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Abstract

We discuss the form of certain algebraic continued fractions in the field of power

series over Fp, where p is an odd prime number. This leads to giving explicit continued

fractions in these fields, satisfying an explicit algebraic equation of arbitrary degree

d ≥ 2 and having an irrationality measure equal to d. Our results are based on a

mysterious finite sequence of rational numbers.

1 Introduction

We are concerned with continued fractions in the fields of formal power series over a finite
field. For a general account on this matter the reader may consult Schmidt’s article [13] and
also Thakur’s book [14]. Let p be a prime number and Fq the finite field of characteristic
p, having q elements. Given a formal indeterminate T , we consider the ring Fq[T ], the field
Fq(T ) and Fq((T

−1)), here simply denoted by F(q), the field of power series in 1/T over the
finite field Fq. A non-zero element of F(q) can be written as

α =
∑

i≤i0

uiT
i where i ∈ Z, ui ∈ Fq and ui0 6= 0.
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An ultrametric absolute value is defined over this field by |0| = 0 and |α| = |T |i0 where
|T | is a fixed real number greater than 1. We also consider the subset F(q)+ = {α ∈
F(q) s.t. |α| > 1}. Note that F(q) is the completion of the field Fq(T ) for this absolute
value.

In power series fields over a general finite field Fq, where q is a power of p, contrarily to
the case of real numbers, the continued fraction expansion for many algebraic elements can
be explicitly given. This phenomenon is due to the existence of the Frobenius isomorphism
in these fields. A particular subset of F(q), denoted by H(q), containing certain algebraic
elements called hyperquadratic, has been considered by Bluher and the author [2]. Let t ≥ 0
be an integer and r = pt, an irrational element of F(q) is called hyperquadratic of order t if
it satisfies a non-trivial algebraic equation of the following form:

uXr+1 + vXr + wX + z = 0 where (u, v, w, z) ∈ (Fq[T ])
4.

Note that a hyperquadratic element of order 0 is simply quadratic. Quadratic power series, as
quadratic real numbers, have an ultimately periodic continued fraction expansion. However
H(q) contains power series of arbitrary large algebraic degree over Fq(T ) and the continued
fraction expansion for various elements in this class has also been given explicitly. Note that
if a hyperquadratic element has order t, it also has order kt for all integers k ≥ 1 [2, p. 258].
The consideration of this subset of algebraic elements was first put forward in the study of
Diophantine approximation, beginning with Mahler’s article [11]. For more on this topic and
more references, the reader may also consult the survey of the author [3].

Let us recall that, for an irrational element α ∈ F(q), the irrationality measure is defined
by:

ν(α) = lim sup
|Q|→∞

(− log |α− P/Q|/ log |Q|),

where P and Q belong to Fq(T ). Then ν(α) is a real number greater or equal to 2. By
adapting a theorem on rational approximation for real numbers, due to Liouville in the 19th
century, Mahler [11] proved that, if α is an algebraic element of degree d > 1 over Fq(T ),
then we have ν(α) ∈ [2; d]. Furthermore if α is any irrational number in F(q), having the
infinite continued fraction expansion α = [a1, a2, . . . , an, . . . ], then the irrationality measure
is directly connected to the sequence of degrees of the partial quotients [3, p. 214] and we
have

ν(α) = 2 + lim sup
n≥1

(deg(an+1)/
∑

1≤i≤n

deg(ai)).

In this note, we present certain particular algebraic continued fractions in F(p) with odd
p, which can be fully described. In Section 2, we recall several generalities on continued
fractions. In Section 3, we describe a large family of algebraic continued fractions and, in
Section 4, we exhibit two particular sub-families where the sequence of partial quotients
is regularly distributed. The importance of these last continued fractions is highlighted in
the last section, bringing families of hyperquadratic elements, in F(p) with odd p, having
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a prescribed algebraic degree, an explicit continued fraction expansion and an irrationality
measure equal to the algebraic degree.

The reader will observe that this paper contains mainly conjectures based on computer
calculations. Some results (see Theorem 4 below) were established in previous works, but
the aim of this exposition is to point out several mathematical statements remaining largely
mysterious and longing for clearness.

2 Continued fractions

Concerning continued fractions in the area of function fields, we use classical notation, as it
can be found for instance in the survey of the author [8, pp. 3–8]. Throughout the paper we
are dealing with finite sequences (or words), consequently we recall the following notation on
sequences in Fq[T ]. Let W = w1, w2, . . . , wn be such a finite sequence, then we set |W | = n
for the length of the word W . If we have two words W1 and W2, then W1,W2 denotes the
word obtained by concatenation.

As usual, we let [W ] = [w1, . . . , wn] ∈ Fq(T ) denote the finite continued fraction w1 +
1/(w2 + 1/(. . . )). In this formula the wi, called the partial quotients, are non-constant
polynomials. Still, we will also use the same notation if the wi are constant and the resulting
quantity is in Fq. However in this last case, by writing [w1, w2, . . . , wn] we assume that this
quantity is well defined in Fq, i.e., wn 6= 0, [wn−1, wn] 6= 0, . . . , [w2, . . . , wn] 6= 0.

For n ≥ 0, a continuant Xn is a polynomial, in the n variables x1, x2, . . . , xn, defined
recursively by X0 = 1, X1 = x1 and Xk = xkXk−1 + Xk−2 for 2 ≤ k ≤ n. We use the
notation 〈W 〉 for the continuant built from W = w1, w2, . . . , wn. In the sequel the w′

is are
in Fq[T ], then the degree in T of 〈W 〉 is clearly equal to the sum of the degrees in T of the
w′

is.
We letW ′ (resp., W ′′) denote the word obtained fromW by removing the first (resp., last)

letter of W . Hence, we recall that we have [W ] = 〈W 〉/〈W ′〉. We let W ∗ = wn, wn−1, . . . , w1,
be the word W written in reverse order. We have 〈W ∗〉=〈W 〉 and also [W ∗] = 〈W 〉/〈W ′′〉.

Moreover, if y ∈ F
∗
q, then we define y ·W as the following sequence

y ·W = yw1, y
−1w2, . . . , y

(−1)n−1

wn.

Then, it is also known that 〈y · W 〉 = y〈W 〉 (resp., = 〈W 〉) if |W | is odd (resp., if |W | is
even) and [y ·W ] = y[W ].

If α ∈ F(q) is an infinite continued fraction, α = [a1, a2, . . . , an, . . .], we set xn =
〈a1, a2, . . . , an〉 and yn = 〈a2, . . . , an〉. In this way, we have xn/yn = [a1, a2, . . . , an], with
x1 = a1, y1 = 1 and by convention x0 = 1, y0 = 0. We introduce αn+1 = [an+1, an+2, . . .] as
the tail of the expansion of the complete quotient (α1 = α), and we have

α = (xnαn+1 + xn−1)/(ynαn+1 + yn−1) for n ≥ 1.

We recall the following general result [4, p. 332].
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Proposition 1. Let p be a prime number, q = ps and r = pt with s, t ≥ 1. Let ℓ ≥ 1 be an
integer and (a1, a2, . . . , aℓ) ∈ (Fq[T ])

l, with deg(ai) > 0 for 1 ≤ i ≤ ℓ. Let (P,Q) ∈ (Fq[T ])
2

with deg(Q) < deg(P ) < r. Then there exists a unique infinite continued fraction α in F(q)+

satisfying

α = [a1, a2, . . . , aℓ, αℓ+1] and αr = Pαℓ+1 +Q. (∗)

This element α is the unique root in F(q)+ of the following algebraic equation:

yℓX
r+1 − xℓX

r + (Pyℓ−1 −Qyℓ)X − Pxℓ−1 +Qxℓ = 0. (∗∗)

3 Pk-continued fractions

In this note, to avoid unnecessary sophistication in a first stage, the base field will simply
be the finite field Fp having p elements. Moreover, for the subject treated here we need have
odd characteristic. Actually, in many areas concerning power series over a finite field, both
cases, even and odd characteristic, must be considered separately. Hence, here p is a prime
number with p > 2 and throughout this note, k is an integer with 1 ≤ k < p/2.

We shall now describe several numbers and polynomials which appeared in earlier papers.
These were introduced in a paper by the author [4], to where the reader is invited to refer
for the proof of the properties stated below.

In Fp[T ], we define Pk(T ) = (T 2−1)k. Next, we consider the following euclidean division
in Fp[T ]:

T p = A1Pk +Rk.

The polynomial A1 is the integer part of the rational T
p/Pk and Rk is the remainder. Hence

we have A1 = [T p/Pk], here the brackets denote the integer part (i.e., polynomial part) of
the rational function. Note that we have deg(A1) = p− 2k and also A1 = T if k = (p− 1)/2.
We define

ωk = (−1)k−1
∏

1≤i≤k

(1− 1/2i) ∈ F
∗
p.

In previous works another polynomial closely related to Rk was used. Defining Qk =
(2kωk)

−1Rk, it was proved that the following holds in Fp[T ]:

Qk(T ) =
∑

0≤i≤k−1

(−1)k−1−i

(

k − 1

i

)

(2i+ 1)−1T 2i+1.

These formulas are the key to obtain the following. In Fp(T ), we have the remarkable
continued fraction expansion [4, pp. 338–341]:

T p/Pk = [A1, w1T,w2T, . . . , w2kT ], (1)
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where the wi ∈ F
∗
p are defined by : w1 = (2k − 1)(2kωk)

−1 and

wi+1wi = (2k − 2i− 1)(2k − 2i+ 1)(i(2k − i))−1 for 1 ≤ i ≤ 2k − 1.

Note that the wi are rational numbers which, for all primes p with the condition 2k < p,
exist by reduction in F

∗
p. We also have

w2k+1−i = −wi for 1 ≤ i ≤ 2k. (2)

In the sequel, we consider the finite word W = w1T,w2T, . . . , w2kT . Hence, with our nota-
tion, (1) implies T p/Pk = A1 + 1/[W ], and we can write

Pk/Rk = [w1T,w2T, . . . , w2kT ] = [W ]. (3)

Let us do a thorough investigation of the extremal case: k = (p− 1)/2. Then, we clearly
have A1 = [T p/Pk] = T and consequently

Rk = T p − T (T 2 − 1)k = T p − T (T 2k − kT 2k−2 + · · · ) = kT 2k−1 + · · ·

Hence, we get [Pk/Rk] = (1/k)T = w1T . Since 2k = −1, we have w1 = 1/k = −2. We
obtain ωk = (2k − 1)/(2kw1) = −2/(−w1) = −1. But we also have wi+1wi = −4. It follows
that W = −2T, 2T,−2T, · · · , 2T [4, Corollary 4.2 with a different notation].

Applying Proposition 1, we consider particular algebraic continued fractions in F(p) de-
fined as follows.

Definition 2. An infinite continued fraction α ∈ F(p) is a Pk-expansion if there exist an
integer ℓ ≥ 1, an ℓ-tuple, (λ1, λ2, . . . , λℓ) ∈ (F∗

p)
ℓ and (ǫ1, ǫ2) ∈ F

∗
p × Fp such that

α = [λ1T, λ2T, . . . , λℓT, αℓ+1] and αp = ǫ1Pkαℓ+1 + ǫ2Rk.

For given integers k, p and ℓ, chosen as above, a Pk-expansion is defined by an (ℓ+2)-tuple:
Λ = (λ1, λ2, . . . , λℓ, ǫ1, ǫ2). Moreover, this continued fraction satisfies the algebraic equation
(∗∗), introduced in Proposition 1, with (P,Q) = (ǫ1Pk, ǫ2Rk), whose four coefficients in Fp[T ]
are only depending on k, p, ℓ and Λ.

These particular continued fraction expansions, introduced by the author [4], have been
considered in several articles. They were particularly studied in a more general setting by the
author [6]. In previous publications, we used in this definition the polynomial Qk instead
of Rk. This has no consequence, since both polynomials are proportional. Originally, a
particular and simple continued fraction expansion in F(13), solution of an algebraic equation
of degree four, was observed by Mills and Robbins [12]. In order to understand this particular
and remarkable pattern, we developed this notion of Pk-expansion. So we could show that
Mills and Robbins’ example was a particular case, defined as above with p = 13, k = 4
and ℓ = 6. This implied its full description [5] and a generalization concerning Robbins’
quartic [7, 1]. The possibility of describing the sequence of partial quotients for an arbitrary
Pk-expansion is yet out of reach. However, using a technical lemma stated below, we will
see in the next section that the sequence of partial quotients for certain Pk-expansions can
be given explicitly. This lemma is the following (its origin can be found in a paper of the
author [4, p. 336 and p. 343]).
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Lemma 3. Let A ∈ Fp[T ], δ ∈ F
∗
p and X ∈ F(p). Then we have

[A+ δRkP
−1
k , X] = [A, δ−1 ·W,XP−2

k + δ−1RkP
−1
k ].

Proof. According to (3), we have Pk/Rk = [w1T,w2T, . . . , w2kT ] = [W ]. By (2), we also
have W ∗ = −1 ·W . We observe the following links between the polynomials Pk, Rk and the
continuants built from W . We have

Pk/Rk = [W ] = 〈W 〉/〈W ′〉.

We note that 〈W 〉 = 〈w1T,w2T, . . . , w2kT 〉 and Pk = (T 2 − 1)k have the same degree in T
equal to 2k. Besides, the constant term of Pk is (−1)k while, since W has even length, the
constant term of 〈W 〉 is 1. Consequently we obtain

〈W 〉 = (−1)kPk and 〈W ′〉 = (−1)kRk. (4)

Hence, we can write

A+ δRk/Pk = A+ 1/(δ−1[W ]) = A+ 1/[δ−1 ·W ] = [A, δ−1 ·W ].

We set U = A, δ−1·W = u1, u2, . . . , un. Here we have n = 2k+1, u1 = A and ui+1 = δ(−1)iwiT
for 1 ≤ i ≤ 2k. We set xn = 〈U〉 and yn = 〈U ′〉, so that we have [U ] = xn/yn. Let us consider
an arbitrary element b ∈ F(p). Since xnyn−1 − ynxn−1 = (−1)n, we can write

[U, b]− [U ] = (xnb+ xn−1)/(ynb+ yn−1)− xn/yn = (−1)n−1(yn(ynb+ yn−1))
−1.

Then we have yn = 〈U ′〉 = 〈δ−1 · W 〉 = 〈W 〉, since |W |, the length of W , is even. But
also yn−1 = 〈(U ′)′′〉 = 〈δ−1 · W ′′〉 = δ−1〈W ′′〉, since |W ′′| is odd. Due to the properties of
continuants and by (2), we have

〈W ′′〉 = 〈w1T,w2T, . . . , w2k−1T 〉 = 〈−w2kT, . . . ,−w2T 〉 = −〈W ′〉.

Hence, by (4), we get

yn = 〈W 〉 = (1)kPk and yn−1 = −δ−1〈W ′〉 = (−1)k+1δ−1Rk.

Therefore, we obtain
[U, b]− [U ] = (P 2

k b− δ−1PkRk)
−1.

Choose b = XP−2
k + δ−1RkP

−1
k or equivalently X = P 2

k b− δ−1PkRk. The last formula gives
[U, b] = [U ] +X−1 and therefrom, we obtain

[A, δ−1 ·W,XP−2
k + δ−1RkP

−1
k ] = [U ] +X−1 = [A+ δRkP

−1
k , X].
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4 Perfect Pk-continued fractions

Our goal is to describe certain Pk-expansions explicitly. This will be done in two different
cases, each corresponding to a particular choice of Λ. Because of some change of notation
and to highlight the similarity between both cases, we repeat the results concerning the first
case, which have already appeared in previous publications. To describe the partial quotients
in these continued fractions, we need to introduce in Fp[T ] two sequences of polynomials
(An)n≥0 and (Bn)n≥0 as follows [1, p. 134]. Note that all these polynomials are monic. The
first sequence is defined by

A0 = T and recursively An+1 = [Ap
n/Pk] for n ≥ 0.

Note that, in agreement to the beginning of the previous section, we have A1 = [T p/Pk].
While the second sequence is defined by

B0 = A0 = T and B1 = A1 = [T p/Pk]

and recursively

Bn+1 = Bp
nP

(−1)n+1

k for n ≥ 1.

We are particularly interested in the degrees of these polynomials. We set un = deg(An) and
vn = deg(Bn). From the recursive definition of these polynomials, we get u0 = v0 = 1 and
also

un+1 = pun − 2k and vn+1 = pvn + 2k(−1)n+1 for n ≥ 0.

Note that the sequence (un)n≥0 is constant if 2k = p − 1, then we have An = A0 = T for
n ≥ 0. Otherwise, both sequences (un)n≥0 and (vn)n≥0 are strictly increasing.

The first case is described in the following theorem.

Theorem 4. Let p be an odd prime and k, ℓ integers chosen as above. Let α ∈ F(p) be
a Pk-expansion, depending as above on an (ℓ + 2)-tuple Λ. We assume that ǫ2 6= 0 and Λ
satisfies the following equality:

[λℓ, λℓ−1, . . . , λ2, λ1 − ǫ2] = ǫ1/(ǫ2ωk). C(A)

Then there exist a sequence (λn)n≥1 in F
∗
p and a sequence (i(n))n≥1 in N, such that

an = λnAi(n) for n ≥ 1.

The proof of this theorem appears in two papers of the author [5, p. 1111] and [6, pp.
256–257]; the second paper corresponds to a much larger context. It also has a remark [6,
p. 257] concerning a mistake in the writing of a formula in the first paper [5]. This proof is
derived from Lemma 3 presented in Section 3. Both sequences (λn)n≥1 and (i(n))n≥1 have
been described in the papers cited above [5, 6], sometimes with different notation. We recall
here below the description of these sequences, when the base field is prime, which is the only
case we consider here.
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For n ≥ 1, we set f(n) = (2k + 1)n + ℓ− 2k. At first, according to C(A), we can define
in F

∗
p : z1 = λ1 − ǫ2 and zi = λi + z−1

i−1 for 2 ≤ i ≤ ℓ. Then we consider the sequence (zn)n≥1

in F
∗
p defined, from the initial values z1, z2, . . . , zℓ, by the recursive formulas

zf(n)+i = θiǫ
(−1)n+i

1 z(−1)i

n for n ≥ 1 and 0 ≤ i ≤ 2k,

where
θ0 = −ωk and θi = −iwi/(2k − 2i+ 1) for 1 ≤ i ≤ 2k.

Then the sequence (λn)n≥1 in F
∗
p is defined recursively, from the initial values λ1, λ2, . . . , λℓ,

by the formulas

λf(n) = ǫ
(−1)n

1 λn and λf(n)+i = ǫ
(−1)n+i

1 wiz
(−1)i

n ,

for n ≥ 1 and for 1 ≤ i ≤ 2k.
It is worth mentioning that the complexity of this sequence (λn)n≥1 in Fp has been

studied. Indeed, it was proved to be (2k + 1)-automatic. For a full account on this matter,
in the most general setting, the reader is advised to refer to a paper of Yao and the author
[10, Section 5].

Concerning the sequence (i(n))n≥1, we have the following description:

i(n) = 0 if n /∈ f(N∗) and i(f(n)) = i(n) + 1 for n ≥ 1.

We want to compute the irrationality measure for a continued fraction described in
Theorem 4. We only need to know the sequence (i(n))n≥1 and the sequence (deg(An))n≥0.
The proof of the following corollary is based on another equivalent description [1, p. 143] of
this sequence (i(n))n≥1. In the sequel, we will use the following notation. For n ≥ 0, if we
have the word w,w, . . . , w of length n, then we denote it shortly by w[n] with w[0] = ∅. In
the same way W [n] denotes the word W,W, . . . ,W where W is a finite word repeated n times
and W [0] = ∅. Let (In)n≥0 be the sequence of finite words of integers defined recursively by

I0 = 0 and In = n, I
[2k]
0 , I

[2k]
1 , . . . , I

[2k]
n−1 for n ≥ 1.

Then the sequence I = (i(n))n≥1 in N, introduced in Theorem 4, is given by the infinite
word:

I = I
[ℓ]
0 , I

[ℓ]
1 , I

[ℓ]
2 , . . . , I [ℓ]n , . . .

By mean of the last formula, on the irrationality measure, given in the introduction, we get
the following result [1, p. 148].

Corollary 5. Let α be a Pk-expansion, depending on the (ℓ + 2)-tuple Λ satisfying C(A),
then we have

ν(α) = 2 + (p− 2k − 1)/ℓ.
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Before going on to the second kind of Pk-expansion, we need to point at an exceptional
element in F(p) for all p ≥ 3 which is quadratic but also a perfect Pk-expansion of the type
described in Theorem 4. This element appears in the extremal case k = (p − 1)/2. We
have observed that, in this case, the sequence (An)n≥0 is constant and An = T for n ≥ 0.
Consequently, the elements described in Theorem 4.1 will have all partial quotients of the
form an = λnT (note that, in agreement to Corollary 5, the irrationality measure of the
continued fraction will be equal to 2). In these cases the sequence (λn)n≥1 will not generally
be periodic and this is why these non-quadratic examples were brought to light [12]. However
at the bottom of these examples lies a universal element which is the formal golden mean.
In F(p), for p ≥ 3, let us consider the following infinite continued fractions

φ(T ) = [T, T, . . . , T, . . .] and ρ(T ) = [−2T, 2T, . . . ,−2T, 2T, . . .].

Note that we have ρ(T ) = (u/2)φ(uT ) with u2 = −4. Elementary computations [4, pp.
331–332] and [9, pp. 267–268] show that we have

ρp = (−1)ℓPkρℓ+1 −Rk for k = (p− 1)/2 and ℓ ≥ 1.

Since ωk = −1, we observe that C(A) reduces to

[(−1)ℓ2, (−1)ℓ−12, . . . ,−2 + 1] = (−1)ℓ,

which is easily verified by induction. This element ρ will appear again in the last section
(Proposition 9).

If we have reported Theorem 4 here, this is due to its somehow mysterious proof and also
to the apparent closeness with the following conjecture. There is a second case, corresponding
to a different choice of Λ, where a Pk-expansion can be described but only partially and
conjecturally.

Conjecture 6. Let p be an odd prime and k, ℓ integers chosen as above. Let α ∈ F(p) be
a Pk-expansion, depending as above on an (ℓ + 2)-tuple Λ. We assume that Λ satisfies the
following equality:

[λℓ, λℓ−1, . . . , λ1 − ǫ2] = 0. C(B)

Then there exist a sequence (λn)n≥1 in F
∗
p and a sequence (j(n))n≥1 in N, such that

an = λnBj(n) for n ≥ 1.

It may be worth noticing that condition C(B) (and also C(A)) can be stated in a different
way. Indeed condition C(B) is simply equivalent to: ǫ2 = [λ1, . . . , λℓ−1, λℓ]. This conjecture
results from broad computer observations, letting the parameters p, k and ℓ vary. We also
have a conjectural description of the sequence (j(n))n≥1 as follows.

Let (Jn)n≥1 be the sequence of finite words of integers defined recursively by

J0 = 0 and Jn = n, J
[2k−1]
n−1 , n− 1 for n ≥ 1.
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Then the sequence J = (j(n))n≥1 in N is given by the infinite word:

J = J
[ℓ−1]
0 , 0, J

[ℓ−1]
1 , 1, . . . , J [ℓ−1]

n , n, . . .

The irrationality measure, for a continued fraction described in Conjecture 6, only depends
on the sequences (j(n))n≥1 and (deg(Bn))n≥0. Accordingly, using arguments similar to the
ones given in a paper by Ayadi and the author [1, pp. 150–151]), we obtain the following.

Conjecture 7. Let α be a Pk-expansion, depending on the (ℓ+ 2)-tuple Λ satisfying C(B),
then we have

ν(α) = 2 + (p− 2k + 1)(p− 1)/(ℓ(p+ 1)− 2k).

The description of the sequence (λn)n≥1 in F
∗
p is in general yet out of reach. Note that

in the simplest case ℓ = 1, it can be proved that J = N and an = λnBn−1 where λ2n = λ1ǫ
−1
1

and λ2n+1 = λ1 for n ≥ 1. Moreover, in this case, the irrationality measure is equal to p+ 1
which is the maximal possible value. The sequence of partial quotients has also been fully
described [8, pp. 20–21] in the simple case: k = 1 and ℓ = 2.

The reader may wonder why, in the two cases presented above, the Pk-expansions are
special. In these cases we say that the expansion is perfect of type A or of type B. First,
a computer observation, outside these cases, shows a certain irregularity in the sequence of
partial quotients. Moreover the specificity of these perfect expansions of type A and B is
pointed out in the next and last section. Finally, the possible connection between these two
cases is an open question (regarding the similarity between conditions C(A) and C(B)).

Before concluding this section, we must make a remark on the origin of these particular
continued fractions. As pointed out above, the Pk-expansions appeared from the study
of Mills and Robbins quartic over F13 [12, pp. 403–404]. This quartic equation has been
generalized [7] for all primes p ≥ 5. The solution has a continued fraction expansion with
a different pattern according to the residue modulo 3 of the prime p. In the case p ≡ 1
mod 3 (particularly for p = 13), the pattern of this continued fraction is perfect of type
A. In the case p ≡ 2 mod 3, the solution is a hyperquadratic element of order 2, but not
of order 1 [2]. The continued fraction for this solution has a different pattern, described
by Ayadi and Lasjaunias [1], and the partial quotients are all proportional to elements of
the sequence (Bn)n≥0. This has given rise to the following generalization concerning this
sequence (Bn)n≥0, in connection with hyperquadratic elements of higher order.

Returning to Proposition 1, let us take r = pn with n ≥ 1. Let us make the following
choice for the pair (P,Q) ∈ (Fp[T ])

2:

P = ǫ1P
(pn+(−1)n−1)/(p+1)
k and Q = ǫ2R

pn−1

k where (ǫ1, ǫ2) ∈ F
∗
p × Fp.

We consider the continued fraction α in F(p) so defined by (∗), which is a hyperquadratic
element of order n. We observed the following. If the (ℓ+ 2)-tuple Λ = (a1, · · · , aℓ, ǫ1, ǫ2) is
well chosen, then all partial quotients for α appear to be proportional to certain polynomials
Bn as in Conjecture 6 (corresponding to the case n = 1). Again this observation is just
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based on broad computer calculations. Amazingly, this is what happens for the solution of
the generalized quartic when p ≡ 2 mod 3, in this case we have n = 2 and we may say
that the expansion is perfect of type B and order 2. We have described [1, pp. 141–143]
a choice of Λ to obtain the above conjecture in the case n = 2 and the description of the
corresponding analogue of the sequence (j(n))n≥1.

Here below, to support the observation which has just been made, we have collected
a few examples of presumably perfect Pk-expansions of type B and of order 3. To allow
easier computer calculations, we have only considered the values p = 3, n = 3, k = 1 and
(ǫ1, ǫ2) = (1, 1).

Conjecture 8. Let ℓ ≥ 1 be an integer. Let α = [a1, a2, . . . , an, . . .] ∈ F(3) be the expansion
defined by

α = [a1, a2, . . . , aℓ, αℓ+1] and α27 = (T 2 − 1)7αℓ+1 + T 9

where we have ℓ = 3 and (a1, a2, a3) = (2T, T, T )
or ℓ = 4 and (a1, a2, a3, a4) = (T, 2T, 2T, T )
or ℓ = 4 and (a1, a2, a3, a4) = (2T, T 5 + 2T 3, T, T )
or ℓ = 5 and (a1, a2, a3, a4, a5) = (2T, T, T, T, T 5 + 2T 3).
Then, in each of these four cases, there exist a sequence (λn)n≥1 in F

∗
3 and a sequence

(j(n))n≥1 in N, such that
an = λnBj(n) for n ≥ 1.

Let us make a comment about this last statement. There are several ways [7, p. 34] to
obtain the first partial quotients of an algebraic element α in F(q). A natural way is to obtain
the beginning of the continued fraction expansion from a rational approximation to α. In
the present case (this is valid for all hyperquadratic elements), we can write the algebraic
equation (∗∗) satisfied by α in the following way: α = (aαr + b)/(cαr + d) = g(α). Then
we build rational approximations to α, starting from R1 = xℓ/yℓ, by the recursive formula
Rn+1 = g(Rn) for n ≥ 1. In the cases indicated above, these rational numbers have a special
form, showing a particular expansion with partial quotients as wanted. We guess a proof of
our conjecture could be derived from the study of the numerators and denominators of Rn.

Finally, we notice the existence of another different generalization for Pk-expansions of
type A, also leading to hyperquadratic elements of higher order [6]. In the next and last
section, we return to Pk-expansions of order 1 (i.e., r = p).

5 Hyperquadratic elements having a low algebraic de-

gree

In this section, we introduce a family of polynomials in the variable X with coefficients in
Fp[T ]. These polynomials H have the particular form of hyperquadratic type:

H(X) = uXp+1 + vXp + wX + z with u, v, w, z ∈ Fp[T ].

11



The four coefficients are depending on parameters coming from the finite word W introduced
in Section 3. Moreover H(X) = 0 will have solutions in F(p) having a continued fraction
expansion of the type discussed above. Under a particular choice of these parameters, H
will be reducible and consequently these solutions will have a particular algebraic degree
smaller than p + 1. The consideration of these polynomials comes from a quartic equation,
generalizing Mills and Robbins example, introduced by the author [7]. To describe these
coefficients, we use some more notation appearing there [7, pp. 30–31].

Here p and k are as above and W = w1T,w2T, . . . , w2kT is the finite word introduced in
Section 3.

Let n, t and m be integers with 1 ≤ n ≤ t ≤ m ≤ 2k. Then we introduce the continuant:

Kn,m = 〈wnT,wn+1T, . . . , wmT 〉 ∈ Fp[T ].

By convention we extend this notation with Kn,n−1 = 1 and Kn,n−2 = 0. From general
properties of continuants [8, p. 7], we have the following formula

Kn,mKt,m−1 −Kn,m−1Kt,m = (−1)m−tKn,t−2. (5)

Since, by (2), we have W ∗ = −1 ·W , 〈A∗〉 = 〈A〉 and 〈−1 · A〉 = (−1)|A|〈A〉 for any finite
word A, we also get

Kn,m = (−1)m−n+1K2k+1−m,2k+1−n. (6)

Let us consider the vector V = (p, k, j, ǫ) where p, k are as above, j is an integer with
1 ≤ j ≤ 2k − 1 and ǫ ∈ F

∗
p. To each such vector V , we associate a polynomial HV in

Fp[T ][X] defined by

HV (X) = Kj+2,2kX
p+1 −Kj+1,2kX

p + ǫ(K1,jX +K1,j−1).

We have the following proposition.

Proposition 9. Let V = (p, k, j, ǫ) and HV ∈ Fp[T ][X] be defined as above. For each choice
of V , there are two infinite continued fractions α and β in F(p)+, both Pk-expansions, such
that we have HV (α) = 0 and HV (1/β) = 0. The first one α is defined by

α = [wj+1T,wj+2T, . . . , w2kT, α2k−j+1]

and
αp = ǫ(−1)k+j(Pkα2k−j+1 −Rk).

The second one β is defined by

β = [w2k−j+1T,w2k−j+2T, . . . , w2kT, βj+1]

and
βp = ǫ−1(−1)k+j(Pkβj+1 −Rk).
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Moreover, corresponding to each triple (p, k, j), we define two different values ǫA and ǫB in
F
∗
p, as follows:

ǫA = (−1)k+j+1[wj+1, . . . , w2k, ωk] and ǫB = (−1)k+j+1[wj+1, . . . , w2k].

If ǫ = ǫA then both Pk-expansions α and β are perfect of type A
(i.e., condition C(A) in Theorem 4 is satisfied).
If ǫ = ǫB then both Pk-expansions α and β are perfect of type B
(i.e., condition C(B) in Conjecture 6 is satisfied).
Finally, let k = (p − 1)/2 and V = (p, k, j, ǫA). Then HV has a factor P of degree 2. We
have α = β, P (α) = 0 and P (X) = X2 + 2(−1)jX + 1.

Proof. According to (6), we can write

K1,j = (−1)jK2k+1−j,2k and K1,j−1 = (−1)j−1K2k+2−j,2k,

Kj+1,2k = (−1)jK1,2k−j and Kj+2,2k = (−1)j−1K1,2k−j−1.

From these formulas, we can write (−1)j−1HV (X) =

K1,2k−j−1X
p+1 +K1,2k−jX

p + ǫ(−K2k+1−j,2kX +K2k+2−j,2k).

Therefore, we get ǫ−1(−1)j−1Xp+1HV (1/X) =

K2k+2−j,2kX
p+1 −K2k+1−j,2kX

p + ǫ−1(K1,2k−jX +K1,2k−j−1).

We set V ∗ = (p, k, 2k − j, ǫ−1). Hence, we have obtained

Xp+1HV (1/X) = ǫ(−1)j−1HV ∗(X). (7)

By Proposition 1, we know that α ∈ F(p) defined by

α = [a1, a2, · · · , aℓ, αℓ+1] and αp = Pαℓ+1 +Q

satisfies I(α) = 0 where I ∈ Fp[T ][X] is defined by

I(X) = yℓX
p+1 − xℓX

p + (Pyℓ−1 −Qyℓ)X − Pxℓ−1 +Qxℓ.

In order to prove that HV (α) = 0, for the element α ∈ F(p) defined in this proposition, we
will show that I = HV if

(a1, . . . , aℓ, P,Q) = (wj+1T, . . . , w2kT, ǫ1Pk,−ǫ1Rk) with ǫ1 = (−1)k+jǫ.

First, recall that, according to (4) in Section 3, we have

Pk = (−1)kK1,2k and Rk = (−1)kK2,2k.
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Consequently, by (6) and ǫ1 = (−1)k+jǫ, we obtain

P = ǫ(−1)jK1,2k and Q = ǫ(−1)jK1,2k−1. (8)

Since (a1, . . . , aℓ) = (wj+1T, . . . , w2kT ), we also have

xℓ = Kj+1,2k, yℓ = Kj+2,2k, xℓ−1 = Kj+1,2k−1, yℓ−1 = Kj+2,2k−1. (9)

Hence, by (8), (9) and (5), we get

Pyℓ−1 −Qyℓ = ǫ(−1)j(K1,2kKj+2,2k−1 −K1,2k−1Kj+2,2k) = ǫK1,j

and also

Qxℓ − Pxℓ−1 = ǫ(−1)j(K1,2k−1Kj+1,2k −K1,2kKj+1,2k−1) = ǫK1,j−1.

Finally, we obtain the desired outcome:

I(X) = Kj+1,2kX
p+1 −Kj+2,2kX

p + ǫK1,j + ǫK1,j−1 = HV (X).

Changing j into 2k − j and ǫ into ǫ−1, in the definition for α, we get the definition for β.
Since this means changing V into V ∗, we have just proved that HV ∗(β) = 0 and according
to (7) this gives HV (1/β) = 0.
Let us now consider the (2k − j + 2)-tuple Λα defining the Pk-expansion α. We have Λα =
(wj+1, . . . , w2k,−ǫ2, ǫ2) where ǫ2 = (−1)k+j+1ǫ. Hence C(A) is satisfied if and only if we
have [w2k, w2k−1 . . . , wj+1 − ǫ2] = −1/ωk. This is equivalent to ǫ2 = [wj+1, . . . , w2k + 1/ωk].
Consequently C(A) is satisfied by Λα if and only if we have

ǫ = ǫA = (−1)j+k+1[wj+1, . . . , w2k, ωk].

Considering the same (2k − j + 2)-tuple Λα, we see in the same way that Λα satisfies C(B)
if and only if we have

ǫ = ǫB = (−1)j+k+1[wj+1, . . . , w2k].

Now, we need to consider β instead of α. Here the (j + 2)-tuple Λβ defining β is Λβ =
(w2k−j+1, . . . , w2k,−ǫ2, ǫ2) where ǫ2 = (−1)k+j+1ǫ−1. In the same way, we obtain that Λβ

satisfies C(A) if
ǫ = ǫA = (−1)j+k+1[w2k−j+1, . . . , w2k, ωk]

−1

and also that Λβ satisfies C(B) if

ǫ = ǫB = (−1)j+k+1[w2k−j+1, . . . , w2k]
−1.

We only need to prove that ǫA = ǫA and ǫB = ǫB. Let us compare ǫB and ǫB. According to
(2), we can write [w2k−j+1, . . . , w2k] = [−wj, · · · ,−w1]. Hence ǫB = ǫB is equivalent to

[wj+1, . . . , w2k] + [wj, . . . , w1]
−1 = 0.
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With our notation on continuants, this can be written as

(Kj+1,2k/Kj+2,2k)(1) + (K1,j−1/K1,j)(1) = 0.

This comes from K1,2k(1) = (−1)k(1− 1)k = 0 and the following general formula on contin-
uants [8, p. 7]: K1,2k = K1,jKj+1,2k +K1,j−1Kj+2,2k. Turning to ǫA = ǫA, we see, using the
same arguments as above that this is equivalent to

[wj+1, . . . , w2k, ωk] + [wj, . . . , w1,−ωk]
−1 = 0.

Using the same general formula on continuants, this is again equivalent to

〈−ωk, w1, w2, . . . , w2k, ωk〉 = 0.

The truth of that is derived from the following two equalities:

〈w2, . . . , w2k〉 = (−1)k and 〈w2, . . . , w2k−1〉 = 2(−1)k+1ωk.

The first one is obtained from Rk(1) = (−1)kK2,2k(1) = 1, while the proof for the second
one is more mysterious and it is left to the reader.

We finish the proof of this proposition by considering the extremal case k = (p − 1)/2.
In this particular case, we have seen in Section 3, that we have W = −2T, 2T,−2T, . . . , 2T
and ωk = −1. Hence, for all j, we get

ǫA = (−1)k+j+1[2(−1)j+1, . . . , 2,−1] = (−1)k.

Consequently, setting ℓ = 2k − j, α is defined by

α = [2(−1)ℓ−1T, . . . , 2T, αℓ+1] and αp = (−1)j(Pkαℓ+1 −Rk).

Note that the same definition holds for β with ℓ = j. Let us consider in F(p) the infinite
continued fraction γ = (−1)jα. We have γp = (−1)jαp and γℓ+1 = (−1)jαℓ+1 for all ℓ ≥ 1.
Since (−1)j = (−1)ℓ, we see that γ is defined by

γ = [−2T, . . . , 2(−1)ℓT, γℓ+1] and γp = (−1)ℓPkγℓ+1 −Rk.

Comparing to the definition of the quadratic continued fraction ρ, derived from the formal
golden mean, described in Section 4 and because of the uniqueness in this definition, we
obtain γ = ρ, α = (−1)jρ and in the same way β = α. A basic computation shows that the
minimal polynomial of (−1)jρ is P (X) = X2 + 2(−1)jTX + 1.

Concerning this polynomial HV , we are interested in its quality of being or not being
reducible over Fp(T ). In other words, we are interested in the exact algebraic degree of α
and β over Fp(T ). We have checked the reducibility of HV by computer calculations. In
the vector V , we first fix p and k. Then, according to formula (7), we observe that the
reducibility of HV need only be studied for 1 ≤ j ≤ k.

15



To illustrate our purpose, let us consider the simplest, and somehow trivial, case : p = 3.
Then, we only have to consider k = j = 1. Here we have ω1 = 1/2 = −1 and W = T,−T .
There are two polynomials H1 and H2 corresponding to V1 = (3, 1, 1, 1) and V2 = (3, 1, 1, 2):

H1(X) = HV1
(X) = X4 + TX3 + TX + 1

and
H2(X) = HV2

(X) = X4 + TX3 − TX − 1 = (X2 − 1)(X2 + TX + 1).

Note that reducibility of the polynomials HV over Fp(T ) has been tested by computer, using
Maple programming software. The polynomial H1 is irreducible over F3(T ). According to
Proposition 5.1, in both cases, α is defined by α = [−T, α2] and α3 = ǫ((T 2 − 1)α2 − T )
and we have α = β (hence α and 1/α are both solutions in F(3) of HV ). Moreover, we get
ǫA = (−1)3[2,−1] = −1 and ǫB = (−1)3[2] = 1. If ǫ = 1, the solution α ∈ F(3) of H1(X) = 0
is algebraic of degree 4, we have α = −[B0, B1, · · · , Bn, · · · ] and ν(α) = 4 (see the comment
after Conjecture 7). If ǫ = −1, the solution α of H2(X) = 0 satisfies α2 + Tα + 1 = 0
and therefrom we get α = [−T, T, · · · ,−T, T, · · · ]. Indeed, we have α = uφ(uT ) where
φ(T ) = [T, T, T, . . . , T, . . . ] is the formal golden mean and u2 = −1.

Given the prime p, an easy computation shows that there are (p2 − 1)/8 pairs (j, k) with
1 ≤ j ≤ k ≤ (p− 1)/2. Hence, for a given odd prime number p, there are (p2 − 1)(p− 1)/8
polynomials HV to be considered. We have investigated the reducibility of these polynomials
in all the possible cases, for the small primes p. The three conjectures presented below are
based on computer calculations, with limitation on the size of the prime p. From this
observation, we can make the first and main conjecture.

Conjecture 10. Let p be an odd prime number. Let V = (p, k, j, ǫ) and HV be defined as
above. If ǫ 6= ǫA and ǫ 6= ǫB, then the polynomial HV is irreducible over Fp(T ).

The irreducibility of HV , outside the two values for ǫ given in the proposition, may be
surprising. Another surprise is that the reducibility may sometimes happen, for a particular
value of ǫ, but only if the triple (p, k, j) is well chosen. A last surprise is the following: if
the reducibility appears for a certain triple (p, k, j) and a particular choice of ǫ, then this
is most of the times if ǫ = ǫA, and sometimes if ǫ = ǫA or ǫ = ǫB, but apparently never if
ǫ = ǫB alone. To illustrate this, we give below three tables where we have collected the data
obtained by computer for p = 7, p = 11 and p = 13. Each cell (j, k) with j ≤ k, corresponds
to p − 1 tested polynomials. In each cell, we have written Ir. if the polynomials HV are
irreducible for all ǫ. If HV is reducible (for ǫ = ǫA or ǫ = ǫB), we indicate the degrees of its
irreducible factors. For instance, A : 52.2 means 2 factors of degree 5 and 1 of degree 2, if
ǫ = ǫA and B : 8.4 means 1 factor of degree 8 and 1 of degree 4, if ǫ = ǫB. Note that, in all
cases, the sum of these degrees is equal to p+ 1.

Reducibility of HV : p = 7
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1 2 3
3 A : 32.2 A : 32.2 A : 23.12

2 A : 42 A : 32.12

B : 42

1 A : 6.12

Reducibility of HV : p = 11

1 2 3 4 5
5 A : 52.2 A : 52.2 A : 52.2 A : 52.2 A : 25.12

4 Ir. Ir. Ir. A : 52.12

B : 6.32

3 Ir. Ir. A : 10.12

B : 8.4
2 Ir. A : 52.12

B : 62

1 A : 10.12

Reducibility of HV : p = 13

1 2 3 4 5 6
6 A : 62.2 A : 6.32.2 A : 42.23 A : 6.32.2 A : 62.2 A : 26.12

B : 72

5 Ir. Ir. Ir. Ir. A : 12.12

4 A : 6.42 A : 6.42 Ir. A : 34.12

B : 72

3 A : 8.6 Ir. A : 43.12

2 Ir. A : 62.12

B : 72

1 A : 12.12

Our second conjecture is the following. Note that the irrationality measure for α, given
in both conjectures below, can be directly derived applying Corollary 5, with ℓ = 2k − j.

Conjecture 11. Let k ≥ 1 and m ≥ 2 be integers. Let p be a prime number such that
p = km+1. Let V = (p, k, k, ǫA) and HV be defined as above. Then the polynomial HV has
an irreducible factor P in Fp[T ][X] such that P (α) = 0, degX(P ) = m and ν(α) = m. More
precisely, we have

P (X) =
∑

0≤i≤m

(−1)ki
(

m

i

)

T (1−(−1)i)/2Xm−i.
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Finally, we give a last conjecture allowing us to return to the quartic equation which has
been the starting point of this investigation.

Conjecture 12. Let p be a prime number such that p ≡ 1 mod 3 and k = (p− 1)/3. Let
V = (p, k, k/2, ǫA) and HV be defined as above. Then the polynomial HV has an irreducible
factor P in Fp[T ][X] such that P (α) = 0, degX(P ) = 4 and ν(α) = 8/3. More precisely,
with j = k/2, we have

P (X) = X4 − wj+1TX
3 − (wj+1/wj+2)X

2 − (wj+1/wj+2)
2/12.

If V = (13, 4, 2,−1) then we have P = X4+6TX3+2X2+4. By elementary transforma-
tions on P and α [5, pp. 1114–1115], we return to the quartic equation X4+X2−TX+1 = 0,
having a solution in F(13), with predictable continued fraction expansion, introduced by Mills
and Robbins [12, p. 403].

Lastly, we want to add that the interested reader can willingly obtain the code for the
programs supporting these conjectures, by writing to the author.
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