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Abstract

We show that the alternating power sum

r
n − (m+ r)n + (2m+ r)n − · · ·+ (−1)ℓ−1 ((ℓ− 1)m+ r)n

can be expressed in terms of Stirling numbers of the first kind and r-Whitney numbers
of the second kind. We also prove a necessary and sufficient condition for the integrality
of the coefficients of the polynomial extensions of the above alternating power sum.
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1 Introduction

Power sums and alternating power sums of consecutive numbers are widely investigated
objects in the literature of combinatorics and number theory. It is well known, among
others, that the sum of the n-th power of the first ℓ− 1 positive integers

Sn(ℓ) := 1n + 2n + · · ·+ (ℓ− 1)n

is closely connected to the Bernoulli polynomials Bn(x) via the identity

Sn(ℓ) =
1

n+ 1
(Bn+1(ℓ)− Bn+1) ,

where the polynomials Bn(x) are defined by the generating series

tetx

et − 1
=

∞
∑

k=0

Bk(x)
tk

k!

and Bn+1 = Bn+1(0).
It is also well known that the alternating power sum

Tn (ℓ) := −1n + 2n − · · ·+ (−1)ℓ−1(ℓ− 1)n

can be expressed by means of the classical Euler polynomials En(x) via:

Tn (ℓ) =
En(0) + (−1)ℓ−1En(ℓ)

2
,

where the classical Euler polynomials En(x) are usually defined by the generating function

2ext

et + 1
=

∞
∑

k=0

Ek(x)
tk

k!
(|t| < π).

For the properties of Bernoulli and Euler polynomials which will be often used in this paper,
sometimes without special reference, we refer to the paper of Brillhart [9] and the book of
Abramowitz and Stegun [1].

Let ℓ > 1,m 6= 0, r be integers with gcd(m, r) = 1 and consider the following sums

Sn
m,r (ℓ) = rn + (m+ r)n + (2m+ r)n + · · ·+ ((ℓ− 1)m+ r)n ,

T n
m,r (ℓ) := rn − (m+ r)n + (2m+ r)n − · · ·+ (−1)ℓ−1 ((ℓ− 1)m+ r)n .

Bazsó et al. [5] showed that Sn
m,r (ℓ) can be extended to the following polynomial in x:

Snm,r (x) =
mn

n+ 1

(

Bn+1

(

x+
r

m

)

−Bn+1

( r

m

))

. (1)
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Using a different approach, Howard [11] also obtained relation (1) together with its analogue
for T n

m,r (ℓ):

T n
m,r (ℓ) =

mn

2

(

En

( r

m

)

+ (−1)ℓ−1En

(

ℓ+
r

m

))

, (2)

whence, the following polynomial extensions arise for T n
m,r (ℓ):

Tn+m,r(x) =
mn

2

(

En

( r

m

)

+ En

(

x+
r

m

))

, (3)

Tn−m,r(x) =
mn

2

(

En

( r

m

)

− En

(

x+
r

m

))

. (4)

Clearly, for positive integer values x, we have Tn+m,r(x) = T n
m,r (x) if x is odd, and Tn−m,r(x) =

T n
m,r (x) if x is even.
For related diophantine results on the polynomials Snm,r (x) , T

n+
m,r(x), and Tn−m,r(x) see [3,

6, 7, 8, 10, 12, 15] and the references given there. For results on the decomposition of these
polynomials we refer to the papers [2, 5, 8].

In a recent paper [4], the present authors investigated the coefficients of Snm,r (x). We
showed that these coefficients can be given in terms of the Stirling numbers of the first kind
and r-Whitney numbers of the second kind. Moreover, we proved that Snm,r (x) ∈ Z[x] if and
only if m is divisible by F (n), where F (n) is the sequence with first few terms

2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, . . .

(cf. A144845 in Sloane’s OEIS [14]). We [4] also gave an implicit formula for F (n).
The aim of this note is to give analogues of our results [4] on Snm,r (x) for the alternating

case.

2 An explicit formula for the alternating sum T n
m,r(ℓ)

From (2) we know that the alternating sum T n
m,r(ℓ) can be expressed in terms of ℓ and the

Euler polynomials. We give an explicit formula for T n
m,r(ℓ) without the Euler polynomials

included. To do this we need the following lemma.

Lemma 1. For all ℓ ≥ 1 and k ≥ 0 we have that

ℓ−1
∑

x=0

(−1)xxk = k!
(−1)k

2k+1

(

1 + (−1)ℓ+1

k
∑

i=0

(

ℓ

i

)

(−2)i

)

.

Here xk = x(x− 1) · · · (x− k + 1) is the falling factorial.

Proof. The idea we use here is due to Felix Marin. We found out about his idea on the
Mathematics Stack Exchange forum [17].
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First note that
ℓ−1
∑

x=0

(−1)xxk = k!
ℓ−1
∑

x=0

(−1)x
(

x

k

)

. (5)

Then we use the integral representation
(

x

k

)

=

∮

|z|<1

(1 + z)x

zk+1

dz

2πi
.

Substituting this into (5) the summation can already be done. We have the intermediate
result that

ℓ−1
∑

x=0

(−1)xxk = k!

∮

|z|<1

1

zk+1

(−1)ℓ+1(1 + z)ℓ + 1

2 + z

dz

2πi
. (6)

The path integral on the right can be calculated by Cauchy’s residue theorem:

∮

|z|<1

1

zk+1

(−1)ℓ+1(1 + z)ℓ + 1

2 + z

dz

2πi
=

Resz=0

1

(2 + z)zk+1
+ (−1)ℓ+1Resz=0

(1 + z)ℓ

(2 + z)zk+1
.

The first residue is easy to determine:

Resz=0

1

(2 + z)zk+1
=

(−1)k

2k+1
(k ≥ 0). (7)

The calculation of the second residue can be traced back to the first one by expanding (1+z)ℓ

by the binomial theorem:

Resz=0

(1 + z)ℓ

(2 + z)zk+1
=

ℓ
∑

i=0

(

ℓ

i

)

Resz=0

zi

(2 + z)zk+1
.

Note that if i ≥ k + 1 the function becomes analytic at z = 0 and the residue disappears.
Hence, recalling (7),

Resz=0

(1 + z)ℓ

(2 + z)zk+1
=

k
∑

i=0

(

ℓ

i

)

(−1)k−i

2k+1−i
=

(−1)k

2k+1

k
∑

i=0

(

ℓ

i

)

(−2)i.

This and (7) together gives the result.

We recall the definition of the r-Whitney numbers Wm,r(n, k) given by Mező [13]:

(mx+ r)n =
n
∑

k=0

mkWm,r(n, k)x
k. (8)
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Theorem 2. If ℓ ≥ 1 then the sum T n
m,r(ℓ) can be expressed as follows:

T n
m,r(ℓ) = (1 + (−1)ℓ+1)

n
∑

k=0

Cm,r,n,k+

n
∑

j=1

ℓj

(

(−1)ℓ+1

n
∑

k=0

Cm,r,n,k

k
∑

i=j

(−2)i

i!
S1(i, j)

)

.

Here

Cm,r,n,k = k!
(−1)k

2k+1
mkWm,r(n, k),

and Wm,r(n, k) is an r-Whitney number.

Proof. We can see that it is enough to multiply both sides of (8) by (−1)x and sum from
x = 0, 1, . . . , ℓ− 1 to get back T n

m,r(ℓ). Hence

T n
m,r(ℓ) =

n
∑

k=0

mkWm,r(n, k)
ℓ−1
∑

x=0

(−1)xxk.

By the previous lemma we now have that

T n
m,r(ℓ) =

n
∑

k=0

mkWm,r(n, k)k!
(−1)k

2k+1

(

1 + (−1)ℓ+1

k
∑

i=0

(

ℓ

i

)

(−2)i

)

. (9)

Our original goal is to find the coefficients of ℓ in this expression. It is immediate that the
constant term equals to (when i = 0)

C := (1 + (−1)ℓ+1)
n
∑

k=0

mkWm,r(n, k)k!
(−1)k

2k+1
. (10)

The other coefficients of ℓ can be determined by expanding the
(

ℓ

i

)

binomial coefficients with
the aid of the Stirling numbers of the first kind:

(

ℓ

i

)

=
1

i!

i
∑

j=0

S1(i, j)ℓ
j.

Here, the index of the sum runs to n (this is the maximal value j can ever attain), because
S1(i, j) = 0 if j > i. So we can factor out ℓj in (9):

T n
m,r(ℓ) = C +

n
∑

j=0

ℓj
n
∑

k=0

mkWm,r(n, k)k!
(−1)k

2k+1
(−1)ℓ+1

k
∑

i=0

(−2)i

i!
S1(i, j).

Noting that i runs from j, and recalling the definition of the constants Cm,r,n,k we finish the
proof.
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3 The integrality of the coefficients of the polynomials

Tn+m,r(x) and Tn−m,r(x)

In this section, let m, r, n be integers with m 6= 0, r coprime and n > 0.

Theorem 3. For all m, r and n, both 2(n+ 1)Tn+m,r(x) and 2(n+ 1)Tn−m,r(x) are in Z[x].

Our Theorem 3 follows from the following result.

Lemma 4. For all m and n we have (n+ 1)mnEn

(

x
m

)

∈ Z[x].

Proof. This is part of a result of Sun [16, Lemma 2.2].

Proof of Theorem 3. By (3) we have

Tn+m,r(x) =
mn

2

(

En

( r

m

)

+ En

(

x+
r

m

))

=

=
1

2(n+ 1)

[

(n+ 1)mn

(

En

( r

m

)

+ En

(

mx+ r

m

))]

. (11)

The expression in square brackets is a sum of two polynomials with integer coefficients by
Lemma 4, whence 2(n + 1)Tn+m,r(x) ∈ Z[x]. For 2(n + 1)Tn−m,r(x), the proof is essentialy the
same.

By the denominator of a polynomial P (x) ∈ Q[x] we mean the smallest positive integer d
such that dP (x) ∈ Z[x]. An immediate consequence of Theorem 3 is that the denominators
of Tn+m,r(x) and Tn−m,r(x) respectively, are divisors of 2(n + 1). In the sequel, we give a more
precise description of these denominators.

Remark 5. It is well known (see, e.g., the paper of Brillhart [9] p. 46) that an Euler polyno-
mial of even index has only integer coefficients, and that the denominator of an odd index
Euler polynomial is a power of 2. By Lemma 4 with choice m = 1, the denominator of the
n-th Euler polynomial is either 1 or a power of 2 which divides n+ 1.

Now we state the main result of this section.

Theorem 6. All coefficients of the polynomials Tn+m,r(x) and Tn−m,r(x) are integers if and only

if m is even.

Proof. First we consider the integrality of the coefficients of the polynomial Tn+m,r(x). By
(3), we observe that all these coefficients are integers if and only if mn is divisible by the
denominator of Tn+m,r(x). Let this denominator be denoted by D. Clearly, D is the product
of 2 and the denominator of En(x).

If n is even, then D = 2 by the above remark, and thus for even m all the coefficients of
Tn+m,r(x) are integers.
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For odd n, by the same remark, the denominator of En(x) is a power of 2 which divides
n + 1, say 2q. Thus we have D = 2q+1. Since 2q ≤ n + 1 < 2n for n > 1, it follows that
n ≥ q + 1, thus D divides 2n for n > 1. For n = 1, we have

T1+m,r(x) =
mx

2
−

m

2
+ r.

Hence for even m, we have Tn+m,r(x) ∈ Z[x].
The equivalence of the integrality of the coefficients of Tn−m,r(x) and that m is even follows

from a similar argument and from (4). This completes the proof.
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