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Abstract

In previous papers we examined two functions fm and cm, related to the enumera-

tion of restricted words over a finite alphabet. The definitions of these functions depend

on an initial arithmetic function f0 taking nonnegative integer values. In this paper,

we consider four types of initial functions, the values of which are binomial coefficients.

In particular, we give a new combinatorial interpretation of the figurate numbers.

1 Introduction

In the previous papers [3, 4], for an initial arithmetic function f0 having nonnegative integer
values, we defined two functions fm and cm in the following way: The function fm is the
mth invert transform of f0. The function cm(n, k) is defined by

cm(n, k) =
∑

i1+i2+···+ik=n

fm−1(i1) · fm−1(i2) · · · fm−1(ik). (1)

We investigate the problem of enumeration of some words over a finite alphabet relating to
these functions. In [3, 4], a number of results about restricted words enumeration is obtained.
Since the problem may be reduced to enumeration of weighted compositions, other authors
also obtained results of this kind, for instance [1, 2, 5].

We first restate some results from [3, 4], necessary for the present investigation:
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(A) The following recurrence holds:

cm(n, k) =
n−k+1
∑

i=1

fm−1(i)cm(n− i, k − 1),

In particular, cm(n, 1) = fm−1(n).

(B) We consider the array cm(n, k) as a lower triangular matrix of order n, which we denote
by Cm(n). If Ln is the lower triangular Pascal matrix, then

Cm(n) = C1(n) · Lm−1
n .

In other words, we have

cm(n, k) =
n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)

c1(n, i), (1 ≤ k ≤ n),

(C) We have

fm(n) =
n
∑

k=1

mk−1c1(n, k) =
n
∑

k=1

cm(n, k).

(D) The following formula is true:

∞
∑

n=k

cm(n, k)x
n =

(

∞
∑

i=1

fm−1(i)x
i

)k

.

We consider four types of initial functions, the values of which are binomial coefficients.
In the first case, the values are the binomial coefficients from a row of Pascal matrix. In
the second case, they are from a column, that is, the figurate numbers. In these cases, we
describe the restricted words counted by fm and cm, and derive explicit formulas for these
functions. In the third case, the values of f0 are the central binomial coefficients. In the
fourth case, we take f0(n) =

(

2n−1
n

)

, (n ≥ 1).

Remark 1. In the last two cases, only the functions f1, f2 and c1 will be investigated. Namely,
we could not find a sequence in Sloane [7], generated by some of cm, (m > 1) or fm, (m > 2).

We investigate the following four types of restricted words:

1. Words in which the letters of particular subwords are arranged in increasing order.

2. Words in which particular subwords contain no rises.

3. Words in which each binary subword has an equal number of ones and zeros.
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4. Words such that in each binary subword, the number of zeros exceeds the number of
ones by 1.

We start with an extension of [4, Proposition 10]. Let 1 ≤ m, 1 ≤ k ≤ n be integers.
Assume that fm−1(n) is the number of words wn−1 of length dm−1(n − 1) over the finite
alphabet Ω having a property P . Assume next that the empty word has the property P . It
follows that fm−1(1) = 1 and dm−1(0) = 0, since the empty word is the only word of length
0. Furthermore, let ∆ be a finite alphabet such that Ω ∩∆ = ∅.

We want to count the words of the form

wi1−1, x1, wi2−1, x2, . . . , wik−1−1, xk−1, wik−1, (2)

where i1 + i2 + · · · + ik = n. Next, x1, x2, . . . , xk−1 are words over ∆ having a property Q,
and its number is N(k − 1). From (1), we obtain the following result.

Proposition 2. The value of N(k− 1) · cm(n, k) is the number of words of the form (2) and
of length

∑k

t=1 dm−1(it − 1) + k − 1.

Remark 3. If ∆ consists of one letter, and if dm−1(it − 1) = it − 1, for all t, then Proposition
2 becomes [4, Proposition 10].

Remark 4. Note that, in this case, a letter from ∆ may occupy any position in a word (2).

We next consider the case when empty the word does not satisfy the property P . Hence,
in sequence (2), there is no the empty word. We now count the words of the form

wi1 , x1, wi2 , x2, . . . , wik−1
, xk−1, wik , (3)

where the length of wit is dm−1(it) > 0. We have

Proposition 5. The value of N(k − 1) · cm(n, k) is the number of words of the form (3) of
length equal to the values of

∑k

t=1 dm−1(it) + k − 1, where i1 + i2 + · · ·+ ik = n.
Also, a letter x from ∆ may appear only in the form wixwj, where wi, wj are the words

from Ω satisfying P.

2 Rows of Pascal matrix

For a fixed positive integer a, we want to count the number of words over the finite alphabet
Ω = {0, 1, . . . , a − 1, . . .}, in which letters of each subword over {0, 1, . . . , a − 1} appear in
increasing order. We denote this property by P1. The values of the initial function f0 are
given by the binomial coefficients from the ath row of the Pascal matrix. Namely, if we
define f0 by

f0(n) =

(

a

n− 1

)

, (n = 1, 2, . . .),

then f0(n) is the number of words of length n− 1 over {0, 1, . . . , a− 1} satisfying P1. Since
f0(1) = 1 and the empty word satisfies P1, we can use Proposition 2 to obtain the following
results.
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Proposition 6. Let m,n, k, a be integers such that a,m > 0 and 1 ≤ k ≤ n.

1. Let ∆ be a finite alphabet such that Ω ∩∆ = ∅. Assume that N(k − 1) is the number
of words of length k − 1 over ∆ satisfying a property Q1. Then, N(k − 1) · cm(n, k) is
the number of words of the form (2), and of length n− 1 over Ω ∪∆.

2. The number of words of length n−1 over the alphabet {0, 1, . . . , a−1, a, . . . , a+m−1}
satisfying P1 is equal to fm(n).

We next derive an explicit formula for c1(n, k).

Proposition 7. For integers a > 0 and 1 ≤ k ≤ n, we have

c1(n, k) =

(

ak

n− k

)

.

Proof. We use induction on k. From (A), we obtain c1(n, 1) = f0(n), which means that the
statement holds for k = 1. Suppose that the statement holds for k − 1, (k > 1). Using the
recurrence (A) and the induction hypothesis, we obtain

c1(n, k) =
n−k+1
∑

i=1

(

a

i− 1

)(

ak − a

n− i− k + 1

)

, (4)

and the statement follows by the Vandermonde convolution.

As a consequence of (B) and (C), we obtain the following explicit formulas for cm(n, k)
and fm(n).

Corollary 8. For integers a > 0, m ≥ 1, and 1 ≤ k ≤ n, we have

cm(n, k) =
n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)(

ia

n− i

)

,

fm(n) =
n
∑

i=1

mi−1

(

ia

n− i

)

.

We illustrate our results with several particular cases which give new combinatorial in-
terpretations for some known sequences of integers. The corresponding A-numbers in the
On-line Encylopedia of Integer Sequences [7] are given at the end of each item.

Example 9. 1. For a = 2, the binomial coefficient
(

2k
n−k

)

is equal to the number of ternary
words of length n − 1 having k − 1 letters equal to 2, and the letters of each binary
subword are written in increasing order. A116088 (without the first column)
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2. For a = 2, the value of
∑n

k=1

(

2k
n−k

)

equals the number of ternary words of length n−1,
in which the letters of each binary subword are written in increasing order. A002478
(the bisection of the Narayana’s cows sequence)

3. For a = 3, the binomial coefficient
(

3k
n−k

)

is equal to the number of quaternary words
of length n − 1 having k − 1 letters equal 3, and the letters in each ternary subword
are written in increasing order. A116089

4. For a = 3, the value of
∑n

k=1

(

3k
n−k

)

equals the number of quaternary words in which
the letters in each ternary subword are written in increasing order. A099234

5. For a = 2, k = n− 2, n > 2,∆ = {2, 3}, 2n−3 · (2n2 − 9n + 10) is equal to the number
quaternary words of length n− 1, in which n− 3 letters are either equal to 2 or 3, and
the letters 0 and 1 are written in increasing order. A086950

6. For a = 2, n ≥ 3, k = n− 2, N(k− 1) = k, (n− 2)2 · (2n− 3) is equal to the number of
words of length n − 1 over {0, 1, 2, . . . , n} having n − 2 letters from 2, 3, . . . , n which
are written in increasing order, as are the letters in each binary subword. A015237

7. For a = 2, n ≥ 3, k = n − 2, N(k − 1) = k!, (n − 2)! · (2n − 5) is equal to the number
of words of length n − 1 over {0, 1, 2, . . . , n + 1} having n − 2 letters from 2, 3, . . . , n,
no two of them ere the same, and the letters of each binary subword are written in
increasing order. A175925

3 Columns of Pascal matrix

Let a be a positive integer. We say that a word over {0, 1, 2 . . . , a− 1} that has no rises has
the property P2. We examine the following problem: find the number of words of length
n− 1 over the finite alphabet {0, 1, . . . , a− 1, . . .} such that subwords from {0, 1, . . . , a− 1}
satisfy P2. We show that the values of the initial function are figurate numbers, that is, the
numbers forming columns of the Pascal matrix. We let da(n− 1) denote the number of such
words of length n− 1.

Proposition 10. For positive integers a, n, the following formula holds:

da(n− 1) =

(

n+ a− 2

a− 1

)

. (5)

Proof. We first have da(0) = 1, since the empty word does not have a rise. Assume that
n > 1. We have

da+1(n− 1) = da(n− 1) + da+1(n− 2), (n > 1).

Namely, if a word of length n− 1 over {0, 1, . . . , a− 1, a} having no rises begins with a letter
from {0, 1, . . . , a − 1}, then the letter a can not appear in such a word. Hence, there are
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da(n− 1) such words. There remain the words of length n− 1 beginning with a. Obviously,
there are da+1(n− 2) such words. It follows that

da+1(n− 1)− da+1(n− 2) = da(n− 1),
da+1(n− 2)− da+1(n− 3) = da(n− 2),

...
da+1(1)− da+1(0) = da(1).

Adding the expressions on the left-hand sides, as well as those on the right-hand side, we
obtain the following recurrence:

da+1(n− 1) =
n
∑

i=1

da(i− 1). (6)

To prove (5), we use induction on a. If a = 1, then d(n − 1, 1) = 1, since the alphabet
consists of the empty word. Assume that the statement holds for a ≥ 1. Then, (6) takes the
form

da+1(n− 1) =
n
∑

i=1

(

i+ a− 2

a− 1

)

,

and the statement holds according to the horizontal recurrence for the binomial coefficients.

Therefore, f0(n) =
(

n+a−2
a−1

)

, (n = 1, 2, . . .). Since f0(1) = 1, and the empty word satisfies
P2, we may use Proposition 2 to obtain the following result.

Proposition 11. Let m,n, k, a be integers such that a,m > 0 and 1 ≤ k ≤ n. The following
assertions hold:

1. The number of words of length n− 1 over {0, 1, . . . , a− 1, a, . . . , a+m− 1} that satisfy
P2 is fm(n).

2. Consider the alphabets Ω = {0, 1, . . . , a+m− 1} and ∆ = {a+m, a+m+ 1, . . . , a+
m+p−1}. Assume that N(k−1) is the number of words of length k−1 over ∆ having
a property Q2. Then, the number of words of the form (2), of length n−1, over Ω∪∆,
and satisfying P2, and Q2 is equal to N(k − 1) · cm(n, k).

To derive an explicit formula for c1(n, k), we need the following binomial identity.

Identity 12. Let u ≥ v ≥ w ≥ 1 be integers. Then,

(

u

v

)

=
u−v+w
∑

i=w

(

i− 1

w − 1

)(

u− i

v − w

)

. (7)
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Proof. We know that
(

u

v

)

is the number of binary words of length u having v zeros. We let
i denote the position of the wth zero in a word, counting from left to right. It is clear that
w ≤ i ≤ u − v + w. For a fixed i, the number of words is

(

i−1
w−1

)(

u−i

v−w

)

. Summing over all i,
we obtain (7).

Note 13. The identity (7) generalizes the horizontal recurrence for binomial coefficients,
which we obtain for either w = 1 or w = v.

Proposition 14. Let n, k, a be integers such that a > 0 and 1 ≤ k ≤ n. Then

c1(n, k) =

(

n+ ak − k − 1

ak − 1

)

.

Proof. We use induction on k. From (A), we have

c1(n, 1) = f0(n) =

(

n+ a− 2

a− 1

)

,

which means that the statement is true for k = 1. Using induction, we conclude that the
statement is equivalent to the binomial identity

(

n+ ak − k − 1

ak − 1

)

=
n−k+1
∑

i=1

(

i+ a− 2

a− 1

)(

n+ ak − k − a− i

ak − a− 1

)

.

We prove that this identity follows from Identity 7. Namely, taking w + 1 instead of w and
replacing i− 1 by j yields

(

u

v

)

=
u−v+w
∑

j=w

(

j

w

)(

u− j − 1

v − w − 1

)

.

Then, taking w = a− 1 and replacing j by i+ a− 2 implies

(

u

v

)

=
u−v+1
∑

i=1

(

i+ a− 2

a− 1

)(

u− a− i+ 1

v − a

)

.

Finally, taking u = n+ ak − k − 1, and v = ak − 1, we obtain the desired result.

Using (B) and (C), we obtain the following explicit formulas:

Proposition 15. Let m,n, k, a be integers such that a,m > 0 and 1 ≤ k ≤ n. We have

cm(n, k) =
n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)(

n+ ai− i− 1

ai− 1

)

,

fm(n) =
n
∑

i=1

mi−1

(

n+ ai− i− 1

ai− 1

)

.
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Note that the case a = 2 was considered in [4, Example 31]. We finish this section with
a number of particular results.

Example 16. 1. For a = 3,m = 1,
(

n+2k−1
3k−1

)

is equal to the number of quaternary words
of length n− 1 having k − 1 letters equal to 3, and avoiding 01, 02, and 12. A127893

2. For a = 3,m = 1,
∑n

k=1

(

n+2k−1
3k−1

)

is the number of quaternary words of length n − 1
avoiding 01, 02, 12. A052529

3. For a = 3,m = 2,
∑n

i=1 2
i−1
(

n+2i−1
3i−1

)

equals the number of words of length n − 1 over
{0, 1, 2, 3, 4} avoiding 01, 02, and 12. A200676

4. For a = 4,m = 1, the value of
∑n

k=1

(

n+3k−1
4k−1

)

is equal to the number of words of length
n− 1 over {0, 1, 2, 3, 4} such that subwords from {0, 1, 2, 3} have no rises. A055991

5. For a = 5,m = 1, the value
∑n

k=1

(

n+4k−1
5k−1

)

is equal to the number of words of length
n−1 over {0, 1, 2, 3, 4, 5} such that subwords from {0, 1, 2, 3, 4} have no rises. A079675

4 Central binomial coefficients

In this section, we consider the problem of enumeration of words over a finite alphabet
{0, 1, . . .} such that each binary subword has the same number of zeros and ones. We let P3

denote this property. If we define f0 by f0(n) =
(

2n−2
n−1

)

, then f0(n) is the number of binary
words of length 2n− 2 having equal number of zeros and ones. The empty word satisfies P3.
Also, f0(1) = 1, so we may apply Proposition 2. Hence, we count the words of the form (2).
We have d0(n− 1) = 2n− 2. Take Ω = {0, 1}. Let ∆ = {2, 3, . . .} be a finite alphabet, and
let N(k − 1) be the number of words of length k − 1 over ∆ having a property Q3. Taking
xixi instead of xi, for all xi ∈ ∆, we obtain the following results.

Proposition 17. Let n, k be integers such that 1 ≤ k ≤ n. We have

1. The number of words over Ω ∪∆ of length 2n − 2 having k − 1 subwords of the form
xixi from ∆ satisfying Q3, and all binary subwords satisfy P3 is N(k − 1) · c1(n, k).

2. The number of ternary words of length 2n− 2 in which 2 appears only in runs of even
lengths, and all binary subwords satisfy P3 is equal to f1(n).

We next derive an explicit formula for c1(n, k).

Proposition 18. For integers 1 ≤ k ≤ n, we have

c1(n, n) = 1,

c1(n, k) =
2n−kk(k + 2) · · · (2n− k − 2)

(n− k)!
, (k < n).
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Proof. It is well-known that g(x) = 1√
1−4x

is the generating function for the sequence

{(

2n− 2

n− 1

)

: n = 1, 2, . . .

}

,

of the central binomial coefficients.
According to (D), the formula follows by the use of the Taylor expansion for the binomial

series.

Calculating c1(n, 1), we obtain the following result.

Identity 19. For n ≥ 2 we have

n(n+ 1) · · · (2n− 2) = 2n−1(2n− 3)!!.

Remark 20. This identity is a solution to a problem posed in Amer. Math. Monthly [6].

In the case k = 2, we obtain the following convolution identity for the central binomial
coefficients.

Identity 21. For n ≥ 0, we have

4n =
∑

i1+i2=n+2

(

2i1 − 2

i1 − 1

)(

2i2 − 2

i2 − 1

)

.

Again, we finish the section with a few examples. We assume that all binary subwords
satisfy P3. Note that in the following examples, in all binary subwords the number of zeros
is equal the number of ones.

Example 22. 1. The array c1(n, k) is A054335.

2. The number of ternary words of length 2n − 2 in which 2 appears in a run of even
length only is equal to

∑n

k=1 c1(n, k). A026671

3. For n ≥ 2, 4n−2 is equal to the number of ternary words of length 2n − 2 containing
one subword 22. A000302

4. For n ≥ 3, 2n−3(2n−5)!!
(n−3)!

is equal to the number of ternary words of length 2n−2 containing
two subwords 22. A002457

5. For n ≥ 4, (n − 3)4n−4 is equal to the number of ternary words of length 2n − 2
containing three subwords 22. A002697

6. For n ≥ 3, the number 2(n − 2)n is equal to the number of ternary words of length
2n− 2 containing n− 3 subwords 22. A054000

7. For n ≥ 3, 4c1(n, 3) is equal to the number of quaternary words of length 2n−2 having
2 subwords as either 22 or 33. A002011
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5 Binomial coefficient
(

2n−1
n

)

Our final example is the case when f0(n) =
(

2n−1
n

)

, (n = 1, 2, . . .). Combinatorially, the value
of f0(n) is the number of binary words of length 2n−1 in which the number of ones is greater
by 1 than the number of zeros. We denote this property by P4. The empty word does not
satisfy this condition. Hence, we count words of the form (3).

We define Ω = {0, 1}, and ∆ = {2, 3, . . .}. Let N(k−1) be the number of words of length
k − 1 over ∆ satisfying a property Q4. From the fact that d0(n− 1) = 2n− 1, the following
result follows.

Proposition 23. Let n, k be integers such that 1 ≤ k ≤ n. We have

1. The number of words over Ω∪∆ of length 2n−1, having k−1 letters from ∆ satisfying
Q4, and all binary subwords satisfy P4 is equal to N(k − 1) · c1(n, k).
Also, each letter from ∆ is both preceded and followed by a binary subword satisfying
P4.

2. The value of f1(n) is the number of ternary words of length 2n−1 in which 2 is preceded
and followed by a binary subword satisfying P4.

It is known that

g(x) =
1

2x
√
1− 4x

− 1

2x

is a generating function for the sequence f0(1), f0(2), . . .. To obtain an explicit formula for
c1(n, k), we use the expansion (D).

Using the binomial theorem and the expansion of the binomial series, we obtain

[xg(x)]k =
1

2k

∞
∑

j=0

(

k
∑

i=1

(−1)k−i

(

k

i

)

i(i+ 2) · · · (i+ 2j − 2)

)

2j

j!
xj. (8)

Since k is the least power of x on the left-hand side of the equation, for n < k, we obtain
the following identity.

Identity 24.
k
∑

i=1

(−1)k−i

(

k

i

)

i(i+ 2) · · · (i+ 2n− 2) = 0..

Proposition 25. Let n, k be integers such that 1 ≤ k ≤ n. Then

c1(n, k) =
2n−k

n!

k
∑

i=1

(−1)k−i

(

k

i

)

·
n−1
∏

j=0

(i+ 2j). (9)
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We state several particular cases. For k = 1, we again obtain Identity 19. For k = 2, we
have

Identity 26. For n ≥ 1, we have

4n−1 =

(

2n− 1

n

)

+
∑

i1+i2=n

(

2i1 − 1

i1

)(

2i2 − 1

i2

)

.

Proof.

c2(n, 2) =
2n−2

n!

[

n−1
∏

j=0

(2 + 2j)− 2
n−1
∏

j=0

(1 + 2j)

]

=
2n−2

n!
[(2n)!!− 2(2n− 1)!!]

=
2n−2

n!
· 2n · n!− 2n−1(2n− 1)!!

n!

= 4n−1 − 2n−1 (2n− 1)!!

n!
.

On the other hand, we have

2n−1 (2n− 1)!!

n!
= 2n−1 (n− 1)!(2n− 1)!!

(n− 1)!n!
=

(2n− 2)!!(2n− 1)!!

(n− 1)!n!

=
(2n− 1)!

(n− 1)!n!
=

(

2n− 1

n

)

.

and the proof follows from (1).

Finally, for k = n, we have the following identity.

Identity 27.

n! =
n
∑

i=1

(−1)n−i

(

n

i

)

· i · (i+ 2) · · · (i+ 2n− 2).

Note that in the following examples, in all binary subwords the number of zeros is greater
than the number of ones by one.

Example 28. 1. The array c1(n, k) is A035324.

2. The number of ternary words of length 2n−1 having one letters 2 preceded and followed
by a binary word is equal to c1(n, 2). A008549

3. The number of ternary words of length 2n− 1 having two letters 2, both of which are
preceded and followed by a binary word is equal to c1(n, 3). A045720
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4. The number of ternary words of length 2n− 1 having three letters 2, all of which are
preceded and followed by a binary word is equal to c1(n, 4). A045894

5. The number of ternary words of length 2n − 1 having four letters 2, all of which are
preceded and followed by a binary word is equal to c1(n, 5). A035330

6. The value of
∑n

k=1 c1(n, k) is the number of ternary words of length 2n − 1 in which
each 2 is preceded and followed by a binary word. A049027
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