A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve

Ömer Küçüksakallı
Mathematics Department
Middle East Technical University
06800 Ankara
Turkey
komer@metu.edu.tr

Abstract

We give another proof of the Lucas-Lehmer test by using a singular cubic curve. We also illustrate a practical way to choose a starting term for the Lucas-Lehmer-Riesel test by trial and error. Moreover, we provide a nondeterministic test for determining the primality of integers of the form $N=h p^{n}-1$ for any odd prime p. We achieve these by using the group structure on a singular cubic curve induced from the group law of elliptic curves.

1 Introduction

The largest primes known are given by expressions of the type $N=2^{n}-1$ since there is an efficient, deterministic primality test for such integers.

Theorem 1 (Lucas-Lehmer). Let $S_{0}=4$. If we define $S_{k}=S_{k-1}^{2}-2$ for all $k \geq 1$ recursively, then the integer $N=2^{n}-1$ is prime if and only if $S_{n-2} \equiv 0(\bmod N)$.

There are already several proofs of this fact in the literature [3, 4, 6, 8, 11, 12]. In this paper, we give another proof by using a singular cubic curve. Secondly, we illustrate a practical way to choose S_{0} by trial and error for the Lucas-Lehmer-Riesel test, which is concerned with the integers of the form $N=h 2^{n}-1$. Finally, we give a nondeterministic test for determining the primality of integers of the form $N=h p^{n}-1$ for an odd prime p.

2 Main results

Consider the projective curve

$$
C: y^{2}=4 x^{3}+x^{2} .
$$

Let K be an arbitrary field with $\operatorname{char}(K) \neq 2$. The curve C is a singular cubic curve defined over K that has a node at the origin. There are two distinct tangent lines at the origin, namely $y=x$ and $y=-x$. The cubic curve C and these tangent lines are illustrated in Figure 1.

Figure 1: Cubic curve $C: y^{2}=4 x^{3}+x^{2}$.
The non-singular part of C with coordinates from K is denoted by $C_{\mathrm{ns}}(K)$. The group law of elliptic curves makes $C_{\mathrm{ns}}(K)$ into an abelian group. Moreover, we have the following characterization for this group.

Proposition 2. The map $\psi: C_{n s}(K) \rightarrow K^{*}$ given by the formula $\psi(x, y)=\frac{y-x}{y+x}$ is a group isomorphism.

Proof. See [13, Prop. III.2.5] and [13, Exer. 3.5].
There is a connection between the map $x \mapsto x^{2}-2$ and the duplication map on $C_{\mathrm{ns}}(K)$. To see this connection, we follow [5] and consider

$$
\phi(z)=\frac{e^{z}}{\left(1-e^{z}\right)^{2}}
$$

and its derivative

$$
\phi^{\prime}(z)=\frac{e^{z}\left(e^{z}+1\right)}{\left(1-e^{z}\right)^{3}}
$$

It is easily verified that the cubic curve $C: y^{2}=4 x^{3}+x^{2}$ is parametrized by $x=\phi(z)$ and $y=\phi^{\prime}(z)$. Note that $\psi\left(\left(\phi(z), \phi^{\prime}(z)\right)\right)=e^{z}$ under the isomorphism of Proposition 2. It follows that $[n]\left(\phi(z), \phi^{\prime}(z)\right)=\left(\phi(n z), \phi^{\prime}(n z)\right)$ since $\left(e^{z}\right)^{n}=e^{n z}$.

The family of Dickson polynomials, denoted $\mathcal{D}_{n}(x)$, is a normalization of Chebyshev polynomials that is used in the theory of finite fields [7]. For each integer n, the polynomial $\mathcal{D}_{n}(x)$ is uniquely defined by the equation $\mathcal{D}_{n}\left(y+y^{-1}\right)=y^{n}+y^{-n}$ where y is an indeterminate. The first few examples of these polynomials are $\mathcal{D}_{1}(x)=x, \mathcal{D}_{2}(x)=x^{2}-2$ and $\mathcal{D}_{3}(x)=$ $x^{3}-3 x$. Note that $\phi(z)=1 /\left(e^{z}+e^{-z}-2\right)$. Now, it is clear that

$$
\mathcal{D}_{n}\left(\frac{1}{\phi(z)}+2\right)=\mathcal{D}_{n}\left(e^{z}+e^{-z}\right)=e^{n z}+e^{-n z}=\frac{1}{\phi(n z)}+2 .
$$

For any integer $n \geq 1$, define $f_{n}(x):=1 /\left(\mathcal{D}_{n}(1 / x+2)-2\right)$. The rational function $f_{n}(x)$ satisfies the functional equation $f_{n}(\phi(z))=\phi(n z)$ by the computation above. Let π_{x} be the projection to the first coordinate. Set $L(x)=1 / x+2$. We write $\mathbf{P}^{1}(K)=K \cup\{\infty\}$. We have the following commutative diagram:

For the case $n=2$, we have

$$
[2](x, y)=\left(\frac{x^{2}}{4 x+1}, \frac{x^{3}(2 x+1)}{y(4 x+1)}\right) .
$$

The rational map f_{2} associated with the duplication map on $C_{\mathrm{ns}}(K)$ is given by $f_{2}(x)=$ $x^{2} /(4 x+1)$. Recall that it satisfies the relation $f_{2}(x)=1 /\left(\mathcal{D}_{2}(1 / x+2)-2\right)$ where $\mathcal{D}_{2}(x)=$ $x^{2}-2$.

There is a unique point of $C_{\mathrm{ns}}(K)$ of order two, namely $(-1 / 4,0)$. Note that there are two points of order four, namely $(-1 / 2, i / 2)$ and $(-1 / 2,-i / 2)$. To see this, we can use $f_{4}(x)=f_{2}\left(f_{2}(x)\right)=x^{4} /\left((2 x+1)^{2}(4 x+1)\right)$.

The following fact is the key argument to our alternative proof of Theorem 1.
Lemma 3. Let p be an odd prime and let $P=(x, y)$ be a point of $C_{n s}\left(\mathbf{F}_{p^{2}}\right)$. If $x \in \mathbf{F}_{p}$, then the order of P, denoted $o(P)$, satisfies the following:

1. $o(P)$ divides $p-1$ if $y \in \mathbf{F}_{p}$, and
2. $o(P)$ divides $p+1$ if $y \notin \mathbf{F}_{p}$.

Proof. If both coordinates of P are in \mathbf{F}_{p}, then $\psi(x, y)=\frac{y-x}{y+x} \in \mathbf{F}_{p}^{*}$. We have $\psi(x, y)^{p-1}=1$ and we conclude that $o(P)$ divides $p-1$ by Proposition 2 .

Now suppose that $x \in \mathbf{F}_{p}$ but $y \notin \mathbf{F}_{p}$. We have $y^{p}=-y$ because $y^{2}=4 x^{3}+x^{2}$. Observe that

$$
\psi(x, y)^{p+1}=\left(\frac{y-x}{y+x}\right)^{p}\left(\frac{y-x}{y+x}\right)=\left(\frac{-y-x}{-y+x}\right)\left(\frac{y-x}{y+x}\right)=1 .
$$

We conclude that $o(P)$ divides $p+1$ by Proposition 2.
A natural generalization of the Lucas-Lehmer test, namely the Lucas-Lehmer-Riesel test, is concerned with integers of the form $N=h 2^{n}-1$ for odd integers h. The recurrence relation is the same for this generalized test. However, the starting value S_{0} varies depending on both h and n. Historically, the proof of this theorem was obtained in several steps:

1. If $h=1$, and if $n \equiv 3(\bmod 4)$ then pick $S_{0}=3$. [8]
2. If $h=1$, and if $n \equiv 1(\bmod 2)$ then choose $S_{0}=4$. [6]
3. If $h=3$, and if $n \equiv 0,3(\bmod 4)$, then choose $S_{0}=5778$. [6]
4. If $h \equiv 1,5(\bmod 6)$, and if $3 \nmid N$, then choose $S_{0}=w^{h}+w^{-h}$ where $w=2+\sqrt{3}$. [9]
5. Otherwise, h is a multiple of 3 and we follow [10] to choose S_{0}.

Unfortunately, there may not be any canonical value for S_{0} even though the h value is fixed [2]. On the other hand, it is easy to choose S_{0} by trial and error in practice by using the Jacobi symbol. For this purpose, we give the following method, which is inspired by [12].

Theorem 4. Given $N=h 2^{n}-1$, with $n>1$, h odd and $0<h<2^{n+1}-1$, let D be a positive integer such that the Jacobi symbol satisfies $\left(\frac{D}{N}\right)=-1$ and $\left(\frac{D-1}{N}\right)=1$. Define a sequence by

$$
S_{0}=\mathcal{D}_{h}\left(\frac{2(D+1)}{D-1}\right) \quad \text { and } \quad S_{k}=\mathcal{D}_{2}\left(S_{k-1}\right)
$$

for $k \geq 1$. Then N is prime if and only if N divides S_{n-2}.
Proof. Suppose that N is prime. Then the Jacobi symbol reduces to the Legendre symbol. If $t=L^{-1}\left(\frac{2(D+1)}{D-1}\right)=(D-1) / 4$, then $4 t+1=D(\bmod N)$. Consider the point $P=$ $(t, t \sqrt{D}) \in C_{\mathrm{ns}}\left(\mathbf{F}_{N^{2}}\right)$. The order of P is a divisor of $N+1=h 2^{n}$ by Lemma 3. We claim that $P \neq[2] Q$ for any $Q=(x, y)$ with $x \in \mathbf{F}_{N}$. Assume otherwise, i.e., $f_{2}(x)=t$ for some $x \in \mathbf{F}_{N}$. It follows that $x^{2} /(4 x+1)=x^{4} / y^{2}=(D-1) / 4$ and therefore $y^{2}=4 x^{4} /(D-1)$. This gives $y \in \mathbf{F}_{N}$ because $D-1$ is a square modulo N. However, this is a contradiction because $P=[2] Q$ implies that P has both coordinates in \mathbf{F}_{N}. Thus, the point $[h] P$ has order precisely 2^{n}. Finally, the point $\left[2^{n-2}\right][h] P$ is of order 4 . There are two such points, namely $(-1 / 2, \pm i / 2)$. In either case the x-coordinate is $-1 / 2$. Thus $f_{2^{n-2}}\left(f_{h}(t)\right)=-1 / 2$ and as a result $\mathcal{D}_{2^{n-2}}\left(\mathcal{D}_{h}(s)\right)=L(-1 / 2)=0$. This finishes the proof of necessity.

Suppose that N is composite. Let p be a prime factor of N with Jacobi symbol $\left(\frac{D}{p}\right)=-1$. In $C_{\mathrm{ns}}\left(\mathbf{F}_{p^{2}}\right)$, we have $[p+1] P=\infty$ by Lemma 3. Therefore $[p+1][h] P=\infty$ as well. On the
other hand, assume that $\mathcal{D}_{2^{n-2}}\left(S_{0}\right) \equiv 0(\bmod N)$. It follows that $\left[h 2^{n-2}\right] P=(-1 / 2, \pm i / 2)$ and therefore $\left[2^{n}\right][h] P=\infty$ in $C_{\mathrm{ns}}\left(\mathbf{F}_{p^{2}}\right)$. If the order of $[h] P$ was a proper divisor of 2^{n}, then the equality $\left[2^{n-2}\right] P=(-1 / 2, \pm i / 2)$ would not hold. We conclude that the order of $[h] P$ is precisely 2^{n} and therefore 2^{n} divides $p+1$. Thus $p+1=2^{n} k$ for some integer $k \geq 1$. From this point on, we follow [12]. We have $h 2^{n}-1=N=\left(2^{n} k-1\right) \ell$ for some integer ℓ. Reducing everything modulo 2^{n}, it is easily seen that $\ell=2^{n} m+1$ for some integer m. Since $N \neq p$, it is obvious that $m \geq 1$. If $k=m=1$, then $h=2^{n}$, which is a contradiction. Hence $k \geq 2$ or $m \geq 2$, and therefore $h \geq 2^{n+1}-1$.

Remark 5. This proof constitutes an alternative proof for the Lucas-Lehmer test if we fix $h=1$ and $D=3$. In that case $N=2^{n}-1 \equiv 7(\bmod 24)$ for any integer $n \geq 3$. Clearly $\left(\frac{3}{N}\right)=-1$ and $\left(\frac{2}{N}\right)=1$. Moreover $S_{0}=\mathcal{D}_{1}(4)=4$.

We also note that Lehmer's choice $S_{0}=5778$ for the case $h=3$ and $n \equiv 0,3(\bmod 4)$ is obtained by choosing $D=5 / 4$. It follows that $2(D+1) /(D-1)=18$ and therefore $S_{0}=\mathcal{D}_{3}(18)=5778$. Another choice could be $D=5$, which would give $S_{0}=18$ according to the above theorem.

Now let us consider Riesel's choice $S_{0}=\mathcal{D}_{h}(4)$ for the case $h \equiv 1,5(\bmod 6)$, and $3 \nmid N$. This is obtained by choosing $D=3$ in the above theorem. The facts $\left(\frac{3}{N}\right)=-1$ and $\left(\frac{2}{N}\right)=1$ for $N=h 2^{n}-1$ can be verified easily by using the properties of the Jacobi symbol.

Now we give a test for determining the primality of integers of the form $N=h p^{n}-1$ for an odd prime p. Unlike the previous theorem, it is not deterministic after S_{0} is chosen. This theorem is inspired by the results of Williams, which are concerned with the primes $p=3,5$ and $7[14,15]$.

Theorem 6. Let p be a prime and let $N=h p^{n}-1$ be an odd integer, with $n>1$ and $\operatorname{gcd}(h, p)=1$. Let D be a positive integer such that the Jacobi symbol satisfies $\left(\frac{D}{N}\right)=-1$ and $\left(\frac{D-1}{N}\right)=1$. Define the generalized Lucas sequence by

$$
S_{0}=\mathcal{D}_{h}\left(\frac{2(D+1)}{D-1}\right) \quad \text { and } \quad S_{k}=\mathcal{D}_{p}\left(S_{k-1}\right)
$$

for $k \geq 1$. This sequence has the following properties:

1. If $S_{k} \not \equiv 2(\bmod N)$ for all $k \leq n$, then N is composite.
2. If $S_{k} \equiv 2(\bmod N)$ for some positive minimal integer $k \leq n$ and $p^{2 k}>N$ then N is prime.

Proof. Suppose that N is prime. As in the proof of the previous theorem, let $P=(t, t \sqrt{D})$ with $t=L^{-1}\left(\frac{2(D+1)}{D-1}\right)=(D-1) / 4$. The order of $P \in C_{\mathrm{ns}}\left(\mathbf{F}_{N^{2}}\right)$ is a divisor of $N+1=h p^{n}$ by Lemma 3. It follows that the order of $[h] P$ is a divisor of p^{n}. Then we must have $\left[p^{k}\right] P=\infty$ for some $k \leq n$. This finishes the proof of the first part. Now, suppose that N is composite. Let q be a prime factor of N with the Jacobi symbol $\left(\frac{D}{q}\right)=-1$. In $C_{\mathrm{ns}}\left(\mathbf{F}_{q^{2}}\right)$, we have $[q+1] P=\infty$ by Lemma 3. Therefore $[q+1][h] P=\infty$, too. On the other hand, assume that
$\mathcal{D}_{p^{k}}\left(S_{0}\right) \equiv 2(\bmod N)$ for some minimal positive integer k. It follows that the order of $[h] P$ is p^{k}. We conclude that p^{k} divides $q+1$, i.e., $q+1=p^{k} \ell$ for some integer positive integer ℓ. We have $h p^{n}-1=N=\left(p^{k} \ell-1\right) m$ for some integer m. Reducing everything modulo p^{k}, it is easily seen that $m=p^{k} a+1$ for some integer a. Since $N \neq p$, it is obvious that $a \geq 1$. Hence $\ell \geq 1$ or $a \geq 1$, and therefore $p^{2 k} \leq N$.

We remark that the inequality $p^{2 k}>N$ in the second part of the above theorem can be improved as in [15]. We will leave it as it is for simplicity since this test is far from being deterministic in either case. On the other hand it is a common practice in algorithmic number theory to use a random element of a cyclic group since its order is expected to be large most of the time.

In order to make the above theorem deterministic, after S_{0} is chosen, we need to prove that the congruence $\mathcal{D}_{p}(x) \equiv S_{0}(\bmod N)$ has no solution if N is prime. It would then imply that P has order precisely p^{n}. In that case, we could replace the second part of the above theorem as: "Otherwise, $S_{n} \equiv 2(\bmod N)$ and N is prime if $p^{n}>h$ ". This would give us a necessary and sufficient test if $p^{n}>h$. More precisely, we would be able to say that $N=h p^{n}-1$ is prime if and only if $S_{n} \equiv 2(\bmod N)$. This idea has already been accomplished by Berrizbeitia and Berry for $p=3$ by using the cubic reciprocity law [1]. We hope that the isomorphism of Proposition 2 together with the higher degree reciprocity laws may shed some light in the future for the cases $p \geq 5$.

3 Acknowledgment

The author thanks S. Wong and an anonymous referee for their helpful comments and suggestions to improve this manuscript.

References

[1] P. Berrizbeitia and T. G. Berry, Cubic reciprocity and generalised Lucas-Lehmer tests for primality of $A \cdot 3^{n} \pm 1$, Proc. Amer. Math. Soc. 127 (1999), 1923-1925.
[2] W. Bosma, Explicit primality criteria for $h 2^{k} \pm 1$, Math. Comp. 61 (1993), 97-109.
[3] J. W. Bruce, A really trivial proof of the Lucas-Lehmer test, Amer. Math. Monthly 100 (1993), 370-371.
[4] B. H. Gross, An elliptic curve test for Mersenne primes, J. Number Theory 110 (2005), 114-119.
[5] Ö. Küçüksakall, Value sets of Lattès maps over finite fields, J. Number Theory 143 (2014), 262-278.
[6] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2) 31 (1930), 419-448.
[7] R. Lidl and H. Niederreiter, Finite Fields. Encyclopedia of Mathematics and Its Applications, Vol. 20, Second edition, Cambridge University Press, 1997.
[8] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-196.
[9] H. Riesel, A note on the prime numbers of the forms $N=(6 a+1) 2^{2 n-1}-1$ and $M=(6 a-1) 2^{2 n}-1$, Ark. Mat. 3 (1956), 245-253.
[10] H. Riesel, Lucasian criteria for the primality of $N=h \cdot 2^{n}-1$, Math. Comp. 23 (1969) 869-875.
[11] M. I. Rosen, A proof of the Lucas-Lehmer test, Amer. Math. Monthly 95 (1988), 855856.
[12] Ö. J. Rödseth, A note on primality tests for $N=h 2^{n}-1$, BIT 34 (1994), 451-454.
[13] J. H. Silverman, The Arithmetic of Elliptic Curves, Second edition, Graduate Texts in Mathematics, Vol. 106, Springer, 2009.
[14] H. C. Williams, The primality of $N=2 A 3^{n}-1$, Canad. Math. Bull. 15 (1972), 585-589.
[15] H. C. Williams, Effective primality tests for some integers of the forms $A 5^{n}-1$ and $A 7^{n}$ - 1, Math. Comp. 48 (1987), 385-403.

2010 Mathematics Subject Classification: Primary 11Y11; Secondary 11G20.
Keywords: elliptic curve, Jacobi symbol, Dickson polynomial, Lucas sequence.

Received May 29 2018; revised versions received May 30 2018; July 5 2018. Published in Journal of Integer Sequences, July 112018.

Return to Journal of Integer Sequences home page.

