Words and Linear Recurrences

Milan Janjić
Department of Mathematics and Informatics
University of Banja Luka
Banja Luka, 78000
Republic of Srpska, BA
agnus@blic.net

Abstract

In previous papers, we defined functions f_{m} and c_{m} based on an arithmetical function f_{0}, and determined numbers of restricted words over a finite alphabet counted by these functions. In this paper, we examine the reverse problem: for each of the five specific types of restricted words, we find the initial function f_{0} such that f_{m} and c_{m} enumerate these words. We derive explicit formulas for f_{m} and c_{m}.

Fibonacci, Mersenne, Pell, Jacosthal, Tribonacci, and Padovan numbers all appear as values of f_{m}. We derive their new combinatorial interpretations and the explicit formulas.

1 Introduction

We continue the investigation of restricted word enumeration from previous papers Janji, [2, $3,4]$, where functions f_{m} and c_{m} were defined as follows. For an initial arithmetic function f_{0} and $m \geq 1$, the function f_{m} is the $m^{\text {th }}$ invert transform of f_{0}. The function $c_{m}(n, k)$ was defined as

$$
\begin{equation*}
c_{m}(n, k)=\sum_{i_{1}+i_{2}+\cdots+i_{k}=n} f_{m-1}\left(i_{1}\right) \cdot f_{m-1}\left(i_{2}\right) \cdots f_{m-1}\left(i_{k}\right), \tag{1}
\end{equation*}
$$

where the sum is over positive integers $i_{1}, i_{2}, \ldots, i_{k}$.
The functions f_{m} and c_{m} depend only on the initial function f_{0} and are related to the enumeration of weighted compositions. Namely, if the value of $f_{m-1}(i)$ is the weight of i, then the value of $f_{m}(n)$ is the number of weighted compositions of n, and the value of $c_{m}(n, k)$ is the number of weighted compositions of n into k parts.

In $[2,3,4]$ weighted compositions were related to restricted words over a finite alphabet. For a given initial function f_{0}, we investigated restricted words counted by f_{m} and c_{m}. In this paper, we consider the reverse problem. For each of the five types of restricted words, we first find the initial function f_{0} which counts these words. We then derive formulas for f_{m} and c_{m} and give their combinatorial meanings in term of restricted words.

To begin with, we restate the results from papers $[2,3,4]$ that we will use in this work.
(A) $\left[2\right.$, Theorem 6] Let f_{0} be an arithmetic function and let k be a positive integer. Assume that there exist constants $a_{0}(1), a_{0}(2), \ldots, a_{0}(k)$ such that

$$
f_{0}(n+k ; k)=\sum_{i=1}^{k} a_{0}(i) f_{0}(n+k-i ; k),(n \geq 1)
$$

where $f_{0}(1 ; k), f_{0}(2 ; k), \ldots, f_{0}(k ; k)$ are arbitrary numbers. Then, we have

$$
\begin{aligned}
f_{1}(i ; k) & =\sum_{j=1}^{i} f_{0}(j ; k) f_{1}(i-j ; k),(i=1,2, \ldots, k), \\
f_{1}(n+k ; k) & =\sum_{i=1}^{k} a_{1}(i) f_{1}(n+k-i ; k),(n \geq 1),
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1}(1)=a_{0}(1)+f_{0}(1 ; k), \\
& a_{1}(i)=a_{0}(i)+f_{0}(i ; k)-\sum_{j=1}^{i-1} a_{0}(j) f_{0}(i-j ; k),(2 \leq i \leq k) .
\end{aligned}
$$

(B) $[2$, Corollary 9$]$ If $f_{0}(1), f_{0}(2), a_{0}(1), a_{0}(2)$ are arbitrary, and

$$
f_{0}(n+2)=a_{0}(1) f_{0}(n+1)+a_{0}(2) f_{0}(n)
$$

then

$$
\begin{aligned}
f_{m}(1) & =f_{0}(1), f_{m}(2)=m f_{0}(1)^{2}+f_{0}(2), \\
f_{m}(n+2) & =a_{m}(1) f_{m}(n+1)+a_{m}(2) f_{m}(n),
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{m}(1)=a_{0}(1)+m f_{0}(1) \\
& a_{m}(2)=a_{0}(2)-m a_{0}(1) f_{0}(1)+m f_{0}(2)
\end{aligned}
$$

(C) [2, Proposition 23] Assume that $f_{0}(1)=0$ and $f_{0}(i)=1,(i>1)$. Then, we have

$$
\begin{aligned}
f_{m}(1) & =0, f_{m}(2)=1, \\
f_{m}(n+2) & =f_{m}(n+1)+m f_{m}(n)
\end{aligned}
$$

(D) [3, Corollary 2] The following formula holds:

$$
f_{m}(n)=\sum_{k=1}^{n} c_{m}(n, k)
$$

(E) $[4$, Proposition 6] The following formula holds:

$$
c_{m}(n, k)=\sum_{i=k}^{n}(m-1)^{i-k}\binom{i-1}{k-1} c_{1}(n, i),(1 \leq k \leq n) .
$$

(F) [4, Propositions 12] Assume that $f_{0}(1)=1$, and that $m>1$. Assume next that, for $n \geq 1$, we have $f_{m-1}(n)$ words of length $n-1$ over a finite alphabet α. Let x be a letter which is not in α. Then, the value of $c_{m}(n, k)$ is the number of words of length $n-1$ over the alphabet $\alpha \cup\{x\}$ in which x appears exactly $k-1$ times.

We proceed to consider the following five types of restricted words over a finite alphabet:

1. Words over $\{0,1, \ldots, a-1, \ldots\}$ such that no two adjacent letters from $\{0,1, \ldots, a-1\}$ are the same (Property \mathcal{P}_{1}).
2. Words over $\{0,1, \ldots, a-1, \ldots\}$ such that letters $0,1, \ldots, a-1$ avoid a run of odd length (Property \mathcal{P}_{2}).
3. Words over $\{0,1, \ldots, a, \ldots\}$ avoiding subwords of the form $0 i,(i=1, \ldots, b)$ for $b<a$ (Property \mathcal{P}_{3}).
4. Words over $\{0,1, \ldots\}$ such that 0 and 1 appear only as subwords of the form $1 i$, where i is a run of zeros (Property \mathcal{P}_{4}).
5. Words over $\{0,1, \ldots\}$ in which 0 appears only in a run of even length, and 1 appears only in a run of a length divisible by 3 (Property \mathcal{P}_{5}).

We also note that, in all types, the initial function f_{0} is defined by a linear homogenous recurrence.

2 Type 1

In this case, we consider the following linear recurrence:

$$
\begin{aligned}
f_{0}(1) & =1, f_{0}(2)=a \\
f_{0}(n+2) & =(a-1) f_{0}(n+1),(n \geq 1)
\end{aligned}
$$

where $a>0$. It is easy to see that

$$
f_{0}(n)=a(a-1)^{n-2},(n \geq 2)
$$

Remark 1. This formula appears in Birmajer at al. [1, Example 17]. Also, the case $a=1$ is considered in [4, Example 18].

The function f_{0} has the following combinatorial interpretation.
Proposition 2. The value of $f_{0}(n)$ is the number of words of length $n-1$ over $\{0,1, \ldots, a-1\}$ satisfying \mathcal{P}_{1}.

Proof. We have $f_{0}(1)=1$ since only the empty word has length 0 . Also, $f_{0}(2)=a$ since a word of length 1 may consist of an arbitrary letter. To obtain a word of length $n+2$ for $n>0$, we need to insert $a-1$ letters in front of each word of length $n+1$.

As an immediate consequence of (B), we obtain the following result.
Corollary 3. For $m \geq 0$, the following recurrence holds:

$$
\begin{aligned}
f_{m}(1) & =1, f_{m}(2)=m+a \\
f_{m}(n+2) & =(m+a-1) f_{m}(n+1)+m f_{m}(n),(n \geq 1)
\end{aligned}
$$

We now describe words counted by f_{m}.
Proposition 4. The number of words of length $n-1$ over the alphabet $\{0,1, \ldots, a-$ $1, a, \ldots, m+a-1\}$ satisfying \mathcal{P}_{1} is the value of $f_{m}(n)$.

Proof. We have $f_{m}(1)=1$, since only the empty word has length 0 . Also, $f_{m}(2)=m+a$ since a word of length 1 may consist of any letter of the alphabet. Assume that $n>2$. Consider a word of length $n+1$. At the front of such a word, we insert a letter different from the first letter of the word. In this way, we obtain all the words of length $n+2$ beginning with two different letters. The remaining words must begin with two identical letters. Since there are $m f_{m}(n)$ such words, the statement is true.
Remark 5. For $a=2$, the continued fraction $\left[f_{0}(1), f_{0}(2), f_{0}(3), \ldots\right]$ equals $\sqrt{2}$. The sequence $f_{1}(1), f_{1}(2), \ldots, f_{1}(n)$ is the numerator of the nth convergent of $\sqrt{2}$. Also, the value of $f_{1}(n)$ is the number of ternary words of length $n-1$ avoiding 00 and 11 .

Since $f_{m}(1)=1$, we may apply (F) to obtain the following result.

Proposition 6. The number of words of length $n-1$ over $\{0,1, \ldots, a-1, \ldots, m+a-1\}$ in which $k-1$ letters equal $m+a-1$, and which satisfy \mathcal{P}_{1} equals the value of $c_{m}(n, k)$.

We next derive an explicit formula for $c_{1}(n, k)$.
Proposition 7. We have

$$
\begin{aligned}
& c_{1}(n, n)=1, \\
& c_{1}(n, k)=\sum_{i=0}^{k-1} a^{k-i}(a-1)^{n-2 k+i}\binom{k}{i}\binom{n-k-1}{k-i-1},(k<n) .
\end{aligned}
$$

Proof. From (1), we first obtain $c_{1}(n, n)=1$. Assume that $k<n$. Since at most $k-1$ of $i_{t},(t=1,2, \ldots, k)$ may equal 1 , then

$$
\begin{aligned}
c_{1}(n, k) & =\sum_{i=0}^{k-1}\binom{k}{i} \sum_{j_{1}+j_{2}+\cdots+j_{k-i}=n-i} f_{0}\left(j_{1}\right) f_{0}\left(j_{2}\right) \cdots f_{0}\left(j_{k-i}\right) \\
& =\sum_{i=0}^{k-1}\binom{k}{i} a^{k-i}(a-1)^{n-2 k+i} \sum_{j_{1}+j_{2}+\cdots+j_{k-i}=n-i} 1,
\end{aligned}
$$

where the last sum is taken over $j_{t} \geq 2$. Then we have

$$
\begin{equation*}
c_{1}(n, k)=\sum_{i=0}^{k-1} a^{k-i}(a-1)^{n-2 k+i}\binom{k}{i}\binom{n-k-1}{k-i-1} . \tag{2}
\end{equation*}
$$

Remark 8. In the preceding formula, terms in which $i<2 k-n$ equal zero.
We use (E) to derive an explicit formula for $c_{m}(n, k)$. Extracting the term for $i=n$ yields

$$
c_{m}(n, k)=(m-1)^{n-k}\binom{n-1}{k-1}+\sum_{i=k}^{n-1}(m-1)^{i-k}\binom{i-1}{k-1} c_{1}(n, i) .
$$

Using (2), we obtain
$c_{m}(n, k)=(m-1)^{n-k}\binom{n-1}{k-1}+\sum_{i=k}^{n-1} \sum_{j=0}^{i-1}(m-1)^{i-k} a^{i-j}(a-1)^{n-2 i+j}\binom{i}{j}\binom{i-1}{k-1}\binom{n-i-1}{i-j-1}$.
An explicit formula for $f_{m}(n)$ can easily be obtained from (C).
The following arrays in Sloane [5] are related to this type: A154929, A113413, A054458, A116412.

3 Type 2

Let a be a positive integer. Define f_{0} by

$$
\begin{aligned}
f_{0}(1) & =1, f_{0}(2)=0 \\
f_{0}(n+2) & =a f_{0}(n),(n \geq 1)
\end{aligned}
$$

Proposition 9. For $a>0$, the value of $f_{0}(n)$ is the number of words of length $n-1$ over the alphabet $\{0,1, \ldots, a-1\}$ satisfying \mathcal{P}_{2}.

Proof. Let $d(n)$ denote the number of words of length n which we wish to count. Firstly, $d(0)=1$ since only the empty word has length 0 . Next, $d(1)=0$ as there are no runs of length 1. Assume that $n>2$. A word of length n must begin with two identical letters. Hence, there are $a d(n-2)$ such words. We conclude that the following recurrence holds:

$$
\begin{equation*}
d(0)=1, d(1)=0, d(n)=a d(n-2),(n \geq 2) \tag{3}
\end{equation*}
$$

which yields $d(n-1)=f_{0}(n),(n \geq 1)$.
From (3), we easily obtain the following explicit formula for f_{0}.

$$
f_{0}(n)= \begin{cases}0, & \text { if } n=2 t \tag{4}\\ a^{t}, & \text { if } n=2 t+1\end{cases}
$$

Using (B), we obtain the following result.
Corollary 10. For $m \geq 0$, we have

$$
\begin{aligned}
f_{m}(1) & =1, f_{m}(2)=m \\
f_{m}(n+2) & =m f_{m}(n+1)+a f_{m}(n),(n \geq 1) .
\end{aligned}
$$

Proposition 11. The value of $f_{m}(n)$ is the number of words of length $n-1$ over $\{0,1, \ldots, a-$ $1, \ldots, a+m-1\}$ which satisfy \mathcal{P}_{2}.

Proof. We let $d(n)$ denote the number of words of length $n-1$. It is clear that $d(0)=1$ and $d(1)=m$. A word of length $n+1$ may begin with a letter from $\{a, a+1, \ldots, a+m-1\}$. There are $m d(n)$ such words. If a word begins with a letter from $\{0,1, \ldots, a-1\}$, the second letter must be the same. Hence, there are $a d(n-1)$ such words. We conclude that next $d(n)=f_{m}(n+1)$.

Some well-known classes of numbers satisfy the recurrence from Corollary 10. We give the appropriate combinatorial meaning for the Fibonacci, the Pell, and the Jacobhstal numbers.

1. The case $a=1, m=1$ is related to the Fibonacci numbers. The number of binary words of length $n-1$ in which 0 avoids a run of odd length is F_{n}.
2. The case $a=1, m=2$ is related to the Pell numbers P_{n} (A000129). The number of ternary words of length $n-1$ in which 0 avoids runs of odd length is P_{n}.
3. The case $a=2, m=1$ is related to the Jacobsthal numbers J_{n} (A001045). The number of ternary words of length $n-1$ in which 0 and 1 avoid runs of odd length is J_{n}.

From the combinatorial interpretation, we easily derive an explicit formula for $f_{m}(n)$.
Proposition 12. We have

$$
\begin{equation*}
f_{m}(n)=\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} m^{n-2 j-1} a^{j}\binom{n-1-j}{j} \tag{5}
\end{equation*}
$$

Proof. A word of length $n-1$ can contain $2 j$ letters from $\{0,1, \ldots, a-1\}$, so that each letter appears in a run of even length, where $0 \leq j \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. The remaining $n-1-2 j$ places are filled by letters from $\{a, a+1, \ldots, a+m-1\}$ arbitrarily. For a fixed j, we have $a^{j} \cdot\binom{n-j-1}{j}$ subwords from $\{0,1, \ldots, a-1\}$ and $m^{n-1-2 j}$ subwords from $\{a, a+1, \ldots, a+m-1\}$. Summing over j, we obtain (5).

As a consequence, we obtain the following explicit formulas for the Fibonacci, the Pell, and the Jacobsthal numbers:

$$
\begin{gathered}
F_{n}=\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-j-1}{j}, \quad P_{n}=\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} 2^{n-2 j-1}\binom{n-j-1}{j}, \\
J_{n}=\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} 2^{j}\binom{n-j-1}{j} .
\end{gathered}
$$

From (F), we obtain the following result.
Proposition 13. The value of $c_{m}(n, k)$ is the number of words of length $n-1$ over the alphabet $\{0,1, \ldots, a-1, \ldots, a+m-1\}$ in which the letter $a+m-1$ appears $k-1$ times and which satisfy \mathcal{P}_{2}.

We now derive an explicit formula for $c_{1}(n, k)$.
Proposition 14. The following formula holds:

$$
c_{1}(n, k)= \begin{cases}a^{\frac{n-k}{2}}\left(\frac{n+k}{2}-1\right), & \text { if } n-k \text { is even } \\ 0, & \text { if } n-k \text { is odd }\end{cases}
$$

Proof. According to (4), each term in formula (1) equals zero if some i_{t} is even. Hence, (1) becomes

$$
\begin{aligned}
c_{1}(n, k) & =\sum_{2 j_{1}+1+2 j_{2}+1+\cdots+2 j_{k}+1=n} a^{j_{1}} \cdot a^{j_{2}} \cdots a^{j_{k}} \\
& =a^{\frac{n-k}{2}} \sum_{s_{1}+s_{2}+\cdots+s_{k}=\frac{n+k}{2}} 1=a^{\frac{n-k}{2}}\binom{\frac{n+k}{2}-1}{k-1} .
\end{aligned}
$$

Note that the last sum is over positive integers $s_{1}, s_{2}, \ldots, s_{k}$.
As a consequence of (D), we obtain the following explicit formulas for the Fibonacci and the Jacobsthal numbers:

$$
\begin{gathered}
F_{2 n}=\sum_{k=1}^{n}\binom{n+k-1}{n-k}, F_{2 n-1}=\sum_{k=1}^{n}\binom{n+k-2}{n-k}, \\
J_{2 n}=\sum_{k=1}^{n} 2^{n-k}\binom{n+k-1}{n-k}, J_{2 n-1}=\sum_{k=1}^{n} 2^{n-k}\binom{n+k-2}{n-k} .
\end{gathered}
$$

Now, we derive an explicit formula for $c_{2}(2 n, k)$. Using (E), we obtain

$$
\begin{aligned}
c_{2}(2 n, k) & =\sum_{i=k}^{2 n}\binom{i-1}{k-1} c_{1}(2 n, i)=\sum_{j=\left\lceil\frac{k}{2}\right\rceil}^{n}\binom{2 j-1}{k-1} c_{1}(2 n, 2 j) \\
& =\sum_{j=\left\lceil\frac{k}{2}\right\rceil}^{n} a^{n-j}\binom{2 j-1}{k-1}\binom{n+j-1}{n-j} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
c_{2}(2 n-1, k) & =\sum_{i=k}^{2 n-1}\binom{i-1}{k-1} c_{1}(2 n, i)=\sum_{j=\left\lceil\frac{k+1}{2}\right\rceil}^{n}\binom{2 j-2}{k-1} c_{1}(2 n-1,2 j-1) \\
& =\sum_{j=\left\lceil\frac{k+1}{2}\right\rceil}^{n} a^{n-j}\binom{2 j-2}{k-1}\binom{n+j-2}{n-j} .
\end{aligned}
$$

In particular, for $a=1$, we obtain the following formulas for the Pell numbers:

$$
P_{2 n}=\sum_{k=1}^{2 n} \sum_{j=\left\lceil\frac{k}{2}\right\rceil}^{n}\binom{2 j-1}{k-1}\binom{n+j-1}{n-j}, P_{2 n-1}=\sum_{k=1}^{2 n-1} \sum_{j=\left\lceil\frac{k+1}{2}\right\rceil}^{n}\binom{2 j-2}{k-1}\binom{n+j-2}{n-j} .
$$

Remark 15. Using (E), we easily obtain an explicit formula for $c_{m}(n, k)$.
The following arrays in [5] are related to this type: $\underline{\text { A000129, A001045, A168561, A037027, }}$ A054456, A132964, A073370.

4 Type 3

Let $a>b>0$ be integers. We define f_{0} by

$$
f_{0}(1)=1, f_{0}(2)=a, f_{0}(n+2)=a f_{0}(n+1)-b f_{0}(n),(n \geq 1)
$$

Proposition 16. The value of $f_{0}(n)$ is the number of words of length $n-1$ over $\{0,1, \ldots, a\}$ satisfying \mathcal{P}_{3}.

Proof. We let $d(n)$ denote the number of words of length $n-1$. Since only the empty word has length 0 , we have $d(0)=1$. Since there are no restrictions on words of length 1 , we have $d(1)=a$. Assume that $n>1$. We have $a \cdot d(n-1)$ words beginning with an arbitrary letter. From this number, we must subtract the number of words which begin with subwords $0 i,(i=1,2, \ldots, b)$. Hence, $d(n)$ satisfies the same recurrence as $f_{0}(n)$ does.

Example 17. 1. If $a=2, b=1$, we have

$$
f_{0}(1)=1, f_{0}(2)=2, f_{0}(n+2)=2 f_{0}(n+1)-f_{0}(n),(n \geq 1),
$$

which yields $f_{0}(n)=n$. Hence, n is the number of binary words of length $n-1$ avoiding 01 , for obvious reasons.
2. If $a=3, b=1$, we have the well-known recurrence for the Fibonacci numbers $F_{2 n}$:

$$
f_{0}(1)=1, f_{0}(2)=3, f_{0}(n+2)=3 f_{0}(n+1)-f_{0}(n),(n \geq 1) .
$$

Thus, we obtain the following combinatorial interpretation of the bisection of the Fibonacci numbers.

Corollary 18. The number of ternary words of length $n-1$ avoiding 01 is $F_{2 n}$.
We now consider the case when $a=b+1$.
Corollary 19. If $b>1$ and $a=b+1$, then

$$
f_{0}(n)=\frac{b^{n}-1}{b-1} .
$$

Proof. We denote $\frac{b^{n}-1}{b-1}$ by $g_{0}(n)$. We have $g_{0}(1)=1, g_{0}(2)=1+b=a$. Furthermore,

$$
(b+1) \cdot g_{0}(n+1)-b \cdot g_{0}(n)=(b+1) \cdot \frac{b^{n+1}-1}{b-1}-b \cdot \frac{b^{n}-1}{b-1}=\frac{b^{n+2}-1}{b-1} .
$$

By induction, we conclude that $g_{0}=f_{0}$.
In particular, for $a=3, b=2$, we have $f_{0}(n)=2^{n}-1$, which yields the following result.

Corollary 20. The Mersenne number $2^{n}-1$ is the number of ternary words of length $n-1$ avoiding 01 and 02.

Using (B), we obtain

$$
f_{m}(1)=1, f_{m}(2)=m+a, f_{m}(n+2)=(a+m) f_{m}(n+1)-b f_{m}(n),(n \geq 1)
$$

This means that f_{m} counts the same sort of words as f_{0}, with $m+a$ instead of a.
Using (F) and (D), we obtain the following combinatorial interpretations of $c_{m}(n, k)$ and $f_{m}(n)$.

Corollary 21. 1. The value of $c_{m}(n, k)$ is the number of words of length $n-1$ over $\{0,1, \ldots, b-1, b \ldots, m+a-1\}$ having $k-1$ letters equal $m+a-1$ which satisfy \mathcal{P}_{3}.
2. The value of $f_{m}(n)$ is the number of words of length $n-1$ over the alphabet $\{0,1, \ldots, b-$ $1, b \ldots, m+a-1\}$ which satisfy \mathcal{P}_{3}.

Next, we derive an explicit formula for $c_{1}(n, k)$. A generating function for the sequence $f_{0}(1), f_{0}(2), \ldots$ is $\frac{1}{b x^{2}-a x+1}$. According to [4, Equation (1)], we have

$$
\frac{x^{k}}{\left(b x^{2}-a x+1\right)^{k}}=\sum_{n=k}^{\infty} c_{1}(n, k) x^{k} .
$$

The numbers $\alpha=\frac{a+\sqrt{a^{2}-4 b}}{2 b}$ and $\beta=\frac{a-\sqrt{a^{2}-4 b}}{2 b}$ are the solutions of the equation $b x^{2}-a x+1=$ 0 .

Proposition 22. The following equality holds:

$$
c_{1}(n, k)=\frac{1}{b^{k}} \sum_{j=0}^{n-k} \frac{1}{\alpha^{j+k} \beta^{n-j}}\binom{n-j-1}{k-1}\binom{k+j-1}{k-1} .
$$

Proof. We expand $\frac{x^{k}}{b^{k}(\alpha-x)^{k}(\beta-x)^{k}}$ into powers of x. Since

$$
\frac{1}{(\gamma-x)^{k}}=\sum_{i=0}^{\infty}\binom{k+i-1}{k-1} \frac{x^{i}}{\gamma^{i+k}}
$$

we easily obtain

$$
\frac{x^{k}}{b^{k}(\alpha-x)^{k}(\beta-x)^{k}}=\sum_{i=0}^{\infty}\left[\sum_{j=0}^{i} \frac{1}{b^{k} \alpha^{j+k} \beta^{i-j+k}}\binom{k+j-1}{k-1}\binom{k+i-j-1}{k-1}\right] x^{i+k},
$$

and the statement follows by replacing i with $n-k$.

In the case $a=b+1$, we have $\alpha=1$ and $\beta=\frac{1}{b}$. Therefore, the following formula holds:

$$
\begin{equation*}
c_{1}(n, k)=\sum_{i=0}^{n-k} b^{n-k-i}\binom{n-i-1}{k-1}\binom{k+i-1}{k-1} . \tag{6}
\end{equation*}
$$

Using (1), we obtain the following identity:

Identity 23.

$$
\sum_{i_{1}+i_{2}+\cdots+i_{k}=n}\left[\prod_{t=1}^{k}\left(b^{i_{t}}-1\right)\right]=\sum_{i=0}^{n-k} b^{n-k-i}\binom{n-i-1}{k-1}\binom{k+i-1}{k-1}
$$

where $i_{t},(t=1,2, \ldots, k)$ are positive integers.
Remark 24. Using (D) and (E), we obtain explicit formulas for $f_{m}(n)$ and $c_{m}(n, k)$.
The following arrays in [5] are related to this type: $\underline{\text { A078812, }} \underline{\text { A125662, }} \underline{\text { A207823 }}, \underline{\text { A207824 }}$, A110441, A116414.

5 Type 4

We solve the problem for binary words first.
Proposition 25. Let $f_{0}(n)$ be the number of binary words of length $n-1$ satisfying \mathcal{P}_{4}. Then,

$$
\begin{aligned}
f_{0}(1) & =1, f_{0}(2)=0 \\
f_{0}(n+2) & =f_{0}(n+1)+f_{0}(n),(n>1), \\
f_{0}(n) & =F_{n-2},(n>1) .
\end{aligned}
$$

Proof. We have $f_{0}(1)=1$, since only the empty word has length 0 . Next, $f_{0}(2)=0$, since no words of length 1 satisfy \mathcal{P}_{4}. Also, $f_{0}(3)=1$, since 10 is the only word of length 2 satisfying \mathcal{P}_{4}. Next, $f_{0}(4)=1$, since 100 is the only word of length 3 which satisfies \mathcal{P}_{4}. Assume that $n>1$. Then,

$$
f_{0}(n+4)=f_{0}(n+2)+f_{0}(n+1)+\cdots,
$$

since the word of length greater than 3 must begin with a subword of the form $10 \ldots 0$. Analogously, we obtain

$$
f_{0}(n+5)=f_{0}(n+3)+f_{0}(n+2)+\cdots .
$$

Comparing these two equalities, we get

$$
f_{0}(n+5)=f_{0}(n+4)+f_{0}(n+3) .
$$

The explicit formula follows from the preceding recurrence.

Since $f_{0}(1)=1$, and so $f_{m}(1)=1$, using (D) and (F), we obtain the following combinatorial interpretations of f_{m} and $c_{m}(n, k)$.

Corollary 26. 1. The value of $c_{m}(n, k)$ is the number of words of length $n-1$ over $\{0,1, \ldots, m+1\}$ having $k-1$ letters equal $m+1$ and satisfying \mathcal{P}_{4}.
2. The value of $f_{m}(n)$ is the number of words of length $n-1$ over the alphabet $\{0,1, \ldots, m+$ 1\} which satisfy \mathcal{P}_{4}.

We next derive an explicit formula for $c_{1}(n, k)$. It is known that $c_{1}(n, k)$ is the coefficient of x^{n} in the expansion of $\left(\sum_{i=1}^{\infty} F_{i-2} x^{i}\right)^{k}$ into powers of x. We consider the following auxiliary initial function:

$$
\bar{f}_{0}(1)=0, \bar{f}_{0}(n)=1,(n>1)
$$

From [2, Proposition 23], we obtain $\bar{f}_{1}(n)=F_{n-1}$. It is proved in [3, Proposition 13] that

$$
\bar{c}_{1}(n, k)=\binom{n-k-1}{k-1},\left(k=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right)
$$

and $\bar{c}_{1}(n, k)=0$, otherwise.
Using (E) implies

$$
\bar{c}_{2}(n, k)=\sum_{i=k}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{i-1}{k-1}\binom{n-i-1}{i-1}
$$

Hence,

$$
\begin{equation*}
\left(\sum_{i=1}^{\infty} F_{i-1} x^{i}\right)^{k}=\sum_{n=k}^{\infty} \bar{c}_{2}(n, k) x^{n} . \tag{7}
\end{equation*}
$$

Let X denote $\sum_{i=1}^{\infty} F_{i-1} x^{i}$. We expand the expression Y^{k}, where $Y=\sum_{i=1}^{\infty} F_{i-2} x^{i}$. Since $F_{-1}=1$, we have $Y=x(1+X)$, which yields

$$
Y^{k}=x^{k}\left(1+\sum_{i=1}^{k}\binom{k}{i} X^{i}\right)^{k}=\sum_{n=k}^{\infty} c_{1}(n, k) x^{n}
$$

Using the binomial theorem and (7) yields

$$
Y^{k}=x^{k}+\sum_{i=1}^{k} \sum_{j=i}^{\infty}\binom{k}{i} \bar{c}_{2}(j, i) x^{j+k}
$$

For $j+k=n$, the coefficient of x^{n} on the right-hand side is $\sum_{i=1}^{k}\binom{k}{i} \bar{c}_{2}(n-k, i)$.

Proposition 27. We have

$$
\begin{aligned}
& c_{1}(n, n)=1, \\
& c_{1}(n, k)=\sum_{t=1}^{k} \sum_{j=t}^{\left\lfloor\frac{n-k}{2}\right\rfloor}\binom{k}{t}\binom{j-1}{t-1}\binom{n-k-j-1}{j-1},(n>k) .
\end{aligned}
$$

Using (B), we easily obtain

$$
\begin{aligned}
f_{m}(1) & =1, f_{m}(2)=m \\
f_{m}(n+2) & =(m+1) f_{m}(n+1)-(m-1) f_{m}(n)
\end{aligned}
$$

We examine two particular cases. In the case $m=1$, we obtain

$$
\begin{aligned}
f_{1}(1) & =1, f_{1}(2)=1 \\
f_{1}(n+2) & =2 f_{1}(n+1),(n>1)
\end{aligned}
$$

which implies

$$
f_{1}(1)=f_{1}(2)=1, f_{1}(n)=2^{n-2},(n>2)
$$

Thus we obtain the following property of powers of 2 .
Corollary 28. For $n \geq 2$, the number 2^{n-2} is the number of ternary words of length $n-1$ which satisfy \mathcal{P}_{4}.

As a consequence, the following Euler-type identity holds.
Identity 29. For $n>2$, the number of binary words of length $n-2$ equals the number of ternary words of length $n-1$, in which 0 and 1 appear only in a run of the form $1 i$, where i is the run of zeros of length $i \geq 1$.

From Propositions 27 and (D), we obtain the following identity for the Mersenne numbers.

Identity 30.

$$
2^{n-2}-1=\sum_{k=1}^{n} \sum_{i=1}^{k} \sum_{j=i}^{\left\lfloor\frac{n-k}{2}\right\rfloor}\binom{k}{i}\binom{j-1}{i-1}\binom{n-k-j-1}{j-1},(n>2) .
$$

We now consider the case $m=2$. We have

$$
\begin{aligned}
f_{2}(1) & =1, f_{2}(2)=2 \\
f_{2}(n+2) & =3 f_{2}(n+1)-f_{2}(n)
\end{aligned}
$$

which is the recurrence for the Fibonacci numbers $F_{2 n-1}$.

Corollary 31. The number $F_{2 n-1}$ is the number of quaternary words of length $n-1$ which satisfy \mathcal{P}_{4}.

Calculating values for $c_{2}(n, k)$, we obtain a peculiar expression for $F_{2 n-1}$.

Identity 32.

$$
F_{2 n-1}=\sum_{k=1}^{n} \sum_{i=k}^{n} \sum_{t=0}^{i} \sum_{j=t}^{\left\lfloor\frac{n-i}{2}\right\rfloor}\binom{i-1}{k-1}\binom{i}{t}\binom{j-1}{t-1}\binom{n-i-j-1}{j-1}
$$

Remark 33. Using (E) and (D), we obtain the explicit formulas for $c_{m}(n, k)$ and $f_{m}(n)$.
The following arrays in [5] are related to this type: A105422, A105306, A062110, A188137.

6 Type 5

Again, we consider binary words first.
Proposition 34. The following recurrence holds:

$$
\begin{aligned}
f_{0}(1) & =1, f_{0}(2)=0, f_{0}(3)=1 \\
f_{0}(n+3) & =f_{0}(n+1)+f_{0}(n),(n \geq 1)
\end{aligned}
$$

We have $f_{0}(n)=p_{n+2}$, where p_{n} is the nth Padovan number (A000931).
Proof. It is easy to see that the initial conditions are satisfied. A word of length $n+2$ begins with either two zeros or three ones and the recurrence follows.

Since we have a recurrence for the Padovan numbers, the second statement is true.
This means that the Padovan number p_{n+2} is the number of binary words of length $n-1$ in which 0 appears in runs of even length, while 1 appears in runs of lengths divisible by 3 . This is equivalent to the fact that the Padovan numbers count the compositions into parts 2 and 3 (see the comment in A000931).

Corollary 35. 1. The function f_{m} satisfies

$$
\begin{aligned}
f_{m}(1) & =1, f_{m}(2)=m, f_{m}(3)=m^{2}+1, \\
f_{m}(n+3) & =m f_{m}(n+2)+f_{m}(n+1)+f_{m}(n),(n>1) .
\end{aligned}
$$

2. The value $c_{m}(n, k)$ is the number of words of length $n-1$ over $\{0,1, \ldots, m+1\}$ having $k-1$ letters equal to $m+1$, and satisfying \mathcal{P}_{5}.
3. The value $f_{m}(n)$ is the number of words of length $n-1$ over $\{0,1, \ldots, m+1\}$ which satisfy \mathcal{P}_{5}.

Proof. Claim 1 follows from (A) easily. Claims 2 and 3 follow from (F) and (D).
We add a short combinatorial proof of 2 . Equality $f_{m}(1)=1$ means that the empty word satisfies \mathcal{P}_{5}. Furthermore, $f_{m}(2)=m$ means that a word of length 1 may consist of any letter except 0 and 1. Next, $f_{m}(3)=m^{2}+1$ means that a word of length 2 may consist of pairs from $\{2,3, \ldots, m+1\}$, which are m^{2} in number, plus the word 00 . Finally, a word of length $n>2$ may begin with any letter from $\{2,3, \ldots, m+1\}$, or with 00 , or with 111 .

The case $m=1$ in Corollary 35 is the recurrence for Tribonacci numbers.
Corollary 36. The sequence $1,1,2,4,7, \ldots$ of the Tribonacci numbers is the invert transform of the sequence $1,0,1,1,1,2, \ldots$ of the Padovan numbers. Also, the Tribonacci numbers count ternary words satisfying \mathcal{P}_{5}.

Finally, we calculate $c_{1}(n, k)$. We define the arithmetic function \bar{f}_{0} such that $\bar{f}_{0}(2)=$ $\bar{f}_{0}(3)=1$, and $\bar{f}_{0}(n)=0$ otherwise. It is proved in [3, Propositon 5] that $\bar{c}_{1}(n, k)=\binom{k}{n-2 k}$, and

$$
\begin{aligned}
\bar{f}_{1}(1) & =0, \bar{f}_{1}(2)=1, \bar{f}_{1}(3)=1, \\
\bar{f}_{1}(n+3) & =\bar{f}_{0}(n+1)+\bar{f}_{0}(n)
\end{aligned}
$$

This implies that $\bar{f}_{1}(n)=f_{0}(n-1),(n>1)$. The sequence $f_{0}(1), f_{0}(2), \ldots$ is thus obtained by inserting 1 at the beginning of the sequence $\bar{f}_{1}(1), \bar{f}_{1}(2), \ldots$.

Using (E), we obtain

$$
\bar{c}_{2}(n, k)=\sum_{i=k}^{n}\binom{i-1}{k-1} \cdot\binom{i}{n-2 \cdot i},
$$

which implies

$$
\begin{equation*}
\left(\sum_{i=1}^{\infty} \bar{f}_{1}(i) x^{i}\right)^{k}=\sum_{n=k}^{\infty} \bar{c}_{2}(n, k) x^{n} . \tag{8}
\end{equation*}
$$

To obtain an explicit formula for $c_{1}(n, k)$, we need to expand the expression X given by $X=\left(\sum_{i=1}^{\infty} f_{0}(i) x^{i}\right)^{k}$ into powers of x. We have

$$
X=\left(x+\sum_{i=2}^{\infty} f_{0}(i) x^{i}\right)^{k}=(x+x Y)^{k}
$$

where $Y=\sum_{i=1}^{\infty} \bar{f}_{1}(i) x^{i}$. Hence,

$$
X=x^{k} \sum_{i=0}^{k}\binom{k}{i} Y^{i} .
$$

Applying (8) implies

$$
X=\sum_{i=0}^{k}\binom{k}{i} \sum_{j=i}^{\infty} \bar{c}_{2}(j, i) x^{j+k} .
$$

Taking $n=j+k$, we get the following result.
Proposition 37. The following formulas hold:

$$
\begin{aligned}
& c_{1}(n, n)=1, \\
& c_{1}(n, k)=\sum_{i=0}^{k} \sum_{j=i}^{n-k}\binom{k}{i}\binom{j-1}{i-1}\binom{j}{n-k-2 j},(k<n) .
\end{aligned}
$$

In particular, we have the following identity for the Tribonacci numbers.

Identity 38.

$$
T_{n}=1+\sum_{k=1}^{n-1} \sum_{i=0}^{k} \sum_{j=i}^{n-k}\binom{k}{i}\binom{j-1}{i-1}\binom{j}{n-k-2 j}
$$

Remark 39. Using (E) and (D), we obtain explicit formulas for $c_{m}(n, k)$ and $f_{m}(n)$.
The following arrays in Sloane [5] are related to this type: A104578, A104580.

7 Acknowledgment

I would like to thank the referee for a very careful reading of the manuscript and several useful suggestions.

References

[1] D. Birmajer, J. B. Gil, and M. D. Weiner, On the enumeration of restricted words over a finite alphabet, J. Integer Sequences 19 (2016), Article 16.1.3.
[2] M. Janjić, On linear recurrence equation arising from compositions of positive integers, J. Integer Sequences 18 (2015), Article 15.4.7.
[3] M. Janjić, Binomial coefficients and enumeration of restricted words, J. Integer Sequences 19 (2016), Article 16.7.3.
[4] M. Janjić, Some formulas for numbers of restricted words, J. Integer Sequences 20 (2017), Article 17.6.5.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.

2000 Mathematics Subject Classification: Primary 05A10; Secondary 11B39.
Keywords: restricted word, linear recurrence equation, Fibonacci number.
(Concerned with sequences: A000129, A000931, A001045, A037027, A054456, A054458, A062110, A073370, A078812, A104578, A104580, A105306, A105422, A110441, A113413, $\underline{\mathrm{A} 116412}, \underline{\mathrm{~A} 116414}, \underline{\mathrm{~A} 125662}, \underline{\mathrm{~A} 132964}, \underline{\mathrm{~A} 154929}, \underline{\mathrm{~A} 168561}, \underline{\mathrm{~A} 188137}, \underline{\mathrm{~A} 207823}$, and $\underline{\text { A207824. }}$.

Received July 26 2017; revised versions received November 30 2017; December 24 2017; December 25 2017. Published in Journal of Integer Sequences, January 212018.

Return to Journal of Integer Sequences home page.

