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Abstract

Given a finite set of integer vectors, S, we consider the set of all lattice walks
comprised as ordered sequences of steps whose directions come from S. We further
restrict our attention to walks of minimal length, meaning they cannot be shortened
through some linear combination of allowable steps from S. We consider the problem
of counting the number of such minimal walks terminating at a fixed point (a, b) for
various choices of the set S.

1 Introduction

Let S be a finite set of vectors in Z
2. An S-walk is an ordered sequence s = s1, s2, . . . , sk of

steps with si ∈ S for all i. We may visualize an S-walk as a path beginning at the origin
and terminating at the point whose coordinates are given by s1 + s2 + · · ·+ sk. We say the
the number of steps in a path is its length, and we refer to the elements of S as allowable
steps.

The problem of enumerating the walks terminating at a fixed point (a, b) with a, b ∈ N is
classical in combinatorics. For example, when S = {(1, 0), (0, 1)}, the number of such walks is
(

a+b

a

)

. When S is an arbitrary set of allowable vectors, there may be several paths of different
lengths that terminate at a fixed point (a, b). For example, if S = {(1, 0), (0, 1), (1, 1)}, then

1

mailto:evoniukj@seattleu.edu
mailto:klees@seattleu.edu
mailto:magnanv@seattleu.edu


the path s = (1, 0), (1, 0), (0, 1), (1, 1), (0, 1), (1, 0), (1, 1) is a path of length 7 terminating at
the point (5, 4), and s′ = (1, 1), (1, 0), (1, 1), (1, 1), (1, 1) is a path of length 5 terminating at
the point (5, 4). These walks are illustrated in Figure 1.

Figure 1: A non-minimal S-walk (left) and a minimal S-walk (right) terminating at the
point (a, b) = (5, 4) when S = {(1, 0), (0, 1), (1, 1)}.

Our goal in this paper is to enumerate the minimal S-walks to a point (a, b) — among
all S-walks terminating at (a, b), we consider only those of minimal length. We will write
d(a, b;S) to denote the S-distance of the point (a, b) from the origin, which counts the number
of steps in a minimal S-walk to (a, b). In the previous example, any S-walk terminating at
(5, 4) must utilize at least 5 steps among {(1, 0), (1, 1)}, so d(5, 4;S) ≥ 5. Therefore, s′ is
minimal because it is an S-walk of length 5. In contrast, s is not minimal. In general, we
write W(a, b;S) to denote the set of minimal S-walks terminating at the point (a, b). Our
goal in this paper is to examine this problem in several different contexts, exhibiting either
explicit closed formulas or generating functions to determine |W(a, b;S)|.

The rest of the paper is structured as follows. In Section 2, we warm up with the case
that S = {(1, 0), (0, 1), (1, 1)}. In Section 3, we consider the sets

Qn := {(1, 0), (0, 1)} ∪ {(i, n− i) : 0 ≤ i ≤ n},

consisting of the standard basis vectors along with all nonnegative integer vectors whose
coordinate sum equals n for n ≥ 2. We include the standard basis vectors to ensure that
every point (a, b) with a, b ∈ N can be reached by a Qn-walk. Next, we turn our attention to
the case that S = {(1, 0), (0, 1), (u, v)} for arbitrary u, v ∈ N in Section 4. In Section 5, we
explore the case that S = {(1, 0), (0, 1), (2, 1), (1, 2)}. We conclude in Section 6 with some
open problems.

2 Minimal walks for S = {(1, 0), (0, 1), (1, 1)}

We begin by examining the set of allowable steps S = {(1, 0), (0, 1), (1, 1)}. In this and
subsequent sections, we have implemented a simple greedy search in Sage [3] to determine
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the number of minimal S-walks terminating at a given point (a, b) for small values of a and
b. This data is depicted visually in Figure 2. For example, the circled 20 indicates that there
are 20 minimal S-paths terminating at the point (6, 3).
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Figure 2: The number of minimal S-walks terminating at each point (a, b) for 0 ≤ a, b ≤ 10
and S = {(1, 0), (0, 1), (1, 1)}.

In that image, we notice that there appear to be two copies of Pascal’s triangle (OEIS
sequence A007318) glued together along the line y = x. Our first result proves that this
pattern continues.

Theorem 1. Let S = {(1, 0), (0, 1), (1, 1)} and let (a, b) be a point with a, b ∈ N. Then
|W(a, b;S)| =

(

max(a,b)
min(a,b)

)

.

Proof. By symmetry, we may assume without loss of generality that a ≥ b. Note that
d(a, b;S) ≥ a since an allowable step in S increases the x-coordinate by at most 1. Con-
versely, d(a, b;S) ≤ a since (a, b) can be reached by taking b steps in the (1, 1)-direction,
followed by a− b steps in the (1, 0)-direction. Thus d(a, b;S) = a.

In particular, it follows that every step in a minimal S-walk terminating at (a, b) must
increase the x-coordinate, and hence such a walk does not use any (0, 1) steps. Since a
(1, 1) step is the only remaining step that can increase the y-coordinate, a minimal S-walk
is comprised of a total steps, b of which are (1, 1) steps and the remaining a− b of which are
(1, 0) steps. There are

(

a

b

)

such paths.
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3 Minimal walks for steps of fixed length

Our next goal is to consider the set of allowable steps

Qn := {(1, 0), (0, 1)} ∪ {(i, n− i) : 0 ≤ i ≤ n},

for n ≥ 2. For example, Q3 = {(1, 0), (0, 1), (0, 3), (1, 2), (2, 1), (3, 0)}, and Figure 3 shows
data for the number of minimal Q3-walks. This array did not previously appear in OEIS,
but we have added it as sequence A292435.

1

1

1

1

2

3

1

3

6

1

4

1

2

1

4

9

2

9

24

3

16

50

1

1

4

12

3

15

48

6

36

130

10

1

4

12

4

21

72

10

64

250

20

150

2

9

3

21

84

12

88

380

31

255

1215

3

2

15

72

12

96

460

40

355

1830

101

1

9

48

10

88

460

44

420

2325

135

1416

3

24

6

64

380

40

420

2520

155

1740

11046

6

3

36

250

31

355

2325

155

1860

12600

546

1

16

130

20

255

1830

135

1740

12600

580

7882

4

50

10

150

1215

101

1416

11046

546

7882

63056

a
b

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Figure 3: The number of minimal Q3-walks terminating at each point (a, b) for 0 ≤ a, b ≤ 10.

In Figure 3, we observe an interesting phenomenon. If we fix a value m = 3q + r with
0 ≤ r < 3, and consider all points (a, b) with a + b = m, then the number of minimal
Q3-walks terminating at (a, b) is a multiple of

(

q+r

r

)

. For example, when m = 7 = 3 · 2 + 1,

the entries along the diagonal (3, 9, 15, 21, 21, 15, 9, 3) are all divisible by
(

2+1
1

)

= 3.
In order to justify this phenomenon in general, we introduce an additional piece of ter-

minology. For Qn, we will call the steps (1, 0) and (0, 1) short steps and the remaining steps
of the form (i, n− i) long steps.

Lemma 2. Let a, b ∈ N and write a + b = n · q + r with 0 ≤ r < n. Then any minimal
Qn-walk terminating at (a, b) uses exactly q long steps and r short steps. Consequently,
d(a, b;Qn) = q + r.
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Proof. Let s be a (not necessarily minimal) Qn-walk terminating at (a, b), and suppose s

uses q′ long steps and r′ short steps. If r′ ≥ n, then we can replace n of those short steps
with one long step, which would result in shorter path. Here, it is worth noting that we do
not require these n short steps to appear consecutively in s. We can simply remove them
from s and append their vector sum, which is a long step, to the end of the resulting walk.
This creates a new walk terminating at (a, b) with fewer steps.

Therefore, if s is a minimal Qn-walk, then r′ < n. By taking the vector sum of every
step in s, we see that a + b = n · q′ + r′. Since the quotient and remainder in the division
algorithm are unique, we must have q′ = q and r′ = r, meaning s uses q long steps and r

short steps.

Let (a, b) ∈ N
2 and write a + b = q · n + r with 0 ≤ r < n. We can now use Lemma 2

to see why |W(a, b;Qn)| is divisible by
(

q+r

r

)

. We can partition W(a, b;Qn) into equivalence
classes by declaring s ∼ s′ if (1) s and s′ use the same number of each step from Qn and
(2) the relative order of the long steps and the relative order of the short steps in s is the
same as that in s′. For example, in Q3, the paths (3, 0), (2, 1), (1, 0), (0, 1), (1, 2), (2, 1) and
(1, 0), (3, 0), (0, 1), (2, 1), (1, 2), (2, 1) are equivalent. The paths equivalent to s are determined
by choosing r positions out of q + r total steps in which we will place the (ordered list of)
short steps.

At this point, however, the combinatorics of enumerating minimal Qn-walks to a fixed
point (a, b) is somewhat complicated because the linear algebra problem of determining all
ways to write (a, b) as a sum of q long steps and r short steps is difficult to do in generality.
Instead, it is easier to exhibit a generating function that will enumerate all such walks.

Theorem 3. For all n ≥ 2, the number of minimal Qn-walks can be computed by the
generating function

∑

(a,b)∈N2

|W(a, b;Qn)|x
ayb =

∞
∑

q=0

n−1
∑

r=0

(

q + r

r

)

(

n
∑

i=0

xiyn−i

)q

(x+ y)r. (1)

Proof. For fixed q and r, let σ = n · q + r. Expanding (
∑n

i=0 x
iyn−i)

q
encodes all possible

ways to make an ordered list of q long steps, and expanding (x + y)r encodes all possible
ways to make an ordered list of r short steps. Hence, multiplying these quantities together
encodes all possible ways to make an ordered list of q long steps followed by r short steps.
Multiplying by

(

q+r

r

)

accounts for all possible ways to shuffle these steps together. Therefore,
the summand of the generating function for fixed q and r covers all equivalence classes (as
described above) of minimal Qn-walks terminating along the diagonal where a+ b = σ.

4 Minimal walks for S = {(1, 0), (0, 1), (u, v)}

In this section, we consider an asymmetric set of allowable steps in S = {(1, 0), (0, 1), (u, v)}
for arbitrary integers u, v ≥ 1.
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Given a point (a, b) ∈ N
2, let m = m(a, b) = min(⌊ a

u
⌋, ⌊ b

v
⌋). Concretely, m is the largest

integer such that m ·u ≤ a and m · v ≤ b; or in other words, m is the largest number of steps
one can take in the (u, v)-direction without exceeding the x- or y-coordinate of (a, b).

Theorem 4. Let S = {(1, 0), (0, 1), (u, v)} with u, v ≥ 1, and let (a, b) ∈ N
2. A minimal

S-walk to the point (a, b) uses exactly m steps in the (u, v)-direction. Consequently,

d(a, b;S) = m+ a−m · u+ b−m · v,

and

|W(a, b;S)| =

(

m+ a−m · u+ b−m · v

m, a−m · u, b−m · v

)

.

Proof. First, we will prove that a minimal S-walk uses exactly m steps in the (u, v)-direction.
As noted above, any S-walk terminating at (a, b) uses at most m steps in the (u, v)-direction.
We claim an S-walk using fewer than m steps in the (u, v)-direction is non-minimal. Indeed,
consider an S-walk using m′ steps in the (u, v)-direction, x steps in the (1, 0)-direction, and
y steps in the (0, 1)-direction, and assume m′ < m.

Since
a = m′ · u+ x ≤ (m− 1) · u+ x = m · u+ x− u ≤ a+ x− u,

it follows that x ≥ u. Similarly, y ≥ v. Since x ≥ u and y ≥ v, we can replace u steps in
the (1, 0)-direction and v steps in the (0, 1)-direction with one step in the (u, v)-direction,
resulting in a shorter path. Thus, a walk usingm′ steps in the (u, v)-direction is non-minimal,
and hence a minimal S-walk uses at least m steps in the (u, v)-direction.

Finally, since a minimal S-walk uses m steps in the (u, v)-direction, then it must use
a − m · u steps in the (1, 0)-direction and b − m · v steps in the (0, 1)-direction. This
immediately implies the stated formulas for the distance and number of minimal S-walks.

Remark 5. In the case that (u, v) = (1, 1), note thatm = min(a, b), thatm+a−mu+b−mv =
a + b−m = max(a, b), and that one of a−mu and b−mv is equal to 0. Thus Theorem 4
generalizes the results in Section 2.

5 Minimal walks for Q3 = {(1, 0), (0, 1), (2, 1), (1, 2)}

Recall that in Section 3, we considered the set of allowable steps Q3. By removing the
vectors (3, 0) and (0, 3) from this set, we obtain the set Q3 = {(1, 0), (0, 1), (2, 1), (1, 2)}.
The combinatorial data coming from this seemingly simple example did not appear in OEIS
[1] and seems interesting in its own right. We have since added this data to OEIS as sequence
A292436.

Figure 4 shows the number of minimal walks for Q3. Here, we have included the lines
spanned by the vectors (2, 1) and (1, 2) for reference. We observe that these lines divide the
nonnegative quadrant into three regions. In the regions weakly above the line y = 2x and
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weakly below the line 2y = x, we observe that the number of minimal Q3-walks appears to
be a binomial coefficient, while the behavior between these two lines appears to be different.
Our goal in this section is to explain several patterns in data collected in Figure 4.
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Figure 4: The number of minimal Q3-walks terminating at each point (a, b) for 0 ≤ a, b ≤ 10.

We begin by establishing some notation that will be used throughout the proofs in this
section. Given a point (a, b) ∈ N

2, consider a minimal Q3-walk, s, terminating at (a, b). Let
x, y, z, and w respectively denote the number of (1, 0)-, (0, 1)-, (2, 1)-, and (1, 2)-steps in s.
Thus

a = x+ 2z + w and b = y + z + 2w. (2)

As in Section 3, we will refer to the steps (2, 1) and (1, 2) in Q3 as long steps and the steps
(1, 0) and (0, 1) as short steps.

Our first goal is to explain the combinatorial data observed in the outer regions where
a ≥ 2b or b ≥ 2a.

Theorem 6. Let (a, b) ∈ N
2 with a ≥ 2b. A minimal Q3-walk terminating at (a, b) does not

use any steps in the (0, 1)-direction or in the (1, 2)-direction. Consequently,

d(a, b;Q3) = a− b

7



and

|W(a, b;Q3)| =

(

a− b

b

)

.

Proof. Consider a minimal Q3-walk, s, terminating at the point (a, b). Let x, y, z, and w be
as defined above. Our first goal is to show y = 0 and w = 0.

Since a ≥ 2b, it follows from Eq. (2) that x ≥ 2y + 3w. Therefore, if y ≥ 1, then x ≥ 2.
So if s uses a (0, 1)-step, then it uses (at least) two (1, 0)-steps. But a (0, 1)-step and two
(1, 0)-steps can be replaced with a (2, 1)-step, which would give a shorter path. Thus y = 0.

Similarly, if w ≥ 1, then x ≥ 3. So if s uses a (1, 2)-step, it uses at least three (1, 0)-steps.
But (1, 2)+3(1, 0) = (4, 2) = 2(2, 1), so these four steps can be replaced with two (2, 1)-steps,
which would give a shorter path. Thus w = 0 as well.

Since y = 0 and w = 0, Eq. (2) reduces to

a = x+ 2z and b = z,

which is equivalent to x = a− 2b (which is nonnegative since a ≥ 2b) and z = b. Since x+ z

is the total number of steps in s, it follows that d(a, b;Q3) = a− b. Finally, to determine a
path to the point (a, b), we must use a − b total steps, b of which go in the direction (2, 1)
and a − 2b of which go in the direction (1, 0). There are

(

a−b

b

)

ways to determine such a
path. This completes the proof.

Since Q3 is symmetric, the following corollary immediately handles the case that b ≥ 2a.

Corollary 7. Let (a, b) ∈ N
2 with b ≥ 2a. A minimal Q3-walk terminating at (a, b) does not

use any steps in the (1, 0)-direction or in the (2, 1)-direction. Consequently, d(a, b;Q3) = b−a

and |W(a, b;Q3)| =
(

b−a

a

)

.

Now we turn our attention to the case that (a, b) lies in the central region of Figure 4.

Lemma 8. Let (a, b) ∈ N
2 with 1

2
b ≤ a ≤ 2b. A minimal Q3-walk terminating at (a, b) uses

at most two short steps.

Proof. As before, consider a minimal Q3-walk, s, terminating at the point (a, b). Let x, y, z,
and w be as defined above. Assume by way of contradiction that s uses at least three short
steps, or equivalently that x+ y ≥ 3.

If x ≥ 2 and y ≥ 1 (or if x ≥ 1 and y ≥ 2), then s can be shortened by replacing three
short steps with a (2, 1)-step (respectively, with a (1, 2)-step). So we need only consider the
case that x ≥ 3 and y = 0. By symmetry, this will cover the case that x = 0 and y ≥ 3.

Since a ≤ 2b, it follows from Eq. (2) that x ≤ 2y + 3w. Since y = 0 and x ≥ 3, it
follows that w ≥ 1. Thus s uses at least three (1, 0)-steps and one (1, 2)-step, which can be
shortened by replacing 3(1, 0) + (1, 2) = (4, 2) with two (2, 1)-steps. This contradicts our
assumption that s is minimal.
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Theorem 9. Let (a, b) ∈ N
2 with 1

2
b ≤ a ≤ 2b, and write a + b = 3q + r with 0 ≤ r ≤ 2.

Then
d(a, b;Q3) = q + r

and

|W(a, b;Q3)| =

(

q + r

r

)(

q + r

a− q

)

.

Proof. As before, consider a minimal Q3-walk, s, terminating at the point (a, b). Let x, y, z,
and w be as defined above. By Eq. (2), a+ b = x+ y + 3(z + w). By Lemma 8, x+ y < 3,
and hence by uniqueness of the quotient and remainder in the division algorithm, it must be
the case that x+ y = r and z + w = q. But x+ y + z + w is the total number of steps used
in s, and hence d(a, b;Q3) = q+ r. In particular, r counts the number of short steps used in
a minimal path.

Now we turn our attention to counting the number of minimal Q3-walks terminating at
(a, b). Let s be such a walk. We know s uses r short steps. Define a new Q3-walk ŝ as
follows: replace each (1, 0)-step in s with a (2, 1)-step and replace each (0, 1)-step in s with
a (1, 2)-step. Note that ŝ is a Q3-walk that only uses long steps. Moreover, ŝ terminates at
the point (a+ r, b+ r) as each replacement increases the vector sum by (1, 1).

Now let ŵ and ẑ respectively denote the number of (2, 1)- and (1, 2)-steps in ŝ. Applying
Eq. (2) to ŝ gives rise to the system of equations

2ẑ + ŵ = a+ r

ẑ + 2ŵ = b+ r.

The coefficient matrix

[

2 1
1 2

]

is invertible, so this system has a unique solution. We can

easily verify that

ẑ = a− q

ŵ = b− q

is a solution, which can also be derived by inverting the coefficient matrix and making use
of the fact that a+ b = 3q + r.

Moreover, a− q and b− q are both nonnegative because 1
2
b ≤ a ≤ 2b. Indeed, 3q + r =

a+ b ≤ a+ 2a, and hence 3(a− q) ≥ r ≥ 0. The same logic shows 3(b− q) ≥ r ≥ 0.
Therefore, theQ3-minimal walks terminating at (a, b) can be constructed as follows. Start

with a Q3-walk using a− q steps in the direction (2, 1) and b− q steps in the direction (1, 2).
There are

(

a−q+b−q

a−q

)

=
(

q+r

a−q

)

such walks. Next, choose r of those steps to transform into short

steps. If the chosen step is a (2, 1)-step, turn it into a (1, 0) step; if it is a (1, 2)-step, turn it
into a (0, 1)-step. There are

(

q+r

r

)

ways to make these choices. The resulting path terminates

at the point (a, b) and has length q + r = d(a, b;Q3). Thus |W(a, b;Q3)| =
(

q+r

r

)(

q+r

a−q

)

, as
desired.
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6 Open problems

6.1 Minimal walks for general S = {(1, 0), (0, 1), (u, v), (v, u)}.

Based on the results in Section 5, it seems natural to explore the more general case that our
allowable steps are S = {(1, 0), (0, 1), (u, v), (v, u)} for arbitrary u and v such that u > v ≥ 1.

In this case, the distances seem more complicated than they were in any of our previ-
ous examples. The reason for this is that a point’s distance from the origin is inherently
dependent on its position relative to the N-span of {(u, v), (v, u)}. In particular, that dis-
tance to point (a, b) can be determined greedily by finding a nearest point in the N-span of
{(u, v), (v, u)} that lies weakly south and west of (a, b) and filling in the rest of the walk
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Figure 5: The distance d(a, b; {(1, 0), (0, 1), (3, 5), (5, 3)}) for 0 ≤ a, b ≤ 15.
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with short steps. This means the distance changes, often dramatically, depending on a point’s
position in a fundamental parallelogram spanned by (u, v) and (v, u). For example, consider
the case that S = {(1, 0), (0, 1), (3, 5), (5, 3)}. The distances from the origin to nearby points
(a, b) are displayed in Figure 5.

Problem 10. Let S = {(1, 0), (0, 1), (u, v), (v, u)} with u > v ≥ 1 arbitrary. Determine
d(a, b;S) and |W(a, b;S)|.

6.2 Catalan generalizations

Based on the wealth of beautiful combinatorics arising from Catalan and Motzkin paths, the
following question is very natural.

Problem 11. Let a ≥ b and let S be a set of allowable steps. How many minimal S-walks
terminating at (a, b) stay weakly below the line y = x?

For brevity, let us say that an S-Catalan walk is a minimal S-walk that stays weakly
below the line y = x. For integers a, b with a ≥ b, we will write C(a, b;S) to denote the set
of all S-Catalan walks terminating at (a, b).

Consider the set Sn = {(i, n− i) : 0 ≤ i ≤ n}; i.e., the nonnegative integer vectors with
coordinate sum n. We can explore C(a, b;Sn) for several values of n.

For S1 = {(1, 0), (0, 1)} the number of S1-Catalan walks terminating at (a, a) is the a-th
Catalan number, which appear in OEIS as sequence A000108. More generally, the number of
walks terminating at (a, b) is a−b+1

a+b+1

(

a+b+1
a+1

)

, which is OEIS sequence A009766. Krattenthaler
[2, Corollary 10.3.2] gives a proof of this fact.
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Figure 6: Number of S3-Catalan paths terminating at points (a, b) with 0 ≤ a+ b ≤ 18.
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For S2 = {(2, 0), (1, 1), (0, 2)}, the number of S2-Catalan walks terminating at (a, a) is
the a-th Motzkin number, which is found in sequence A001006. Indeed, the map sending
(2, 0) 7→ (1, 1), (1, 1) 7→ (1, 0), and (0, 2) 7→ (1,−1) gives a bijection to classical Motzkin
paths comprised of steps {(1, 1), (1, 0), (1,−1)} that start at (0, 0), terminate at (a, 0), and
stay above the line y = 0.

As a next step we can consider S3 = {(3, 0), (2, 1), (1, 2), (0, 3)}. Figure 6 shows the
number of S3-Catalan paths terminating at points (a, b) with a ≥ b and a+ b ≤ 18.

The sequence of nonzero numbers along the line y = x, which continues as 1, 2, 13, 120, 1288,
15046, . . ., did not appear in OEIS. We have added it as sequence A292437.

Problem 12. Determine the generating function for

∑

a≥b≥0

|C(a, b;S3)|x
ayb or

∞
∑

a=0

|C(a, a;S3)|t
a.
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