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Abstract

In this paper, we mainly study the log-balancedness of combinatorial sequences.

We first give some new sufficient conditions for log-balancedness of some kinds of

sequences. Then we use these results to derive the log-balancedness of a number of

log-convex sequences related to derangement numbers, Domb numbers, numbers of

tree-like polyhexes, numbers of walks on the cubic lattice, and so on.

1 Introduction

A sequence of positive real numbers {zn}n≥0 is said to be log-convex (or log-concave) if
z2n ≤ zn−1zn+1 (or z2n ≥ zn−1zn+1) for each n ≥ 1. A log-convex sequence {zn}n≥0 is said to
be log-balanced if { zn

n!
}n≥0 is log-concave. See Došlić [4] for more details about log-balanced

sequences. It is well known that {zn}n≥0 is log-convex (or log-concave) if and only if its
quotient sequence { zn+1

zn
}n≥0 is nondecreasing (or nonincreasing) and a log-convex sequence

{zn}n≥0 is log-balanced if and only if (n+1)zn
zn−1

≥ nzn+1

zn
for each n ≥ 1. It is clear that the

quotient sequence of a log-balanced sequence does not grow too quickly.
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In combinatorics, log-convexity and log-concavity are not only instrumental in obtaining
the growth rate of a combinatorial sequence, but also important sources of inequalities. Log-
convexity and log-concavity have applications in many fields such as quantum physics, white
noise theory, probability, economics and mathematical biology. See, for instance [1, 2, 5, 6,
7, 12, 14, 16]. Since log-balancedness is related to log-convexity and log-concavity, it can
help us to find new inequalities. Hence, the log-balancedness of various sequences deserves
to be studied.

In this paper, we are interested in the log-balancedness of some combinatorial sequences.
In fact, there are many log-balanced sequences in combinatorics and number theory. Došlić
[4] presented some sufficient conditions for the log-balancedness of sequences satisfying three-
term linear recurrences. As consequences, a number of sequences such as the Motzkin num-
bers, the Fine numbers, the Franel numbers of orders 3 and 4, the Apéry numbers, the large
and little Schröder numbers, and the central Delannoy numbers, are log-balanced (see Došlić
[4]). Recently, Zhao [20] gave a sufficient condition for the log-balancedness of the product
of a log-balanced sequence and a log-concave sequence and she also proved that the binomial
transformation preserves the log-balancedness. Zhao [21, 20] showed that the sequences of
the exponential numbers and the Catalan-Larcombe-French numbers are respectively log-
balanced. Zhang and Zhao [18] gave some sufficient conditions for the log-balancedness of
combinatorial sequences. In addition, for a log-balanced sequence {zn}n≥0, Zhang and Zhao
[18] proved that {√zn}n≥0 is still log-balanced.

This paper is devoted to the study of log-balancedness of some combinatorial sequences
and is organized as follows. In Section 2, we give some new sufficient conditions for log-
balancedness. In Section 3, using these new results, we investigate the log-balancedness of a
series of log-convex sequences.

2 Sufficient conditions for log-balancedness

Zhang and Zhao [18] proved that the sequence of the arithmetic square root of a log-
balanced sequence is still log-balanced. For a log-convex sequence {zn}n≥0, here we prove
that { r

√
zn}n≥0 is log-balanced under some conditions, where r is a fixed positive real number.

Theorem 1. Let {zn}n≥0 be a log-convex sequence and r be a fixed positive real number. For
n ≥ 0, let xn = zn+1

zn
. If there exists a nonnegative integer Nr such that

(n+ 2)rxn − (n+ 1)rxn+1 ≥ 0, n ≥ Nr,

the sequence { r
√
zn}n≥Nr

is log-balanced.

Proof. Since the sequence {zn}n≥0 is log-convex, { r
√
zn}n≥0 is also log-convex. In order to

prove the log-balancedness of { r
√
zn}n≥Nr

, it is sufficient to show that the sequence { r
√
zn
n!

}n≥Nr

is log-concave. In fact, it is clear that { r
√
zn
n!

}n≥Nr
is log-concave if and only if

r
√
xn

n+1
≥ r

√
xn+1

n+2

for every n ≥ Nr. It follows from (n + 2)rxn − (n + 1)rxn+1 ≥ 0 that
r
√
xn

n+1
≥ r

√
xn+1

n+2
. Hence

the sequence { r
√
zn
n!

}n≥Nr
is log-concave. Therefore, { r

√
zn}n≥Nr

is log-balanced.
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Theorem 2. Suppose that a and b are positive real numbers with b < a and {zn}n≥0 is a
log-convex sequence. If the sequence {zan}n≥0 is log-balanced, then so is the sequence {zbn}n≥0.

Proof. Since the sequence {zan}n≥0 is log-balanced, we have

n

n+ 1
zan−1z

a
n+1 ≤ z2an ≤ zan−1z

a
n+1.

Then we derive

(

n

n+ 1

)
1

a

zn−1zn+1 ≤ z2n ≤ zn−1zn+1,

(

n

n+ 1

)
b

a

zbn−1z
b
n+1 ≤ z2bn ≤ zbn−1z

b
n+1.

Since 0 < b
a
< 1 and 0 < n

n+1
< 1, we have ( n

n+1
)

b

a ≥ n
n+1

and hence

n

n+ 1
zbn−1z

b
n+1 ≤ z2bn ≤ zbn−1z

b
n+1.

It follows from the definition of log-balancedness that the sequence {zbn}n≥0 is log-balanced.

In Theorem 2, if the condition “b < a” is replaced by “b > a”, the conclusion is not
valid in general. For example, the sequence {nn!}n≥2 is log-balanced, but {(nn!)2}n≥2 is not
log-balanced.

In the next section, we will use the results of Theorems 1–2 to derive log-balancedness of
a series of sequences.

Theorem 3. Let {zn}n≥0 be a log-concave sequence. If the sequence {n!zn}n≥0 is log-
balanced, then so is the sequence {n!√zn}n≥0.

Proof. Since the sequence {zn}n≥0 is log-concave, then so is the sequence {√zn}n≥0. In
order to prove the log-balancedness of {n!√zn}n≥0, we only need to show that {n!√zn}n≥0

is log-convex. Since {n!zn}n≥0 is log-balanced, we get

nz2n − (n+ 1)zn−1zn+1 ≤ 0,

zn ≤
√

n+ 1

n
zn−1zn+1 <

n+ 1

n

√
zn−1zn+1,

(n!
√
zn)

2 ≤ (n− 1)!(n+ 1)!
√
zn−1zn+1.

Hence {n!√zn}n≥0 is log-convex.
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3 Log-balancedness of some sequences

In this section, we discuss the log-balancedness of a number of log-convex sequences involving
many combinatorial numbers.

3.1 The derangement numbers

The derangement numbers dn (sequence A000166 in the OEIS) count the number of permu-
tations of n elements with no fixed points. The sequence {dn}n≥0 satisfies the recurrence

dn+1 = n(dn + dn−1), n ≥ 1, (1)

with d0 = 1, d1 = 0, d2 = 1, d3 = 2 and d4 = 9; see Table 1 for some information about it.
In particular, Liu and Wang [11] proved that {dn}n≥2 is log-convex.

n 0 1 2 3 4 5 6 7 8
dn 1 0 1 2 9 44 265 1854 14833

Table 1: Some initial values of {dn}n≥0

Theorem 4. For r ≥ 2, the sequence { r
√
dn}n≥3 is log-balanced.

Proof. We first prove that the sequence {
√
dn}n≥3 is log-balanced.

For n ≥ 0, let xn = dn+1

dn
. We prove by induction that

λn ≤ xn ≤ λn+1, n ≥ 3,

where λn = 2n+1
2

. It follows from (1) that

xn = n+
n

xn−1

, n ≥ 3. (2)

It is clear that λ3 ≤ x3 ≤ λ4. Assume that λk ≤ xk ≤ λk+1 for k ≥ 3. By applying (2), we
get

xk+1 − λk+1 =
k + 1

xk

− 1

2
and xk+1 − λk+2 =

k + 1

xk

− 3

2
.

Due to 1
λk+1

≤ 1
xk

≤ 1
λk

(k ≥ 3), we have

xk+1 − λk+1 ≥ 0 and xk+1 − λk+2 ≤ 0.

Then we derive λn ≤ xn ≤ λn+1 for n ≥ 3.
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By means of (2), we obtain

(n+ 2)2xn − (n+ 1)2xn+1 =
(n+ 2)2x2

n − (n+ 1)3xn − (n+ 1)3

xn

.

For any x ∈ (−∞,+∞), define a function

f(x) = (n+ 2)2x2 − (n+ 1)3x− (n+ 1)3.

Then we have
f ′(x) = 2(n+ 2)2x− (n+ 1)3.

Since f ′(x) ≥ 0 for x ≥ (n+1)3

2(n+2)2
, f is increasing on [ (n+1)3

2(n+2)2
,+∞). We can verify that

λn >
(n+1)3

2(n+2)2
. Hence, f is increasing on [λn,+∞). Note that

f(λn) = (n+ 2)2λ2
n − (n+ 1)3λn − (n+ 1)3

=
2n3 + 3n2 − 2n− 2

4
> 0 (n ≥ 1).

Then we have f(xn) > 0 for n ≥ 3. This implies that (n + 2)2xn − (n + 1)2xn+1 ≥ 0 for
n ≥ 3. It follows from Theorem 1 that the sequence {

√
dn}n≥3 is log-balanced. For r > 2, it

follows from Theorem 2 that { r
√
dn}n≥3 is log-balanced.

3.2 Numbers counting tree-like polyhexes

Let hn denote the number of tree-like polyhexes with n + 1 hexagons (Harary and Read
[10]); it is sequence A002212 in the OEIS. It is well known that hn is equal to the number of
lattice paths, from (0, 0) to (2n, 0) with steps (1, 1), (1,−1) and (2, 0), never falling below
the x-axis and with no peaks at odd level. The sequence {hn}n≥0 satisfies the recurrence

(n+ 1)hn = 3(2n− 1)hn−1 − 5(n− 2)hn−2, n ≥ 2, (3)

with h0 = h1 = 1, h2 = 3 and h3 = 10; see Table 2 for some information about it. In
particular, Liu and Wang [11] showed that the sequence {hn}n≥0 is log-convex.

n 0 1 2 3 4 5 6 7
hn 1 1 3 10 36 137 543 2219

Table 2: Some initial values of {hn}n≥0

Theorem 5. For r ≥ 1, the sequence { r
√
hn}n≥1 is log-balanced.
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Proof. In order to prove that { r
√
hn}n≥1 is log-balanced for r ≥ 1, we only need to show that

{hn}n≥1 is log-balanced by Theorem 2.
For n ≥ 0, put xn = hn+1

hn
. We next prove by induction that

λn ≤ xn ≤ µn, n ≥ 0,

where λn = 10n+3
2n+4

and µn = 5n+4
n+1

. It follows from (3) that

xn =
3(2n+ 1)

n+ 2
− 5(n− 1)

(n+ 2)xn−1

, n ≥ 1, (4)

It is easy to find that λ0 ≤ x0 ≤ µ0. Assume that λk ≤ xk ≤ µk for k ≥ 0. By using (4), we
derive

xk+1 − λk+1 =
3(2k + 3)

k + 3
− 10k + 13

2k + 6
− 5k

(k + 3)xk

and

xk+1 − µk+1 =
3(2k + 3)

k + 3
− 5k + 9

k + 2
− 5k

(k + 3)xk

.

Since 1
µk

≤ 1
xk

≤ 1
λk

(k ≥ 0), we have

xk+1 − λk+1 ≥ 2k + 5

2(k + 3)
− 5k

(k + 3)λk

=
16k + 15

2(k + 3)(10k + 3)
≥ 0

and

xk+1 − µk+1 ≤ k2 − 3k − 9

(k + 2)(k + 3)
− 5k

(k + 3)µk

=
−26k2 − 67k − 36

(k + 2)(k + 3)(5k + 4)
≤ 0.

Then we have λn ≤ xn ≤ µn for n ≥ 0.
By means of (4), we obtain

(n+ 2)xn − (n+ 1)xn+1 =
(n+ 2)(n+ 3)x2

n − 3(n+ 1)(2n+ 3)xn + 5n(n+ 1)

(n+ 3)xn

.

For any x ∈ (−∞,+∞), define a function

f(x) = (n+ 2)(n+ 3)x2 − 3(n+ 1)(2n+ 3)x+ 5n(n+ 1).
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It is clear that

(n+ 2)xn − (n+ 1)xn+1 =
f(xn)

(n+ 3)xn

.

We note that f is increasing on [3(n+1)(2n+3)
2(n+2)(n+3)

,+∞]. We find that λn >
3(n+1)(2n+3)
2(n+2)(n+3)

and

f(λn) =
84n2 − 41n− 27

4(n+ 2)
> 0 (n ≥ 1).

Then we have (n+ 2)xn − (n+ 1)xn+1 > 0 for n ≥ 1. Hence {hn}n≥1 is log-balanced.

3.3 Numbers counting walks on the cubic lattice

Consider the sequence {wn}n≥0 counting the number of walks on the cubic lattice with n

steps, starting and finishing on the xy plane and never going below it (Guy [9]); it is sequence
A005572 in the OEIS. The sequence {wn}n≥0 satisfies the recurrence

(n+ 2)wn = 4(2n+ 1)wn−1 − 12(n− 1)wn−2, n ≥ 2, (5)

where w0 = 1, w1 = 4 and w2 = 17; see Table 3 for some information about it. In particular,
Liu and Wang [11] showed that {wn}n≥0 is log-convex.

n 0 1 2 3 4 5 6
wn 1 4 17 76 354 1704 8421

Table 3: Some initial values of {wn}n≥0

Theorem 6. Let r be a positive real number. For r ≥ 1, the sequence { r
√
wn}n≥0 is log-

balanced. For 5
6
< r < 1, there exists a positive integer Nr such that { r

√
wn}n≥Nr

is log-
balanced.

Proof. For n ≥ 0, let xn = wn+1

wn
. Now we prove by induction that

λn ≤ xn ≤ µn, n ≥ 0, (6)

where λn = 6n+13
n+4

and µn = 6(n+3)
n+4

. It follows from (5) that

xn =
4(2n+ 3)

n+ 3
− 12n

(n+ 3)xn−1

, n ≥ 1, (7)

We observe that λk ≤ xk ≤ µk for k = 0, 1, 2. Assume that λk ≤ xk ≤ µk for k ≥ 2. By
using (7), we have

xk+1 − λk+1 =
4(2k + 5)

k + 4
− 12(k + 1)

(k + 4)xk

− 6k + 19

k + 5

7
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and

xk+1 − µk+1 =
4(2k + 5)

k + 4
− 12(k + 1)

(k + 4)xk

− 6(k + 4)

k + 5
.

Since 1
µk

≤ 1
xk

≤ 1
λk

, we derive

xk+1 − λk+1 >
4(2k + 5)

k + 4
− 12(k + 1)

(k + 4)λk

− 6k + 19

k + 5

=
8k2 + 17k + 72

(k + 4)(k + 5)(6k + 13)
> 0

and

xk+1 − µk+1 <
4(2k + 5)

k + 4
− 12(k + 1)

(k + 4)µk

− 6(k + 4)

k + 5

= − 2k2 + 18k + 28

(k + 3)(k + 4)(k + 5)
< 0.

Hence we have λn ≤ xn ≤ µn for n ≥ 0.
By applying (6), we obtain

(n+ 2)xn − (n+ 1)xn+1 ≥ (n+ 2)λn − (n+ 1)µn+1

=
n2 + 7n+ 34

(n+ 4)(n+ 5)
> 0 (n ≥ 0).

Then {wn}n≥0 is log-balanced. For r > 1, it follows from Theorem 2 that { r
√
wn}n≥0 is

log-balanced.
For 5

6
< r < 1, by using (6), we get

(n+ 2)rxn − (n+ 1)rxn+1 ≥
(n+ 2)r(n+ 5)(6n+ 13)− 6(n+ 1)r(n+ 4)2

(n+ 4)(n+ 5)
.

It is obvious that (n+ 2)r(n+ 5)(6n+ 13) ≥ 6(n+ 1)r(n+ 4)2 if and only if

r ln(n+ 2)− r ln(n+ 1) + ln(6n2 + 43n+ 65)− ln(6n2 + 48n+ 96) ≥ 0.

We note that

r ln(n+ 2)− r ln(n+ 1) + ln(6n2 + 43n+ 65)− ln(6n2 + 48n+ 96)

= r ln

(

1 +
1

n+ 1

)

− ln

(

1 +
5n+ 31

6n2 + 43n+ 65

)

.

Due to x
1+x

< ln(1 + x) < x for x > 0, we have

r ln(n+ 2)− r ln(n+ 1) + ln(6n2 + 43n+ 65)− ln(6n2 + 48n+ 96)

>
(6r − 5)n2 + (43r − 41)n+ 65r − 62

(n+ 2)(6n2 + 43n+ 65)
.

8



Since

lim
n→+∞

[(6r − 5)n2 + (43r − 41)n+ 65r − 62] = +∞,

there exists a positive integer Nr such that (6r − 5)n2 + (43r − 41)n + 65r − 62 > 0 for
n ≥ Nr. Then the sequence { r

√
wn}n≥Nr

is log-balanced for 5
6
< r < 1.

3.4 Numbers counting a class of arrays

For an integer r ≥ 0, let Q(n, r) denote the number of arrays (or matrices) of integers ai,j ≥ 0
(1 ≤ i, j ≤ n) such that

n
∑

i=1

ai,j =
n

∑

j=1

ai,j = r

holds for all i and j. Consider the sequence {An}n≥0, where An = Q(n, 2). The sequence
{An}n≥0 satisfies the recurrence

An+1 = (n+ 1)2An − n

(

n+ 1

2

)

An−1, n ≥ 1, (8)

where A0 = A1 = 1 and A2 = 3; see Table 4 for some information about it. It is sequence
A000681 in the OEIS. In particular, Zhao [19] proved that the sequence {An}n≥1 is log-
convex (it is clear that {An}n≥0 is also log-convex). See [3] for more properties of {An}n≥0.

n 0 1 2 3 4 5 6
An 1 1 3 21 282 6210 202410

Table 4: Some initial values of {An}n≥0

Theorem 7. For r ≥ 5, the sequence { r
√
An}n≥0 is log-balanced.

Proof. For n ≥ 0, set xn = An+1

An
. We next prove by induction that

λn ≤ xn ≤ λn+1, n ≥ 0, (9)

where λn = n2. It follows from (8) that

xn = (n+ 1)2 − n2(n+ 1)

2xn−1

, n ≥ 1, (10)

9
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It is clear that λk ≤ xk ≤ λk+1 for k = 0, 1, 2. Assume that λk ≤ xk ≤ λk+1 for k ≥ 2. By
applying (10), we get

xk+1 − λk+1 = 2k + 3− (k + 1)2(k + 2)

2xk

,

xk+1 − λk+2 = −(k + 1)2(k + 2)

2xk

.

Due to 1
λk+1

≤ 1
xk

≤ 1
λk

(k ≥ 2), we have

xk+1 − λk+1 ≥ 2k + 3− (k + 1)2(k + 2)

2λk

=
3k3 + 2k2 − 5k − 2

2k2
≥ 0 (k ≥ 2)

and

xk+1 − λk+2 ≤ −(k + 1)2(k + 2)

2λk+1

= −k + 2

2
≤ 0.

Then we derive λn ≤ xn ≤ λn+1 for n ≥ 0.
By using (9), we have

(n+ 2)5xn − (n+ 1)5xn+1 ≥ (n+ 2)5λn − (n+ 1)5λn+2

= (n+ 2)2(n4 + 2n3 − 2n2 − 5n− 1) > 0 (n ≥ 2).

On the other hand, we note that (k + 2)5xk − (k + 1)5xk+1 for k = 0, 1. Then (n+ 2)5xn −
(n+1)5xn+1 > 0 holds for n ≥ 0. It follows from Theorem 1 that the sequence { 5

√
An}n≥0 is

log-balanced. For r > 5, it follows from Theorem 2 that { r
√
An}n≥0 is log-balanced.

3.5 Numbers satisfying a three-term recurrence

Let tn counting the number of integer sequences (fj, . . . , f2, f1, 1, 1, g1, g2, . . . , gk) with j +
k + 2 = n in which every fi is the sum of one or more contiguous terms immediately to its
right, and gi is likewise the sum of one or more contiguous terms immediately to its left; see
Odlyzko [13]. Fishburn et al. [8] proved that the sequence {tn}n≥1 satisfies the recurrence

tn+1 = 2ntn − (n− 1)2tn−1, n ≥ 2, (11)

where t1 = t2 = 1 and t3 = 3; see Table 5 for some information about it. It is sequence
A005189 in the OEIS. Zhao [19] showed that the sequence {tn}n≥1 is log-convex.

Theorem 8. For r ≥ 3, the sequence { r
√
tn}n≥3 is log-balanced.

10
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n 1 2 3 4 5 6 7
tn 1 1 3 14 85 626 5387

Table 5: Some initial values of {tn}n≥0

Proof. For n ≥ 0, put xn = tn+1

tn
. We first prove by induction that

λk ≤ xk ≤ µk, k ≥ 3, (12)

where λk = k +
√
k − 1

4
and µk = k + 1 +

√
k + 1. It follows from (11) that

xn = 2n− (n− 1)2

xn−1

, n ≥ 2, (13)

It is clear that λk ≤ xk ≤ µk for k = 3, 4. Assume that λk ≤ xk ≤ µk for k ≥ 4. By using
(13), we have

xk+1 − λk+1 = k −
√
k + 1 +

5

4
− k2

xk

and xk+1 − µk+1 = k −
√
k + 2− k2

xk

.

Since 1
µk

≤ 1
xk

≤ 1
λk

for k ≥ 4, we get

xk+1 − λk+1 ≥ k +
5

4
−
√
k + 1− k2

λk

=
1

λk

(

k
√
k + k +

5
√
k

4
+

√
k + 1

4
− 5

16
− k

√
k + 1−

√

k(k + 1)

)

>
1

λk

(√
k + k −

√

k(k + 1)− 5

16

)

>
k + 1−

√

k(k + 1)

λk

> 0

and

xk+1 − µk+1 ≤ k −
√
k + 2− k2

µk

=
k + k

√
k + 1− (k + 1)

√
k + 2−

√

(k + 1)(k + 2)

k + 1 +
√
k + 1

≤ −
√
k + 2

k + 1 +
√
k + 1

≤ 0.

Then we derive λk ≤ xk ≤ µk for k ≥ 3.
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It follows from (12) that

(n+ 2)3xn − (n+ 1)3xn+1 ≥ (n+ 2)3
(

n+
√
n− 1

4

)

− (n+ 1)3(n+ 2 +
√
n+ 2)

=

(

3

4
− 2√

n+
√
n+ 2

)

n3 +
3n2 − 4n− 8

2

+3n(2(n+ 2)
√
n− (n+ 1)

√
n+ 2) + 8

√
n−

√
n+ 2

> 0 (n ≥ 3).

On the other hand, we can verify that (n + 2)3xn − (n + 1)3xn+1 > 0 for 1 ≤ n ≤ 2. Hence
the sequence { 3

√
tn}n≥1 is log-balanced. For r > 3, it follows from Theorem 2 that { r

√
tn}n≥1

is log-balanced.

3.6 Numbers counting bipermutations

For a given nonnegative integer k, a relation ℜ is called a k-permutation of [n] = {1, 2, . . . , n}
if all vertical sections and all horizontal sections have k elements. The k-permutation ℜ is
called a bipermutation when k = 2. Let P (n, k) denote the number of these relations. Let
Pn = P (n, 2). The sequence {Pn} satisfies the recurrence

Pn+1 =

(

n+ 1

2

)

(2Pn + nPn−1), n ≥ 1, (14)

where P0 = 1 and P1 = 0; see Table 6 for some information about it. It is sequence A001499
in the OEIS. In particular, Zhao [19] showed that the sequence {Pn}n≥2 is log-convex.

n 0 1 2 3 4 5 6
Pn 1 0 1 6 90 2040 67950

Table 6: Some initial values of {Pn}n≥0

Theorem 9. For r ≥ 3, the sequence { r
√
Pn}n≥3 is log-balanced.

Proof. For n ≥ 2, put xn = Pn+1

Pn
. It follows from (14) that

xk = k(k + 1) + k

(

k + 1

2

)

1

xk−1

, k ≥ 3. (15)

We prove that

λn ≤ xn ≤ λn+1, n ≥ 2, (16)

12
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where λn = n(n + 1). It is evident that λk < xk < λk+1 for k = 2, 3. Assume that
λk ≤ xk ≤ λk+1 for k ≥ 3. By applying (15), we get

xk+1 − λk+1 = (k + 1)

(

k + 2

2

)

1

xk

> 0

and

xk+1 − λk+2 = −2(k + 2) +
(k + 1)2(k + 2)

2xk

.

Since 1
xk

≤ 1
λk

, we have

xk+1 − λk+2 ≤ −3k2 + 5k − 2

2k
< 0.

Then we have λn ≤ xn ≤ λn+1 for n ≥ 2.
It follows from (15) and (16) that

(n+ 2)3xn − (n+ 1)3xn+1 = (n+ 2)3xn − (n+ 1)4(n+ 2)− (n+ 1)5(n+ 2)

2xn

≥ (n+ 2)3λn − (n+ 1)4(n+ 2)− (n+ 1)5(n+ 2)

2λn

=
(n+ 1)(n+ 2)(n3 − n2 − 5n− 1)

2n
> 0 (n ≥ 3).

We have from Theorem 1 that the sequence { 3
√
Pn}n≥3 is log-balanced. For r > 3, it follows

from Theorem 2 that { r
√
Pn}n≥3 is log-balanced.

3.7 Numbers satisfying a four-term recurrence (“minus” case)

Let Gn stand for the number of graphs on the vertex set [n] = {1, 2, . . . , n}, whose every
component is a cycle, and put G0 = 1. The sequence {Gn} satisfies the recurrence

Gn+1 = (n+ 1)Gn −
(

n

2

)

Gn−2, n ≥ 2, (17)

where G1 = 1, G2 = 2, and G3 = 5; see Table 7 for some information about it. It is sequence
A002135 in the OEIS. This example is Exercise 5.22 of Stanley [15], and one can find its
combinatorial proof in Stanley [15, p. 121]. In addition, Došlić [7] showed that the sequence
{Gn}n≥0 is log-convex.

Theorem 10. For r ≥ 2, the sequence { r
√
Gn}n≥0 is log-balanced.
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n 0 1 2 3 4 5 6
Gn 1 1 2 5 17 73 388

Table 7: Some initial values of {Gn}n≥0

Proof. For n ≥ 0, let xn = Gn+1

Gn
. We next prove by induction that

λn ≤ xn ≤ λn+1, n ≥ 0, (18)

where λn = n. It follows from (17) that

xn = n+ 1−
(

n

2

)

1

xn−1xn−2

, n ≥ 2. (19)

Firstly, we have λk ≤ xk ≤ λk+1 for 0 ≤ k ≤ 4. Assume that λk ≤ xk ≤ λk+1 for k ≥ 4. By
using (19), we have

xk+1 − λk+2 = −
(

k + 1

2

)

1

xkxk−1

< 0

and

xk+1 − λk+1 = 1−
(

k + 1

2

)

1

xkxk−1

≥ 2k(k − 1)− k(k + 1)

2xkxk−1

> 0.

Then we derive λn ≤ xn ≤ λn+1 for n ≥ 0.
It follows from (17) and (18) that

(n+ 2)2xn − (n+ 1)2xn+1 = (n+ 2)2xn − (n+ 1)2(n+ 2) +
(n+ 1)2

(

n+1
2

)

xnxn−1

≥ (n+ 2)2λn − (n+ 1)2(n+ 2) +
(n+ 1)2

(

n+1
2

)

λn+1λn

=
n2 − 3

2
> 0 (n ≥ 2).

On the other hand, we note that (k+2)2xk−(k+1)2xk+1 > 0 for k = 0, 1. Then (n+2)2xn−
(n+ 1)2xn+1 > 0 holds for n ≥ 0. We have from Theorem 1 that the sequence {

√
Gn}n≥0 is

log-balanced. For r > 2, it follows from Theorem 2 that { r
√
Gn}n≥0 is log-balanced.
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3.8 Numbers satisfying a four-term recurrence (“plus” case)

Let be given a set of ∆ of n straight lines in the plane, δ1, δ2, . . . , δn, lying in general position
(no two among them are parallel, and no three among are concurrent). Let P be the set of
their points of intersection, |P | =

(

n

2

)

. We call any set of n points from P such that any
three different points are not collinear, a cloud. Let G (∆) stand for the set of clouds of ∆
and gn = |G (∆)|. The sequence {gn}n≥0 satisfies the recurrence

gn+1 = ngn +

(

n

2

)

gn−2, n ≥ 2, (20)

where g0 = 1, g1 = g2 = 0, g3 = 1, g4 = 3 and g5 = 12; see Table 8 for some information
about it. It is sequence A001205 in the OEIS. In particular, Zhao [19] proved that the
sequence {gn}n≥3 is log-convex. For more properties of {gn}n≥0, see Comtet [3].

n 0 1 2 3 4 5 6 7 8
gn 1 0 0 1 3 12 70 465 3507

Table 8: Some initial values of {gn}n≥0

Theorem 11. For r ≥ 2, the sequence { r
√
gn}n≥5 is log-balanced.

Proof. For n ≥ 3, let xn = gn+1

gn
. It follows from (20) that

xn = n+

(

n

2

)

1

xn−1xn−2

, n ≥ 5. (21)

Now we show that

λn ≤ xn ≤ λn+1, n ≥ 3, (22)

where λn = n. We can verify that λk ≤ xk ≤ λk+1 for 3 ≤ k ≤ 5. Assume that λk ≤ xk ≤
λk+1 for k ≥ 5. By applying (21), we get

xk+1 − λk+1 =

(

k + 1

2

)

1

xkxk−1

> 0

and

xk+1 − λk+2 =
k(k + 1)

2xkxk−1

− 1

≤ −k(k − 3)

2xkxk−1

< 0.
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Then we have λn ≤ xn ≤ λn+1 for n ≥ 3.
It follows from (21) and (22) that

(n+ 2)2xn − (n+ 1)2xn+1 = (n+ 2)2xn − (n+ 1)3 − (n+ 1)2
(

n+1
2

)

xnxn−1

≥ (n+ 2)2λn − (n+ 1)3 − (n+ 1)2
(

n+1
2

)

λnλn−1

=
n3 − 3n2 − 7n+ 1

2(n− 1)
> 0 (n ≥ 5).

We have from Theorem 1 that the sequence {√gn}n≥5 is log-balanced. For r > 2, it follows
from Theorem 2 that { r

√
gn}n≥5 is log-balanced.

3.9 Numbers counting permutation with ordered orbits

Consider the sequence {Tn}n≥2 defined by

Tn+1 = (n− 1)Tn +
n!

2
, n ≥ 2, (23)

where T2 = 1; see Table 9 for some information about it. The value of Tn is related to
the number of permutations with ordered orbits. In particular, Zhao [19] proved that the
sequence {Tn}n≥2 is log-convex. It is sequence A006595 in the OEIS. For more properties of
{Tn}n≥2, see Comtet [3].

n 2 3 4 5 6 7
Tn 1 2 7 33 192 1320

Table 9: Some initial values of {Tn}n≥0

Theorem 12. For r ≥ 2, the sequence { r
√
Tn}n≥2 is log-balanced.

Proof. For n ≥ 2, let xn = Tn+1

Tn
. It is easy to verify that

Tn+1 = (2n− 1)Tn − (n− 2)nTn−1, n ≥ 3. (24)

It follows from (24) that

xn = 2n− 1− (n− 2)n

xn−1

, n ≥ 3. (25)

Now we prove by induction that

λn ≤ xn ≤ λn+1, n ≥ 2,
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where λn = n. It is not difficult to verify that λk ≤ xk ≤ λk+1 for 2 ≤ k ≤ 4. Assume that
λk ≤ xk ≤ λk+1 for k ≥ 4. Using (25), we have

xk+1 − λk+1 = k − (k + 1)(k − 1)

xk

≥ k − (k + 1)(k − 1)

k
> 0

and

xk+1 − λk+2 ≤ k − 1− (k + 1)(k − 1)

λk+1

= 0.

Then we derive that λn ≤ xn ≤ λn+1 for n ≥ 2. By means of (26), we obtain

(n+ 2)2xn − (n+ 1)2xn+1 =
(n2 + 4n+ 4)x2

n − (2n3 + 5n2 + 4n+ 1)xn + n4 + 2n3 − 2n− 1

xn

For any x ∈ (−∞,+∞), define a function

f(x) = (n2 + 4n+ 4)x2 − (2n3 + 5n2 + 4n+ 1)x+ n4 + 2n3 − 2n− 1.

We can prove that f is increasing on [σn,+∞), where σn = 2n3+5n2+4n+1
2(n2+4n+4)

, f is increasing on

[σn,+∞). We can verify that λn > σn. Hence f is increasing on [λn,+∞). We note that

f(λn) = (n2 + 4n+ 4)λ2
n − (2n3 + 5n2 + 4n+ 1)λn + n4 + 2n3 − 2n− 1

= n3 − 3n− 1

> 0 (n ≥ 2).

Then we have f(xn) > 0 for n ≥ 2. This implies that (n + 2)2xn − (n + 1)2xn+1 ≥ 0 for
n ≥ 2. It follows from Theorem 1 that the sequence {

√
Tn}n≥2 is log-balanced. For r > 2, it

follows from Theorem 2 that { r
√
Tn}n≥2 is log-balanced.

3.10 The Domb numbers

Let {Dn}n≥0 be the sequence of the Domb numbers. The value of Dn is the number of
2n-step polygons on the diamond lattice. The sequence {Dn}n≥0 satisfies the recurrence

n3Dn = 2(2n− 1)(5n2 − 5n+ 2)Dn−1 − 64(n− 1)3Dn−2, n ≥ 2, (26)

where D0 = 1 and D1 = 4; see Table 10 for some information about it. It is sequence
A002895 in the OEIS. In particular, Wang and Zhu [17] proved that the sequence {Dn}n≥0

is log-convex.

Theorem 13. For r ≥ 2, the sequence { r
√
Dn}n≥1 is log-balanced.
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n 0 1 2 3 4 5 6 7
Dn 1 4 28 256 2716 31504 387136 4951552

Table 10: Some initial values of {Dn}n≥0

Proof. For n ≥ 0, let xn = Dn+1

Dn
. It follows from (26) that

xn =
2(2n+ 1)(5n2 + 5n+ 2)

(n+ 1)3
− 64n3

(n+ 1)3xn−1

, n ≥ 1. (27)

We first show that

λn ≤ xn ≤ µn, n ≥ 1, (28)

where λn = 16(n−1)
n+1

and µn = 16n
n+1

. It is obvious that λk < xk < µk for 1 ≤ k ≤ 3. Assume
that λk ≤ xk ≤ µk for k ≥ 3. By means of (27), we have

xk+1 − λk+1 ≥ 2(2k + 3)(5k2 + 15k + 12)

(k + 2)3
− 16k

k + 2
− 64(k + 1)3

(k + 2)3λk

=
2(3k3 + 12k2 − 9k − 38)

(k − 1)(k + 2)3
> 0 (k ≥ 3)

and

xk+1 − µk+1 ≤ 2(2k + 3)(5k2 + 15k + 12)

(k + 2)3
− 16(k + 1)

k + 2
− 64(k + 1)3

(k + 2)3µk

= −2(3k3 + 7k2 + 4k + 2)

k(k + 2)3
< 0.

Then we have λn ≤ xn ≤ µn for n ≥ 1.
It follows from (28) that

(n+ 2)2xn − (n+ 1)2xn+1 ≥ 16[(n− 1)(n+ 2)3 − (n+ 1)4]

(n+ 1)(n+ 2)

=
16(n3 − 8n− 9)

(n+ 1)(n+ 2)

> 0 (n ≥ 4).

On the other hand, we observe that (n + 2)2xn − (n + 1)2xn+1 > 0 for 0 ≤ n ≤ 3. We have
from Theorem 1 that the sequence {

√
Dn}n≥0 is log-balanced. For r > 2, it follows from

Theorem 2 that { r
√
Dn}n≥0 is log-balanced.

18



3.11 Numbers counting a class of n× n symmetric matrices

Let τn denote the number of n× n symmetric N0-matrices with every row(and hence every
column) sum equals to 2 with trace zero (i.e., all main diagonal entries are zero). The
sequence {τn}n≥0 satisfies the recurrence

τn = (n− 1)τn−1 + (n− 1)τn−2 −
(

n− 1

2

)

τn−3, (29)

where τ0 = 1, τ1 = 0, τ2 = τ3 = 1; see Table 11 for some information about it. It is
sequence A002137 in the OEIS. In particular, Došlić [7] showed that the sequence {τn}n≥6

is log-convex.

n 0 1 2 3 4 5 6 7 8
τn 1 0 1 1 6 22 130 822 6202

Table 11: Some initial values of {τn}n≥0

Theorem 14. For r ≥ 2, the sequence { r
√
τn}n≥6 is log-balanced.

Proof. For n ≥ 2, set xn = τn+1

τn
. We now prove by induction that

λn ≤ xn ≤ λn+1, n ≥ 6, (30)

where λn = n. It is clear that λk ≤ xk ≤ λk+1 for k = 6, 7. Assume that λk ≤ xk ≤ λk+1 for
k ≥ 7. It follows from (29) that

xn = n+
n

xn−1

− n(n− 1)

2xn−2xn−1

, n ≥ 4, (31)

By applying (31), we get

xk+1 − λk+1 =
k + 1

xk

− (k + 1)k

2xk−1xk

and xk+1 − λk+2 = −1 +
k + 1

xk

− (k + 1)k

2xk−1xk

.

Due to 1
λk+1

≤ 1
xk

≤ 1
λk

(k ≥ 7), we have

xk+1 − λk+1 ≥ 1− k + 1

2(k − 1)

=
k − 3

2(k − 1)
≥ 0

and

xk+1 − λk+2 ≤ 1

k
− 1

2

= −k − 2

2k
≤ 0.
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Then we derive λn ≤ xn ≤ λn+1 for n ≥ 6.
By using (30) and (31), we have

(n+ 2)2xn − (n+ 1)2xn+1 = (n+ 2)2xn − (n+ 1)3 − (n+ 1)3

xn

+
n(n+ 1)3

2xnxn−1

≥ (n+ 2)2λn − (n+ 1)3 − (n+ 1)3

λn

+
n(n+ 1)3

2λnλn+1

≥ 3n2 − 6n− 22

6
> 0 (n ≥ 6).

It follows from Theorem 1 that the sequence {√τn}n≥6 is log-balanced. For r > 2, it follows
from Theorem 2 that { r

√
τn}n≥6 is log-balanced.

In the rest of this section, we discuss log-balancedness of some sequences by mens of
Theorem 3.

3.12 The harmonic numbers

Let {Hn}n≥1 be the sequence of harmonic numbers. It is well known that

Hn =
n

∑

k=1

1

k
, n ≥ 1.

Theorem 15. The sequence {n!
√
Hn}n≥1 is log-balanced.

Proof. Using the definition of log-concavity, one can immediately prove that {Hn}n≥1 is log-
concave. Moreover, from Zhao [20], {n!Hn}n≥1 is log-balanced. It follows from Theorem 3
that the sequence {n!

√
Hn}n≥1 is log-balanced.

3.13 The Fibonacci and Lucas numbers

Let {Fn}n≥0 and {Ln}n≥0 denote the Fibonacci and Lucas sequence, respectively. The Binet’s
forms of Fn and Ln respectively are

Fn =
αn − (−1)nα−n

√
5

, Ln = αn + (−1)nα−n, n ≥ 0,

where α = 1+
√
5

2
.

Theorem 16. The sequences {n!
√
F2n}n≥1 and {n!√L2n+1}n≥1 are both log-balanced.

Proof. Using the definition of log-concavity, we can prove that the sequences {F2n}n≥1 and
{L2n−1}n≥1 are both log-concave. Zhao [20] showed that {n!F2n}n≥1 and {n!L2n+1}n≥1 are
log-balanced. It follows from Theorem 3 that the sequences {n!

√
F2n}n≥1 and {n!√L2n+1}n≥1

are both log-balanced.
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4 Conclusions

For a log-convex sequence {zn}n≥0, we have shown that the arithmetic root sequence { r
√
zn}n≥0

is log-balanced under suitable conditions. We have also derived the log-balancedness of a
number of log-convex sequences related to many famous combinatorial numbers. However,
we cannot give the minimum value of r such that { r

√
zn}n≥0 is log-balanced. We hope to

solve this question in the future work. In addition, we also hope to find more functions f

defined in (−∞,+∞) such that {f(zn)}n≥0 is log-balanced.
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