
23 11

Article 18.9.7
Journal of Integer Sequences, Vol. 21 (2018),2

3

6

1

47

On Enumeration of Dyck Paths

with Colored Hills

Milan Janjić
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Abstract

We continue to investigate the properties of the earlier defined functions fm and
gm, which depend on an initial arithmetic function f0. In this paper, values of f0
are the Fine numbers. We investigate functions fi, gi, (i = 1, 2, 3, 4), and show that
these functions count Dyck paths having hills in different colors. For each function, we
also derive an explicit formula. We also prove several results which mutually connect
these functions. It appears that g2 and g3 are well-known objects called the Catalan
triangles.

We finish with two identities relating different kind of combinatorial objects.

1 Introduction

This paper is a continuation of the investigations of restricted words from the author’s
previous papers, where two quantities fm(n) and gm(n, k) are defined as follows. For an
initial arithmetic function f0, the function fm, (m > 0) is the mth invert transform of f0.
The function gm(n, k), (1 ≤ k ≤ n) is defined in the following way:

gm(n, k) =
∑

i1+i2+···+ik=n

fm−1(i1) · fm−1(i2) · · · fm−1(ik). (1)
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Also, the following equation holds:

fm(n) =
n
∑

k=1

gm(n, k). (2)

We restate [2, Propositions 10] which will be used throughout the paper.

Proposition 1. Let f0 the arithmetic function whose values are nonnegative integers, and

f0(1) = 1. Assume next that, for n ≥ 1, we have fm−1(n) words of length n− 1 over a finite

alphabet α. Let x be a letter which is not in α. Then, the value of gm(n, k) is the number of

words of length n− 1 over the alphabet α ∪ {x} in which x appears exactly k − 1 times.

We denote by Gm(n) the array gm(n, k) viewed as a lower triangular matrix of order n.
It is proved in [2, Proposition 6] that

Gm(n) = G1(n) · Lm−1

n , (3)

where Lm−1 is the lower triangular Pascal matrix of order m− 1. In particular, we have

gm(n, k) =
n
∑

i=k

(

i− 1

k − 1

)

gm−1(n, i). (4)

We also have the following equation:

∞
∑

n=k

gm(n, k)x
n =

(

∞
∑

i=1

fm−1(i)x
i

)k

. (5)

Remark 2. We note that throughout the paper m,n, and k will be integers such that m > 0
and 1 ≤ k ≤ n.

We define the the initial function f0 such that f0(n) = Fn, (n = 1, 2, . . .), where F1,F2, . . .

are the Fine numbers with F1 = 1. Thus, f0(1) = 1, f0(2) = 0, f0(3) = 1, and so on. The
sequence of the Fine numbers is A000957 in OEIS [5].

2 A combinatorial result

All investigation in the paper are based on the following result.

Proposition 3. For m ≥ 1, we have

1. The value of gm(n, k) is the number of Dyck paths of semilength n − 1 having hills in

m colors, of which k − 1 are in color m.

2. The value of fm(n) is the number of Dyck paths of semilength n− 1 having hills in m

colors.

2

https://oeis.org/A000957


Proof. We use induction on m. We have f0(n) = Fn. It is well-known that f0(n) is the
number of Dyck paths of semilength n − 1 with no hills. In particular, f0(1) = 1 since the
empty path has no hills. If we consider the symbol x in Proposition 1 as a hill (of color 1), then
the right side of (1) counts the Dyck paths of semilength (i1−1)+(i2−1)+· · ·+(ik−1)+k−1 =
n− 1 having k − 1 hills. Hence the assertion is true for m = 1.

The second assertion holds by the formula (2).
Assume that for m > 1, the number fm−1(n) equals the number of Dyck paths of

semilength n − 1 having hills in m − 1 colors. Since fm−1(1) = 1 and since the empty
Dyck path has no hills, we may apply (2) to obtain the assertion.

We state particular result for m = 1. The value of f1(n) is the number of Dyck paths of
semilength n− 1, which equals the Catalan number Cn−1. Hence,

f1(n) = Cn−1, (n = 1, 2, . . .).

Since f1(1), f1(2), . . . is the invert transform of f0(1), f0(2), . . ., we obtain the following
relation between Fine and Catalan numbers.

Corollary 4. The sequence C0, C1, . . . of the Catalan numbers is the invert transform of the

sequence F1,F2, . . . of the Fine numbers.

The sequence of the Catalan numbers is A000108 in OEIS [5]. From [2, Identity 12], by
the use of the identity i ·

(

i−1

k−1

)

= k
(

i

k

)

, we obtain the following identity relating the Fine and
the Catalan numbers via the partial Bell polynomials Bn,k.

Identity 5.

(k − 1)!Bn,k(C0, 2! · C1, 3! · C2, . . .) =
n
∑

i=k

(

i

k

)

(i− 1)!Bn,i(F1, 2! · F2, 3! · F3, . . .).

3 Triangle g1(n, k)

According to Theorem 3, we have

Proposition 6. 1. The value of g1(n, k) is the number of Dyck paths of semilength n− 1
having k − 1 hills.

2. The number of Dyck paths of semilngth n− 1 equals f1(n).

The array g1(n, k) is A065600 in OEIS [5].

Remark 7. The number g1(n, k) is also the number of Lukasiewicz paths of length n having k

level steps. Next, it is the number of 321-avoiding permutations of [n] having k fixed points
(see comments of this array in OEIS [5]).
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In Section 7, the following explicit formula will be derived.

g1(n, k) =
k

n
·

n
∑

i=k

(−2)i−k

(

i

k

)(

2n

n− i

)

. (6)

Since f0(n) = g1(n, 1), we have the following explicit formula for the Fine numbers.

Fn =
1

n
·

n
∑

i=1

(−2)i−1 · i ·
(

2n

n− i

)

.

The sequence {g1(n, 2), n = 2, 3, . . .} is A065601, {g1(n, 3), n = 3, 4, . . .} is A294527 in
OEIS [5].

4 Triangle g2(n, k)

The Segner formula for the Catalan numbers means that the sequence C1, C2, . . . of the
Catalan numbers is the invert transform of the sequence C0, C1, . . .. This yields that f2(n) =
Cn, for all n. We thus obtain the following combinatorial interpretation of the Catalan
numbers.

Corollary 8. The Catalan number Cn is the number of Dyck paths of semilength n − 1
having hills in two colors.

Remark 9. Note that this property of Catalan numbers does not appear explicitly in Stan-
ley [6].

We also have the following identity relating the Catalan numbers and the partial Bell
polynomials.

Identity 10.

(k − 1)!Bn,k(C1, 2! · C1, 3! · C3, . . .) =
n
∑

i=k

(

i

k

)

(i− 1)!Bn,i(C0, 2! · C1, 3! · C2, . . .).

We derive an explicit formula for g2(n, k). It is known that

g(x) =
1−

√
1− 4x

2x

is the ordinary generating function for the sequence C0, C1, . . .. It follows from (5) that
∑∞

n=k g2(n, k)x
n is the expansion of [xg(x)]k into powers of x. Hence, we have

∞
∑

n=k

g2(n, k)x
n =

(

1−
√
1− 4x

2

)k

.
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Using the binomial theorem and the expansion of a binomial series, we obtain

∞
∑

n=k

g2(n, k)x
n =

(

1−
√
1− 4x

2

)k

= 2−k

k
∑

i=0

(−1)i
(

k

i

)

(1− 4x)
i

2 .

On the other hand, we have

(1− 4x)
i

2 =
∞
∑

n=0

(−4)n
(

i
2

n

)

xn =
∞
∑

n=0

(−2)n ·
∏n−1

t=0
(i− 2t)

n!
.

We thus obtain

∞
∑

n=k

g2(n, k)x
n =

∞
∑

n=0

(

k
∑

i=0

(−1)i+n2n−k

(

k

i

)∏n−1

t=0
(i− 2t)

n!

)

xn.

Comparing coefficients of the same powers of x, we firstly obtain

g2(n, k) =
2n−k

n!

k
∑

i=0

(−1)i+n

(

k

i

) n−1
∏

t=0

(i− 2t), (n ≥ k).

It is clear that
∏n−1

t=0
(i− 2t) = 0, if n is even.

If i is odd, we denote i = 2j − 1, (1 ≤ j ≤ ⌊k+1

2
⌋). It is easy to see that

n−1
∏

t=0

(2j − 2t− 1) =

j−1
∏

u=0

(2j − 2t− 1) ·
n−1
∏

u=j

(2j − 2t− 1)

= (−1)n−j(2j − 1)!!(2n− 2j − 1)!!.

Finally, we have

Proposition 11. The following formula holds:

g2(n, k) =
2n−k

n!

⌊ k+1

2
⌋

∑

j=1

(−1)j−1

(

k

2j − 1

)

· (2j − 1)!! · (2n− 2j − 1)!!. (7)

In particular, since g2(n, 1) = f1(n) = Cn−1, we obtain the following result.

Corollary 12. For n > 1, we have

Cn−1 =
2n−1

n!
· (2n− 3)!!.

Remark 13. The preceding is the famous Euler formula for the Catalan numbers.
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Remark 14. We note that array g2(n, k) is the mirror of the Catalan triangle. It appears as
A033184 in OEIS [5]. The Catalan triangle is A009766.

We now prove that g2(n, k) satisfies a simple recurrence relation.

Proposition 15. The following recurrence holds:

g2(n+ 1, k + 1) = g2(n+ 1, k + 2) + g2(n, k). (8)

Proof. According to (1), we have

g2(n+ 1, k + 1) =
∑

i1+i2+···+ik+1=n+1

Ci1−1 · Ci2−1 · · ·Cik+1−1, (9)

where the sum is taken over positive it.
Firstly, we extract the terms obtained for ik+1 = 1. Since Cik+1−1 = C0 = 1, we obtain

g2(n, k) =
∑

i1+i2+···ik=n

Ci1−1 · Ci2−1 · · ·Cik−1,

which is the second term on the right-hand side in formula (8).
It remains to calculate the sum on the right-hand side of Equation (8), when ik+1 > 1.

We consider the equation

g2(n+ 1, k + 2) =
∑

j1+j2+···+jk+1+jk+2=n+1

Cj1−1 · Cj2−1 · · ·Cjk+1−1 · Cjk+2−1.

Denote jk+1+jk+2 = ik+1 > 1. This equation is fulfilled for the following pairs of (jk+1, jk+2):

{(1, ik+1 − 1), (2, ik+1 − 2), . . . , (ik+1 − 1, 1)}.

. We rearrange terms in the sum as follows:

g2(n+ 1, k + 2) =
∑

j1+···+jk+ik+1=n+1

Cj1−1Cj2−1 · · ·Cjk−1 ·
ik+1−1
∑

i=1

Ci−1Cik+1−1−i.

Segner formula implies
∑ik+1−1

i=1 Ci−1Cik+2−1−i = Cik+1−1. We thus obtain

g2(n+ 1, k + 2) =
∑

j1+···+jk+ik+1=n+1

Cj1−1Cj2−1 · · ·Cjk−1 · Cik+1−1,

for ik+1 > 1, which is the first term in Equation (8).

We now prove that the following recurrence holds:
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Proposition 16. For n, k > 1, we have

g2(n, k) =
n−2
∑

i=k−1

g2(n− 1, i) + 1. (10)

Proof. From Proposition 15, we obtain the following sequence of equations.

g2(n+ 1, 3) = g2(n+ 1, 2)− g2(n, 1),

g2(n+ 1, 4) = g2(n+ 1, 3)− g2(n, 2),

...

g2(n+ 1, k + 2) = g2(n+ 1, k + 1)− g2(n, k).

Adding terms on the left-hand sides of these equations, and those on the right-hand sides,
we obtain

k
∑

i=1

g2(n, i) = g2(n+ 1, 2)− g2(n+ 1, k + 2).

Replacing n by n− 1, and k by k − 2, (k > 2), we obtain

g2(n, 2) = g2(n, k) +
k−2
∑

i=1

g2(n− 1, i).

In particular, for k = n, this equation becomes

g2(n, 2) =
n−2
∑

i=1

g2(n− 1, i) + 1,

and the formula follows.

This result gives an interesting property of the Catalan triangle which is analogous to
the horizontal recurrence of the binomial coefficients.

Corollary 17. The sum of the first k terms in the nth row of the Catalan triangle equals

the kth term in (n+ 1)th row.

We now derive a simpler explicit formula for g2(n, k).

Proposition 18. The following formula holds: g2(n, n) = 1, and

g2(n, k) =
k
∏n−k−1

i=1
(n+ i)

(n− k)!
. (11)

Equivalently,

g2(n, k) =
k

n− k

(

2n− k − 1

n

)

, (n > k). (12)
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Proof. Using the recurrence (8), we have

g2(n+ 1, k + 1)− g2(n, k) =
(n+ 2) · · · (2n− k − 1) · [(k + 1)(2n− k)− k(n+ 1)]

(n− k)!

=
(n+ 2) · · · (2n− k − 1) · (k + 2)(n− k)

(n− k)!

=
(k + 2)(n+ 2) · · · (2n− k − 1)

(n− k − 1)!
= g2(n+ 1, k + 2).

and the assertion follows from Proposition 15.

From (10), we obtain the following identity:

Identity 19. For n > k, we have

k

n− k
·
(

2n− k − 1

n

)

=
n−2
∑

i=k−1

i

n− i− 1

(

2n− 3− i

n− 1

)

+ 1.

We denote by A(n, k) the mirror triangle of g2(n, k). Hence, A(n, k) = g2(n, n− k + 1).

Proposition 20. The triangle A(n, k) satisfies the following conditions:

1. A(n, 1) = 1, A(n, n) = Cn−1.

2. A(n+ 1, k + 1) = A(n+ 1, k) + A(n, k + 1),

3. A(n, n− 1) = Cn−1.

Proof. 1. We have A(n+1, 1) = g2(n+1, n+1) = f0(1)
n+1 = 1. Also, A(n, n) = g2(n, 1) =

Cn−1.

2. We have A(n+ 1, k + 1) = g2(n+ 1, n− k + 1). Using Proposition 15 yields

A(n+ 1, k + 1) = g2(n+ 1, n− k + 2) + g2(n, n− k) = A(n+ 1, k) + A(n, k + 1).

3. We have A(n, n−1) = g2(n, 2). According to (1), we have g2(n, 2) =
∑n−2

i=1
Ci−1Cn−i−2.

Applying the Segner formula yields A(n, n− 1) = Cn−1.

Remark 21. We note that the triangle A(n, k) is the Catalan triangle, considered in Koshy[3,
Chapter 15]. The chapter is devoted to a family of binary words.

Comparing result which is obtained in this book and our result, we obtain

Proposition 22. The following sets has the same number of elements:
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1. The number of Dyck paths of semilength n−1 having hills in two colors, of which n−k

hills in color 2.

2. The number of binary words of length n+ k− 2 having n− 1 ones and k− 1 zeros and

no initial segment has more zeros than ones.

We also add a short bijective proof.

Proof. In a Dyck path of semilength n− 1 with n− k hills of color 2, we replace each hill of
color 2 by 1. Between two hills of color 2 are the standard Dyck paths, which we interpret
as binary words having the same number of zeros and ones, and no initial segment having
more zeros that ones. In this way we obtain a binary words having n − 1 ones and k − 1
zeros, and no initial segment has more zeros then ones. It is clear that this correspondence
is injective.

Conversely, if w is a binary word from 2. We start from the last zero in w. Each ones
following this zero we replace by a hill of color 2. Scanning from this zero to the left,
we find the smallest interval having the same number of zeros and ones. We replace this
interval by the Dyck path which semilength equals the number of zeros. Then we apply the
same procedure on the remaining binary word. When we find the Dyck path designated
by the foremost zero to the left, we replace the remaining ones by a hill of color 2. This
correspondence is also injective.

5 Triangle g3(n, k)

From Theorem 3, we obtain

Proposition 23. 1. The value of g3(n, k) is the number of Dyck paths of semilength n−1
with hills in three colors, of which k − 1 hills in color 3.

2. The number of Dyck paths of semilngth n− 1 having hills in three colors equals f3(n).

We derive an explicit formula for g3(n, k).

Proposition 24. We have

g3(n, k) =
k

n

(

2n

n− k

)

. (13)

Proof. According to (2), we have

g3(n, k) =
n
∑

i=k

(

i− 1

k − 1

)

g2(n, i).

Using (11) yields

g3(n, k) =
n
∑

i=k

(

i− 1

k − 1

)

i · (n+ 1) · (n+ 2) · · · (2n− i− 1)

(n− i)!
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Using the identity i ·
(

i−1

k−1

)

= k
(

i

k

)

implies

g3(n, k) =
k

n
·

n
∑

i=k

(

i

k

)

n(n+ 1) · (n+ 2) · · · (2n− i− 1)

(n− i)!
,

that is

g3(n, k) =
k

n
·

n
∑

i=k

(

i

k

)(

2n− i− 1

n− 1

)

.

Hence, our statement is equivalent to the following binomial identity.

Identity 25. We have
(

2n

n+ k

)

=
n
∑

i=k

(

i

k

)(

2n− i− 1

n− 1

)

. (14)

Proof. We prove the identity combinatorially. We count subsets of n+ k elements of the set
width 2n element after the position of the (k + 1)th element. If i + 1 is the position of the
k + 1th element of the set then we have

(

i

k

)

elements before and
(

2n−i−1

n−1

)

after this element.
Since k ≤ i ≤ n the identity is true.

Remark 26. The Catalan triangle g3(n, k) is defined by Shapiro [4]. It is the array A039598
in OEIS [5].

Taking into account its original combinatorial interpretation, we obtain

Corollary 27. The following sets has the same number of elements:

1. The number of nonintersecting lattice paths of length n in the first quadrant at the

distance k.

2. The number of Dyck paths of semilength n − 1 having hills in three colors, of which

k − 1 hills are of color 3.

Proof. Consider a pair of paths of length n − 1 at the distance k. We may extend these
paths to the pair of nonintersecting paths of length n in the following ways:

1. Add either the vertical or horizontal step to both paths. We thus obtain a path of
length n and of the distance k.

2. Add the vertical step to the path above and the horizontal step to the path below, we
obtain the pair of paths of length n and of distance is k + 1.

3. Add the horizontal step to the path above and the vertical step to the path below, we
obtain the pair of paths of length n and of distance is k − 1.
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Hence, if we denote by B(n, k) the number of nonintersecting paths of length n and the
distance k, we have the following recurrence:

B(n, k) = B(n− 1, k + 1) + 2B(n− 1, k) +B(n− 1, k − 1).

It is easy to check that g3(n, k) satisfies this recurrence.

Remark 28. This array is also considered in Koshy[3, Chapter 14]. We note that no connec-
tion between triangles from Chapters 14 and 15 is mentioned in this book. We see that they
are closely related.

We derive one more relation between g2(n, k) and g3(n, k).

Proposition 29. We have

g2(n, k) =
k−1
∑

i=0

(

k

i

)

g3(n− k, k − i). (15)

Proof. Using [2, Proposition 2], we obtain

g2(n, k) =
∑

i1+i2+···+ik=n

Ci1−1 · Ci2−1 · · ·Cik−1,

where the sum is taken over positive it, (t = 1, . . . , k). Replacing it − 1 = jt, (t = 1, 2, . . . , k)
we obtain

g2(n, k) =
∑

j1+j2+···+jk=n−k

Cj1 · Cj2 · · ·Cjk ,

where the sum is taken over nonnegative jt. Note that in the case k = n we have g2(n, n) = 1.
We consider the case k < n. Assume that there are i, (0 ≤ i ≤ k − 1) of jt which are equal
0. Then

g2(n, k) =
k−1
∑

i=0

(

k

i

)

·
∑

s1+s2+···+sk−i=n−k

Cs1 · Cs2 · · ·Csk−i
,

where st > 0, (t = 1, 2, . . . , k − i) and k − i ≥ n− k. According Equation (1), we have

∑

s1+s2+···+sk−i=n−k

Cs1 · Cs2 · · ·Csk−i
= g3(n− k, k − i),

which proves the statement.

We next derive an explicit formula for f3(n).

Proposition 30. The following formula holds:

f3(n) =

(

2n− 1

n

)

.
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Proof. We have

f3(n) =
1

n

n
∑

k=1

k

(

2n

n− k

)

=
1

n

∑

k=0

(n− k)

(

2n

k

)

=
n
∑

k=0

(

2n

k

)

−
n
∑

k=1

k

n
· 2n
k

·
(

2n− 1

k − 1

)

= 1 +
n
∑

k=1

((

2n− 1

k

)

+

(

2n− 1

k − 1

))

− 2
n
∑

k=1

(

2n− 1

k − 1

)

=
n
∑

k=0

(

2n− 1

k

)

−
n−1
∑

k=0

(

2n− 1

k

)

=

(

2n− 1

n

)

.

The sequence f3(n), n = 1, 2, . . . is A001700 in OEIS [5].

Remark 31. The preceding proof means that results in this paper depend only on the fun-
damental properties of Fine and Catalan numbers and some of our earlier results.

6 Triangle g4(n, k)

Taking into account Proposition 30, we conclude that this case is considered in [2, Section
4], where the following results are obtained.

Proposition 32. 1. The following equation holds:

g4(n, k) =
2n−k

n!

k
∑

i=1

(−1)k−i

(

k

i

)

·
n−1
∏

j=0

(i+ 2j). (16)

2. The value of g4(n, k) is the number of ternary words of length 2n − 1, having k − 1
letters equal to 2, and in all binary subwords the number of ones is greater by 1 than

the number of zeros. Also, each 2 is both preceded and followed by a binary subword.

3. The value of f4(n) is the number of ternary words of length 2n−1 in which 2 is preceded

and followed by a binary subword in which the number of ones is greater by 1 than the

number of zeros.

The array g4(n, k) is A049027, f4(n) is A035324.
As a consequence, we have the following bijections:
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Corollary 33. The following sets have the same number of elements.

1. The set of Dyck paths of semilength n − 1 having hills in four colors, of which k − 1
are in color 4.

2. The set of ternary words of length 2n − 1, having k − 1 letters equal to 2, and in all

binary subwords the number of ones is greater by 1 than the number of zeros. Also,

each 2 is both preceded and followed by a binary subword.

Corollary 34. The following sets have the same number of elements.

1. The set of Dyck paths of semilength n− 1 having hills in four color.

2. The set of ternary words of length 2n−1, such that in all binary subwords the number of

ones is greater by 1 than the number of zeros, and each 2 is both preceded and followed

by a binary subword.

7 Some explicit formulas and identities

From (3) and the fact that, for each integer p, we have

Lp
n =

(

pi−j

(

i− 1

j − 1

))

n×n

,

a mutually connection among different gm(n, k) is easy to obtain.
Up to now, we have no an explicit formulas for g1(n, k).
In matrix form, we have G1(n) = G3(n)L

−2
n . Hence, the following equation holds:

g1(n, k) =
k

n
·

n
∑

i=k

(−2)i−k

(

i

k

)(

2n

n− i

)

. (17)

Since g1(n, 1) = Fn, we have the following explicit formula for the Fine numbers:

Identity 35.

Fn =
1

n
·

n
∑

i=1

(−2)i−1 · i ·
(

2n

n− i

)

.

We next derive an explicit formula for the central binomial coefficients.

Identity 36. We have
(

2n− 2

n− 1

)

=
n
∑

i=1

(−1)i−1i ·
(

2n

n− i

)

.
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Proof. We have

f1(n) =
n
∑

k=1

g1(n, k) =
1

n

n
∑

k=1

n
∑

i=k

k(−2)i−k

(

i

k

)(

2n

n− i

)

.

Changing the order of summation yields

f1(n) =
1

n

n
∑

i=1

(

2n

n− i

)

·
i
∑

k=1

k(−2)i−k

(

i

k

)

.

Next, we have

i
∑

k=1

k(−2)i−k

(

i

k

)

= i

i−1
∑

t=0

(−2)t
(

i− 1

t

)

= (−1)i−1i.

Next, we write g2 as an alternating sums.
Since G2(n) = G3(n) · L−1

n , we have

g2(n, k) =
k

n
·

n
∑

i=k

(−1)i−k

(

i

k

)

·
(

2n

n− i

)

. (18)

Comparing this equation and (12), we obtain the following identity:

Identity 37. For k > 0, we have

(

2n− k − 1

n

)

=
n− k

k

n
∑

i=k

(−1)i−k

(

i

k

)(

2n

n− i

)

.

Also, since g2(n, 1) = Cn−1, we obtain the following formula for the Catalan numbers.

Identity 38.

Cn−1 =
1

n

n
∑

i=1

(−1)i−1i ·
(

2n

n− i

)

.

We finish with two identities. The first one consists of eight items: a sum, a product,
two integers, a rising factorial, a falling factorial, and two binomial coefficients.

Identity 39.

k ·
n−k−1
∏

i=1

(n+ i) = (n− k − 1)! ·
k−1
∑

i=0

(k − i)

(

k

i

)(

2n− 2k

n+ 2k − i

)

.
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The identity is derived from Equation (15).
From the equality G4(n) = G3(n)Ln, we obtain the identity consisting of ten items: an

integer, two sums, a power of −1, a power of 2, a falling factorial, a rising factorial, and
three binomial coefficients.

Identity 40.

n
∑

i=k

i

(

i− 1

k − 1

)(

2n

n− i

)

=
2n−k

(n− 1)!

k
∑

i=1

(−1)k+i

(

k

i

)

i(i+ 2) · · · (i+ 2n− 2).

Remark 41. Note that the same method may be applied for enumeration of different kind of
paths in which exists a part analogous to the hill in Dyck paths. This is, for instance, the
case of Schroeder and Motzkin paths.
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