k) x^k.$$

The numbers $\alpha = \frac{a + \sqrt{a^2 - 4b}}{2b}$ and $\beta = \frac{a - \sqrt{a^2 - 4b}}{2b}$ are the solutions of the equation $bx^2 - ax + 1 = 0$.

Proposition 22. The following equality holds:

$$c_1(n,k) = \frac{1}{b^k} \sum_{j=0}^{n-k} \frac{1}{\alpha^{j+k} \beta^{n-j}} \binom{n-j-1}{k-1} \binom{k+j-1}{k-1}.$$

Proof. We expand $\frac{x^k}{b^k(\alpha-x)^k(\beta-x)^k}$ into powers of x. Since

$$\frac{1}{(\gamma-x)^k} = \sum_{i=0}^{\infty} \binom{k+i-1}{k-1} \frac{x^i}{\gamma^{i+k}},$$

we easily obtain

$$\frac{x^k}{b^k(\alpha - x)^k(\beta - x)^k} = \sum_{i=0}^{\infty} \left[\sum_{j=0}^i \frac{1}{b^k \alpha^{j+k} \beta^{i-j+k}} \binom{k+j-1}{k-1} \binom{k+i-j-1}{k-1} \right] x^{i+k},$$

and the statement follows by replacing i with n - k.

In the case a = b + 1, we have $\alpha = 1$ and $\beta = \frac{1}{b}$. Therefore, the following formula holds:

$$c_1(n,k) = \sum_{i=0}^{n-k} b^{n-k-i} \binom{n-i-1}{k-1} \binom{k+i-1}{k-1}.$$
(6)

Using (1), we obtain the following identity:

Identity 23.

i

$$\sum_{1+i_2+\dots+i_k=n} \left[\prod_{t=1}^k (b^{i_t}-1) \right] = \sum_{i=0}^{n-k} b^{n-k-i} \binom{n-i-1}{k-1} \binom{k+i-1}{k-1},$$

where $i_t, (t = 1, 2, ..., k)$ are positive integers.

Remark 24. Using (D) and (E), we obtain explicit formulas for $f_m(n)$ and $c_m(n,k)$.

The following arrays in [5] are related to this type: <u>A078812</u>, <u>A125662</u>, <u>A207823</u>, <u>A207824</u>, <u>A110441</u>, <u>A116414</u>.

5 Type 4

We solve the problem for binary words first.

Proposition 25. Let $f_0(n)$ be the number of binary words of length n-1 satisfying \mathcal{P}_4 . Then,

$$f_0(1) = 1, f_0(2) = 0,$$

$$f_0(n+2) = f_0(n+1) + f_0(n), (n > 1),$$

$$f_0(n) = F_{n-2}, (n > 1).$$

Proof. We have $f_0(1) = 1$, since only the empty word has length 0. Next, $f_0(2) = 0$, since no words of length 1 satisfy \mathcal{P}_4 . Also, $f_0(3) = 1$, since 10 is the only word of length 2 satisfying \mathcal{P}_4 . Next, $f_0(4) = 1$, since 100 is the only word of length 3 which satisfies \mathcal{P}_4 . Assume that n > 1. Then,

$$f_0(n+4) = f_0(n+2) + f_0(n+1) + \cdots,$$

since the word of length greater than 3 must begin with a subword of the form 10...0. Analogously, we obtain

 $f_0(n+5) = f_0(n+3) + f_0(n+2) + \cdots$

Comparing these two equalities, we get

$$f_0(n+5) = f_0(n+4) + f_0(n+3).$$

The explicit formula follows from the preceding recurrence.

11

Since $f_0(1) = 1$, and so $f_m(1) = 1$, using (D) and (F), we obtain the following combinatorial interpretations of f_m and $c_m(n, k)$.

- **Corollary 26.** 1. The value of $c_m(n,k)$ is the number of words of length n-1 over $\{0,1,\ldots,m+1\}$ having k-1 letters equal m+1 and satisfying \mathcal{P}_4 .
 - 2. The value of $f_m(n)$ is the number of words of length n-1 over the alphabet $\{0, 1, \ldots, m+1\}$ which satisfy \mathcal{P}_4 .

We next derive an explicit formula for $c_1(n,k)$. It is known that $c_1(n,k)$ is the coefficient of x^n in the expansion of $(\sum_{i=1}^{\infty} F_{i-2}x^i)^k$ into powers of x. We consider the following auxiliary initial function:

$$\overline{f}_0(1) = 0, \overline{f}_0(n) = 1, (n > 1).$$

From [2, Proposition 23], we obtain $\overline{f}_1(n) = F_{n-1}$. It is proved in [3, Proposition 13] that

$$\overline{c}_1(n,k) = \binom{n-k-1}{k-1}, \left(k = 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor\right),$$

and $\overline{c}_1(n,k) = 0$, otherwise.

Using (E) implies

$$\overline{c}_2(n,k) = \sum_{i=k}^{\lfloor \frac{n}{2} \rfloor} {\binom{i-1}{k-1} \binom{n-i-1}{i-1}}.$$

Hence,

$$\left(\sum_{i=1}^{\infty} F_{i-1} x^i\right)^k = \sum_{n=k}^{\infty} \overline{c}_2(n,k) x^n.$$
(7)

Let X denote $\sum_{i=1}^{\infty} F_{i-1}x^i$. We expand the expression Y^k , where $Y = \sum_{i=1}^{\infty} F_{i-2}x^i$. Since $F_{-1} = 1$, we have Y = x(1+X), which yields

$$Y^{k} = x^{k} \left(1 + \sum_{i=1}^{k} {k \choose i} X^{i} \right)^{k} = \sum_{n=k}^{\infty} c_{1}(n,k) x^{n}.$$

Using the binomial theorem and (7) yields

$$Y^{k} = x^{k} + \sum_{i=1}^{k} \sum_{j=i}^{\infty} \binom{k}{i} \overline{c}_{2}(j,i) x^{j+k}.$$

For j + k = n, the coefficient of x^n on the right-hand side is $\sum_{i=1}^k {k \choose i} \overline{c}_2(n-k,i)$.

Proposition 27. We have

$$c_{1}(n,n) = 1,$$

$$c_{1}(n,k) = \sum_{t=1}^{k} \sum_{j=t}^{\lfloor \frac{n-k}{2} \rfloor} {k \choose t} {j-1 \choose t-1} {n-k-j-1 \choose j-1}, (n > k).$$

Using (B), we easily obtain

$$f_m(1) = 1, f_m(2) = m,$$

 $f_m(n+2) = (m+1)f_m(n+1) - (m-1)f_m(n).$

We examine two particular cases. In the case m = 1, we obtain

$$f_1(1) = 1, f_1(2) = 1,$$

 $f_1(n+2) = 2f_1(n+1), (n > 1),$

which implies

$$f_1(1) = f_1(2) = 1, f_1(n) = 2^{n-2}, (n > 2)$$

Thus we obtain the following property of powers of 2.

Corollary 28. For $n \ge 2$, the number 2^{n-2} is the number of ternary words of length n-1 which satisfy \mathcal{P}_4 .

As a consequence, the following Euler-type identity holds.

Identity 29. For n > 2, the number of binary words of length n - 2 equals the number of ternary words of length n - 1, in which 0 and 1 appear only in a run of the form 1*i*, where *i* is the run of zeros of length $i \ge 1$.

From Propositions 27 and (D), we obtain the following identity for the Mersenne numbers.

Identity 30.

$$2^{n-2} - 1 = \sum_{k=1}^{n} \sum_{i=1}^{k} \sum_{j=i}^{\lfloor \frac{n-k}{2} \rfloor} \binom{k}{i} \binom{j-1}{i-1} \binom{n-k-j-1}{j-1}, \ (n>2).$$

We now consider the case m = 2. We have

$$f_2(1) = 1, f_2(2) = 2,$$

 $f_2(n+2) = 3f_2(n+1) - f_2(n),$

which is the recurrence for the Fibonacci numbers F_{2n-1} .

Corollary 31. The number F_{2n-1} is the number of quaternary words of length n-1 which satisfy \mathcal{P}_4 .

Calculating values for $c_2(n,k)$, we obtain a peculiar expression for F_{2n-1} .

Identity 32.

$$F_{2n-1} = \sum_{k=1}^{n} \sum_{i=k}^{n} \sum_{t=0}^{i} \sum_{j=t}^{\lfloor \frac{n-i}{2} \rfloor} {i-1 \choose k-1} {i \choose t} {j-1 \choose t-1} {n-i-j-1 \choose j-1}$$

Remark 33. Using (E) and (D), we obtain the explicit formulas for $c_m(n,k)$ and $f_m(n)$.

The following arrays in [5] are related to this type: <u>A105422</u>, <u>A105306</u>, <u>A062110</u>, <u>A188137</u>.

6 Type 5

Again, we consider binary words first.

Proposition 34. The following recurrence holds:

$$f_0(1) = 1, f_0(2) = 0, f_0(3) = 1,$$

 $f_0(n+3) = f_0(n+1) + f_0(n), (n \ge 1).$

We have $f_0(n) = p_{n+2}$, where p_n is the nth Padovan number (<u>A000931</u>).

Proof. It is easy to see that the initial conditions are satisfied. A word of length n+2 begins with either two zeros or three ones and the recurrence follows.

Since we have a recurrence for the Padovan numbers, the second statement is true. \Box

This means that the Padovan number p_{n+2} is the number of binary words of length n-1 in which 0 appears in runs of even length, while 1 appears in runs of lengths divisible by 3. This is equivalent to the fact that the Padovan numbers count the compositions into parts 2 and 3 (see the comment in A000931).

Corollary 35. 1. The function f_m satisfies

$$f_m(1) = 1, f_m(2) = m, f_m(3) = m^2 + 1,$$

$$f_m(n+3) = mf_m(n+2) + f_m(n+1) + f_m(n), (n > 1).$$

- 2. The value $c_m(n,k)$ is the number of words of length n-1 over $\{0, 1, \ldots, m+1\}$ having k-1 letters equal to m+1, and satisfying \mathcal{P}_5 .
- 3. The value $f_m(n)$ is the number of words of length n-1 over $\{0, 1, \ldots, m+1\}$ which satisfy \mathcal{P}_5 .

Proof. Claim 1 follows from (A) easily. Claims 2 and 3 follow from (F) and (D).

We add a short combinatorial proof of 2. Equality $f_m(1) = 1$ means that the empty word satisfies \mathcal{P}_5 . Furthermore, $f_m(2) = m$ means that a word of length 1 may consist of any letter except 0 and 1. Next, $f_m(3) = m^2 + 1$ means that a word of length 2 may consist of pairs from $\{2, 3, \ldots, m+1\}$, which are m^2 in number, plus the word 00. Finally, a word of length n > 2 may begin with any letter from $\{2, 3, \ldots, m+1\}$, or with 00, or with 111. \Box

The case m = 1 in Corollary 35 is the recurrence for Tribonacci numbers.

Corollary 36. The sequence $1, 1, 2, 4, 7, \ldots$ of the Tribonacci numbers is the invert transform of the sequence $1, 0, 1, 1, 1, 2, \ldots$ of the Padovan numbers. Also, the Tribonacci numbers count ternary words satisfying \mathcal{P}_5 .

Finally, we calculate $c_1(n,k)$. We define the arithmetic function \overline{f}_0 such that $\overline{f}_0(2) = \overline{f}_0(3) = 1$, and $\overline{f}_0(n) = 0$ otherwise. It is proved in [3, Propositon 5] that $\overline{c}_1(n,k) = \binom{k}{n-2k}$, and

$$\overline{f}_1(1) = 0, \overline{f}_1(2) = 1, \overline{f}_1(3) = 1,$$

$$\overline{f}_1(n+3) = \overline{f}_0(n+1) + \overline{f}_0(n).$$

This implies that $\overline{f}_1(n) = f_0(n-1), (n > 1)$. The sequence $f_0(1), f_0(2), \ldots$ is thus obtained by inserting 1 at the beginning of the sequence $\overline{f}_1(1), \overline{f}_1(2), \ldots$

Using (E), we obtain

$$\overline{c}_2(n,k) = \sum_{i=k}^n \binom{i-1}{k-1} \cdot \binom{i}{n-2\cdot i},$$

which implies

$$\left(\sum_{i=1}^{\infty} \overline{f}_1(i) x^i\right)^k = \sum_{n=k}^{\infty} \overline{c}_2(n,k) x^n.$$
(8)

To obtain an explicit formula for $c_1(n,k)$, we need to expand the expression X given by $X = \left(\sum_{i=1}^{\infty} f_0(i)x^i\right)^k$ into powers of x. We have

$$X = \left(x + \sum_{i=2}^{\infty} f_0(i)x^i\right)^k = (x + xY)^k,$$

where $Y = \sum_{i=1}^{\infty} \overline{f}_1(i) x^i$. Hence,

$$X = x^k \sum_{i=0}^k \binom{k}{i} Y^i.$$

Applying (8) implies

$$X = \sum_{i=0}^{k} \binom{k}{i} \sum_{j=i}^{\infty} \overline{c}_2(j,i) x^{j+k}.$$

Taking n = j + k, we get the following result.

Proposition 37. The following formulas hold:

$$c_1(n,n) = 1,$$

$$c_1(n,k) = \sum_{i=0}^k \sum_{j=i}^{n-k} \binom{k}{i} \binom{j-1}{i-1} \binom{j}{n-k-2j}, (k < n).$$

In particular, we have the following identity for the Tribonacci numbers.

Identity 38.

$$T_n = 1 + \sum_{k=1}^{n-1} \sum_{i=0}^{k} \sum_{j=i}^{n-k} \binom{k}{i} \binom{j-1}{i-1} \binom{j}{n-k-2j}.$$

Remark 39. Using (E) and (D), we obtain explicit formulas for $c_m(n,k)$ and $f_m(n)$.

The following arrays in Sloane [5] are related to this type: <u>A104578</u>, <u>A104580</u>.

7 Acknowledgment

I would like to thank the referee for a very careful reading of the manuscript and several useful suggestions.

References

- [1] D. Birmajer, J. B. Gil, and M. D. Weiner, On the enumeration of restricted words over a finite alphabet, *J. Integer Sequences* **19** (2016), Article 16.1.3.
- M. Janjić, On linear recurrence equation arising from compositions of positive integers, J. Integer Sequences 18 (2015), Article 15.4.7.
- [3] M. Janjić, Binomial coefficients and enumeration of restricted words, J. Integer Sequences 19 (2016), Article 16.7.3.
- [4] M. Janjić, Some formulas for numbers of restricted words, J. Integer Sequences 20 (2017), Article 17.6.5.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.

2000 Mathematics Subject Classification: Primary 05A10; Secondary 11B39. Keywords: restricted word, linear recurrence equation, Fibonacci number.

(Concerned with sequences: <u>A000129</u>, <u>A000931</u>, <u>A001045</u>, <u>A037027</u>, <u>A054456</u>, <u>A054458</u>, <u>A062110</u>, <u>A073370</u>, <u>A078812</u>, <u>A104578</u>, <u>A104580</u>, <u>A105306</u>, <u>A105422</u>, <u>A110441</u>, <u>A113413</u>, <u>A116412</u>, <u>A116414</u>, <u>A125662</u>, <u>A132964</u>, <u>A154929</u>, <u>A168561</u>, <u>A188137</u>, <u>A207823</u>, and <u>A207824</u>.)

Received July 26 2017; revised versions received November 30 2017; December 24 2017; December 25 2017. Published in *Journal of Integer Sequences*, January 21 2018.

Return to Journal of Integer Sequences home page.