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Abstract

From varying Egyptian fraction equations, we obtain generalizations of primary

pseudoperfect numbers and Giuga numbers, which we call prime power pseudoperfect

numbers and prime power Giuga numbers, respectively. We show that a sequence

of Murthy in the On-line Encyclopedia of Integer Sequences is a subsequence of the

sequence of prime power pseudoperfect numbers. We also provide prime factorization

conditions sufficient to imply that a number is a prime power pseudoperfect number or

a prime power Giuga number. The conditions on prime factorizations naturally give

rise to a generalization of Fermat primes, which we call extended Fermat primes.

1 Introduction

We define and study two new types of integers, which we call prime power pseudoperfect
numbers and prime power Giuga numbers. Each satisfies an Egyptian fraction equation
that is a variation of a previously studied Egyptian fraction equation. Throughout we
reference relevant sequences from the On-line Encyclopedia of Integer Sequences (OEIS) [7].
In Section 1 we review pseudoperfect numbers, primary pseudoperfect numbers, and Giuga
numbers. In Section 2 we define prime power pseudoperfect numbers and show their relation
to a sequence in the OEIS contributed by Murthy. Prime power Giuga numbers are defined
in Section 3. We give some formulas that can produce more terms of our sequences in
Section 4. In Section 5 we discuss some open problems and introduce extended Fermat
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primes. We have contributed each of our new sequences to the OEIS. The sequences of
prime power pseudoperfect numbers, prime power Giuga numbers, and extended Fermat
primes are A283423, A286497, and A286499, respectively.

A pseudoperfect number is a positive integer n such that there exist integers 0 < d1 <
· · · < dk < n, where di | n for each i and n = d1 + · · ·+ dk. For example, the number 20 is a
pseudoperfect number since 20 = 1+4+5+10. Pseudoperfect numbers were first considered
by Sierpiński [6] and form sequence A005835. Open problems on pseudoperfect numbers can
be found in the book [5, B2].

A primary pseudoperfect number is a positive integer n > 1 that satisfies the Egyptian
fraction equation

∑

p|n

1

p
+

1

n
= 1,

where the sum is taken over all prime divisors on n. Primary pseudoperfect numbers were
originally defined by Butske, Jaje, and Mayernik [3] and form sequence A054377. When
n > 1 is s primary pseudoperfect number, it follows that

∑

p|n

n

p
+ 1 = n.

So, we see that, with the exception of 2, every primary pseudoperfect number is a pseudop-
erfect number.

A Giuga number is a positive composite integer n such that

∑

p|n

1

p
−

1

n
∈ N,

where the sum is taken over all prime divisors on n. Giuga numbers were defined by Bor-
wein et al. [2], and form sequence A007850. All known Giuga numbers satisfy the stronger
Egyptian fraction equation

∑

p|n

1

p
−

1

n
= 1.

Giuga numbers are related to Giuga’s conjecture on primality [4]. Open problems relating
to Giuga numbers can be found in the book [5, A17]

2 Prime power pseudoperfect numbers

A prime power pseudoperfect number is a positive integer n > 1 that satisfies the Egyptian
fraction equation

∑

pk|n

1

pk
+

1

n
= 1,
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where the sum is taken over all prime power divisors of n. As an example we can check that
20 is a prime power pseudoperfect number since

1

2
+

1

4
+

1

5
+

1

20
= 1.

Observe that, with the exception of powers of 2, all prime power pseudoperfect numbers
are pseudoperfect. Also note that any primary pseudoperfect number is a prime power
pseudoperfect number since primary pseudoperfect numbers must be squarefree. Prime
power pseudoperfect numbers form OEIS sequence A283423.

We now consider the sequences A073932 and A073935, both of which were contributed
to the OEIS by Murthy. We first define a function d on composite numbers by letting d(n)
denote the largest nontrivial divisor of n. For example, d(15) = 5. Next we define a function
f on positive integers greater than 1 by

f(n) :=

{

n− 1, if n is prime;

n− d(n), otherwise.

As an example, we have f(15) = 10. Given any positive integer n > 1 we can iterate the
function f until we reach 1. We let f (i) to be the ith iterate of the function f . So f (i) is
the composition f ◦ f (i−1) for i ≥ 1 and f (0)(n) = n. In this way we obtain a triangle with
nth row given by n, f(n), f (2)(n), . . . , 1. The sequence A073932 is the sequence consisting of
the entries of this triangle read by rows. For any positive integer n let Dn denote the set of
divisors of n, and we define Fn := {n, f(n), f (2)(n), . . . , 1}. The sequence consisting of all n
such that the Fn = Dn is sequence A073935.

If we consider n = 20 we obtain

f(20) = 10

f (2)(20) = 5

f (3)(20) = 4

f (4)(20) = 2

f (5)(20) = 1,

which are exactly the divisors of 20. We also notice that 20 is a prime power pseudoperfect
number since

1

2
+

1

4
+

1

5
+

1

20
= 1.

We show in Theorem 3 that every number in the sequence A073935, with the exception of
1, is a prime power pseudoperfect number. We first prove two lemmas.

Lemma 1. Let n > 1 be a positive integer with prime factorization n = p1p2 · · · pℓ, where
p1 ≤ p2 ≤ · · · ≤ pℓ. The function f is then given by

f(n) = (p1 − 1)p2 · · · pℓ.
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Proof. Let n > 1 be an integer with prime factorization n = p1p2 · · · pℓ where p1 ≤ p2 ≤
· · · ≤ pℓ. If n is prime, then ℓ = 1 and n = p1. In this case f(n) = n− 1 = p1 − 1. When n
is composite ℓ > 1, the largest nontrivial divisor is p2p3 · · · pℓ. In this case

f(n) = n− d(n)

= p1p2 · · · pℓ − p2p3 · · · pℓ

= (p1 − 1)p2 · · · pℓ.

Hence the lemma holds.

Lemma 2. Let n > 1 be a positive integer with prime factorization

n =
ℓ
∏

i=1

paii ,

where p1 < p2 < · · · < pℓ. The integer n satisfies Fn = Dn if and only if

(pi − 1) =
i−1
∏

j=1

p
aj
j

for 1 ≤ i ≤ ℓ.

Proof. Let n > 1 be an integer with prime factorization

n =
ℓ
∏

i=1

paii ,

where p1 < p2 < · · · < pℓ. The divisors of n are

Dn =

{

ℓ
∏

i=1

pbii : 0 ≤ bi ≤ ai

}

.

We must show Fn = Dn if and only if

(pi − 1) =
i−1
∏

j=1

p
aj
j

for 1 ≤ i ≤ ℓ.
First assume that

(pi − 1) =
i−1
∏

j=1

p
aj
j
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for 1 ≤ i ≤ ℓ. It follows that Fn = Dn as the divisors of n are obtained in lexicographic
order of exponent vectors when we iterate f . To see this consider d ∈ Dn with

d =
ℓ
∏

i=1

pbii

for some 0 ≤ bi ≤ ai and d 6= 1. Let i′ be smallest index with bi′ > 0. Then

d =
ℓ
∏

i=i′

pbii .

If i′ = 1, then

f(d) = pb1−1
1

ℓ
∏

i=2

pbii .

Otherwise j > 1 and

f(d) =

(

i′−1
∏

i=1

paii

)

(

p
bi′−1
i′

)

(

ℓ
∏

i=i′+1

pbii

)

.

In either case we obtain the next divisor of n in lexicographic order of exponent vectors.
Next assume that Fn = Dn. We claim that p1 = 2. To see this, note that (p1 − 1) | f(n)

by Lemma 1. Since Fn ⊆ Dn we have f(n) | n. Thus any prime divisor of p1 − 1 divides
n, but a prime divisor of p1 − 1 is a prime strictly less than the smallest prime divisor of
n, namely of p1. Hence p1 − 1 can have no prime divisors, which implies that p1 = 2. Now
assume that for j < i

(pj − 1) =

j−1
∏

j′=1

p
aj′

j′ .

By iterating f we initially obtain divisors of n of the form

(

i−1
∏

j=1

p
bj
j

)(

ℓ
∏

j=i

p
aj
j

)

,

where 0 ≤ bj ≤ aj for 1 ≤ j < i.
When we reach the divisor paii p

ai+1

i+1 · · · p
aℓ
ℓ , by Lemma 1 we get

f(paii p
ai+1

i+1 · · · p
aℓ
ℓ ) = (pi − 1)pai−1

i p
ai+1

i+1 · · · p
aℓ
ℓ .

Since Fn = Dn, (pi− 1)pai−1
i p

ai+1

i+1 · · · p
aℓ
ℓ divides n, which in turn implies that (pi− 1) divides

pa11 pa22 · · · p
ai−1

i−1 . If

(pi − 1) 6=
i−1
∏

j=1

p
aj
j ,

5



we see (since f is a decreasing function) that

f(paii p
ai+1

i+1 · · · p
aℓ
ℓ ) = (pi − 1)pai−1

i p
ai+1

i+1 · · · p
aℓ
ℓ

< pa11 pa22 · · · p
ai−1

i−1 p
ai−1
i p

ai+1

i+1 · · · p
aℓ
ℓ .

Furthermore, the divisor pa11 pa22 · · · p
ai−1

i−1 p
ai−1
i p

ai+1

i+1 · · · p
aℓ
ℓ is not contained in Fn. Thus if Fn =

Dn we must have

(pi − 1) =
i−1
∏

j=1

p
aj
j

for all 1 ≤ i ≤ ℓ.

Algorithm 1 Nondeterministic algorithm to produce terms of sequence A073935.
n← 2
loop

p← largest prime divisor of n
if n+ 1 is prime then

nondeterministically choose n← np or n← n(n+ 1)
else

n← np
end if

end loop

Algorithm 1 is a nondeterministic algorithm that produces positive integers n with Fn =
Dn (i.e., the terms of A073935). Lemma 2 says that if n > 1 satisfies Fn = Dn, then Fnp =
Dnp, where p is the largest prime divisor of n. If n+1 is prime, then also Fn(n+1) = Dn(n+1).
Notice in the case that n + 1 is prime there are two ways to produce a new integer, and
this causes the nondeterminism in Algorithm 1. Terms of the sequence coming from various
branches of the algorithm are shown in Figure 1.

Theorem 3. Every integer n > 1 with Fn = Dn is a prime power pseudoperfect number.

Proof. Let n > 1 be such that Fn = Dn. Assume n has prime factorization

n =
ℓ
∏

i=1

paii .

By Lemma 2 we know that

(pi − 1) =
i−1
∏

j=1

p
aj
j
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for 1 ≤ i ≤ ℓ. We define

ni :=
n

paii

n′
i :=

n
∏i

j=1 p
aj
j

for 1 ≤ i ≤ ℓ and define n′
0 := n. We now compute

∑

pk|n

1

pk
+

1

n
=

ℓ
∑

i=1

ai
∑

j=1

1

pji
+

1

n

=
ℓ
∑

i=1

ai−1
∑

j=0

pjini

n
+

1

n

=
ℓ
∑

i=1

(paii − 1)ni

(pi − 1)n
+

1

n

=
ℓ
∑

i=1

(paii − 1)n′
i

n
+

1

n

=
ℓ
∑

i=1

paii n
′
i − n′

i

n
+

1

n

=
ℓ
∑

i=1

n′
i−1 − n′

i

n
+

1

n

=
n′
0 − n′

ℓ + 1

n
= 1.

Therefore n is prime power pseudoperfect.

The converse of Theorem 3 is not true. For example, the number 23994 = 2 · 32 · 31 · 41
is a prime power pseudoperfect number but F23994 6= D23994.
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2

6

42

1806

77658

...

294

2058

...

18

342

6496

...

54

162

...

4

20

100

10100

...

500

...

8

16

272

...

32

...

Figure 1: Tree showing terms of sequence A073935 on various branches of Algorithm 1.

3 Prime power Giuga numbers

A prime power Giuga number is a positive composite integer n > 1 that satisfies the Egyptian
fraction condition

∑

pk|n

1

pk
−

1

n
∈ N,

where the sum is taken over all prime power divisors of n. Since Giuga numbers are square-
free, it follows that all Giuga numbers are prime power Giuga numbers. All prime power
Giuga numbers we have found obey the stricter Egyptian fraction equation

∑

pk|n

1

pk
−

1

n
= 1.

Prime power Giuga numbers form sequence A286497.
We now prove a lemma analogous to Lemma 2.

Lemma 4. Let n > 1 be a positive integer with prime factorization

n =
ℓ
∏

i=1

paii ,

with p1 < p2 < · · · < pℓ and aℓ = 1. If

pi − 1 =
i−1
∏

j=1

p
aj
j

for 1 ≤ i < ℓ and pℓ + 1 = n
pℓ
, then the positive integer n is a prime power Giuga number.
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Proof. Assume n > 1 is a positive integer satisfying the hypothesis of the lemma. Then by
Lemma 2 and Theorem 3 we know the n

pℓ
is a prime power pseudoperfect number. So,

∑

pk|n

1

pk
−

1

n
=
∑

pk|
n
pℓ

1

pk
+

1

pℓ
−

1

n

=

n
pℓ
− 1
n
pℓ

+
1

pℓ
−

1

n

=
pℓ

pℓ + 1
+

1

pℓ
−

1

(pℓ + 1)pℓ

= 1.

Lemma 4 gives a sufficient but not necessary condition for being a prime power Giuga
number. Table 1 shows prime power Giuga numbers less than 107. Notice some numbers in
the table, such as 858 = 2 · 3 · 11 · 13, do not satisfy the condition in Lemma 4.

n prime factorization
12 22 · 3
30 2 · 3 · 5
56 23 · 7
306 2 · 32 · 17
380 22 · 5 · 19
858 2 · 3 · 11 · 13
992 25 · 31
1722 2 · 3 · 7 · 41
2552 23 · 11 · 29
2862 2 · 33 · 53
16256 27 · 127
30704 24 · 19 · 101
66198 2 · 3 · 11 · 17 · 59
73712 24 · 17 · 271
86142 2 · 3 · 72 · 293
249500 22 · 53 · 499
629802 2 · 33 · 107 · 109
1703872 26 · 79 · 337
6127552 26 · 67 · 1429

Table 1: Prime power Giuga numbers less than 107.
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4 Producing more terms

In this section we give some formulas that can be helpful in finding solutions to our Egyptian
fraction equations. Similar results for primary pseudoperfect numbers and Giuga numbers
are given in the article [9, Theorem 8]. The article [8, Proposition 1] also contains conditions
for primary pseudoperfect numbers. Results to help search for solutions of other related
Egyptian fraction equations can be found in the articles [1, Proposition 12, Lemma 17]
and [3, Lemma 4.1, Lemma 4.2].

Proposition 5. Let n > 1 be a positive integer.

(i) If n is in the sequence A073935 and p is largest prime divisor of n, then both n
p
and

np are in the sequence A073935.

(ii) If n is in the sequence A073935 and n + 1 is prime, then n(n + 1)k is in the se-
quence A073935 for any nonnegative integer k.

(iii) If n is a prime power pseudoperfect number and n + 1 is prime, then n(n + 1)k is a
prime power pseudoperfect number for any nonnegative integer k.

(iv) If n is a prime power pseudoperfect number and n − 1 is prime, then n(n − 1) is a
prime power Giuga number.

Proof. Parts (i) and (ii) follow immediately from Lemma 2.
For part (iii) assume that n is a prime power pseudoperfect number and n+ 1 is prime.

So,

∑

pk|n(n+1)k

1

pk
+

1

n(n+ 1)k
=
∑

pk|n

1

pk
+

k
∑

j=1

1

(n+ 1)j
+

1

n(n+ 1)k

=
n− 1

n
+

(n+ 1)k − 1

n(n+ 1)k
+

1

n(n+ 1)k

=
(n− 1)(n+ 1)k + (n+ 1)k

n(n+ 1)k

= 1.

For part (iv) assume that n is a prime power pseudoperfect number and n− 1 is prime.
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So,

∑

pk|n(n+1)

1

pk
−

1

n(n− 1)
=
∑

pk|n

1

pk
+

1

(n+ 1)
−

1

n(n− 1)

=
n− 1

n
+

1

(n+ 1)
−

1

n(n− 1)

=
(n− 1)(n− 1) + n− 1

n(n− 1)

= 1.

Consider the number
n = 23994 = 2 · 32 · 31 · 43,

which is a prime power pseudoperfect number. However, neither

n

43
= 558 = 2 · 32 · 31

nor
43n = 1031742 = 2 · 32 · 31 · 432

are prime power pseudoperfect numbers. Hence, a version of Proposition 5 (i) does not hold
from prime power pseudoperfect numbers. Also consider the number n = 18, which is a
prime power pseudoperfect number, and the number n(n−1) = 306, which is a prime power
Giuga number, since n − 1 = 17 is prime. However, the number n(n − 1)2 = 5202 is not a
prime power Giuga number. Thus a version of Proposition 5 (ii) or (iii) does not hold for
prime power Giuga numbers.

5 Open questions

Proposition 5 immediately shows that there are infinitely many terms in both the se-
quence A073935 and the sequence of prime power pseudoperfect numbers A283423. Propo-
sition 5 does not give a way to produce infinitely many prime power Giuga numbers, but we
conjecture there are infinitely many such numbers.

Conjecture 6. There are infinitely many prime power Giuga numbers.

A Mersenne prime is a prime number p such that p = 2k−1 for some integer k. Mersenne
primes form sequence A000668. By Lemma 4, the number n = 2k(2k − 1) is a prime power
Giuga number whenever 2k− 1 is a Mersenne prime. Hence, Conjecture 6 would follow from
an infinitude of Mersenne primes, and it is believed that there are infinitely many Mersenne
primes.
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p p− 1 level
2 1 0
3 2 1
5 22 1
7 2 · 3 2
17 24 1
19 2 · 32 2
43 2 · 3 · 7 3
101 22 · 52 2
163 2 · 34 2
257 28 1
487 2 · 35 2
1459 2 · 36 2
14407 2 · 3 · 74 3
26407 2 · 34 · 163 3
39367 2 · 39 2
62501 22 · 56 2
65537 216 1
77659 2 · 3 · 7 · 432 4
1020101 22 · 52 · 1012 3

Table 2: Table of extended Fermat primes p along with factorizations of p− 1.

A Fermat prime is prime number p such that p = 2k+1 for some positive integer k. Fermat
primes form sequence A019434. By Lemma 2 the number 2k is in the sequence A073935 for
any positive integer k, and the powers of 2 are the only numbers in the sequence that have
a unique prime divisor. If a number with two distinct prime divisors is in sequence A073935
it must be of the form 2k(2k +1)j where 2k +1 is a Fermat prime and j is a positive integer.

The primes that occur as divisors of terms of the sequence A073935 are primes p such
that

p− 1 =
ℓ
∏

i=1

paii

where for 1 ≤ i ≤ ℓ

pi − 1 =
i−1
∏

j=1

paij .

If p is a prime such that p− 1 =
∏ℓ

i=1 p
ai
i we say that p is a level-ℓ extended Fermat prime.

A table of such primes is included in Table 2. By convention the prime 2 is the only level-
0 extended Fermat prime. With this new definition usual Fermat primes are now level-1
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extended Fermat primes. Extended Fermat primes form sequence A286499. It is thought
that there are only finitely many Fermat primes. However, we believe there are infinitely
many extended Fermat primes and offer the following conjectures.

2

· · ·5

· · ·62501

...

101

...

3

· · ·163

...

19

...

7

· · ·14407

...

43

· · ·77659

p

Figure 2: A portion of the tree of extended Fermat primes.

Conjecture 7. There exists an extended Fermat prime p such that (p − 1)pk + 1 is an
extended Fermat prime for infinitely many values of k.

Conjecture 8. Given any positive integer ℓ there exists a level-ℓ extended Fermat prime.

Towards an answer to Conjecture 7, the prime 3 may give a example. Computation
suggests there are many primes of the form 2 · 3k + 1. The values of k for which 2 · 3k + 1
is prime is sequence A003306. In the direction of Conjecture 8, we have found a level-5
extended Fermat prime

p = 2 · 3 · 7 · 432 · 77659197 + 1.

We can form a rooted tree of extended Fermat primes with root 2 as follows. Let p1 and p2
be two extended Fermat primes, then p2 is a descendant of p1 if and only if p1 | (p2 − 1).
A portion of this tree, including a path to the level-5 extended Fermat prime p, is shown in
Figure 2.
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