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Abstract

We introduce a notion that we call a “D sum” and use it to examine the divisibility

properties of some binomial sums. The method of D sums consists of two theorems

and their proofs. We present two applications of our method to non-negative sums

with absolute values. The third application is for a known alternating binomial sum.

In particular, our method of D sums can be used to prove Dixon’s formula.

1 Introduction

Let m, n, and k be non-negative integers such that m ≥ 2. We consider the sum

S(n,m) =
n
∑

k=0

(

n

k

)m

F (n, k), (1)

where F (n, k) is an integer-valued function that depends only on n and k.
The aim is to examine some divisibility properties of sums of the form S(n,m). To do

this, we introduce the notion of “D sums”.1

1So-named in honor of professor Duško Jojić.
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Definition 1. Let n, j, and t be non-negative integers such that j ≤ ⌊n
2
⌋. Then the D sums

for S(n,m) are as follows:

DS(n, j, t) =

n−2j
∑

l=0

(

n− j

l

)(

n− j

j + l

)(

n

j + l

)t

F (n, j + l). (2)

Obviously, for m ≥ 2, the equation

S(n,m) = DS(n, 0,m− 2) (3)

holds.
Hence, we can see the sum DS(n, j,m− 2) as a generalization of the sum S(n,m).
We search for new theorems and facts about DS(n, j, t) sums, which may be useful for

studying S(n,m) sums.
Let n, j, and t be as in Definition 1. The method of D sums consists of the following

two theorems:

Theorem 2.

DS(n, j, t+ 1) =

⌊n−2j

2
⌋

∑

u=0

(

n

j + u

)(

n− j

u

)

DS(n, j + u, t).

Theorem 3.

DS(n, j, 0) =

⌊n−2j

2
⌋

∑

u=0

(

n− j

j + u

)(

n− 2j − u

u

) n−2j−2u
∑

v=0

(

n− 2j − 2u

v

)

F (n, j + u+ v).

Together, Theorems 2 and 3 give a recursive definition of a DS sum.

2 Background

In 1891, Dixon [11] found the following identity [16, Eq. (6.6), p. 51]:

2n
∑

k=0

(−1)k
(

2n

k

)3

= (−1)n
(

2n

n

)(

3n

2n

)

, (4)

where n is a non-negative integer. The absolute value of the right-hand side is sequence
A006480 in the On-Line Encyclopedia of Integer Sequences.

Moreover, Dixon [12] established the following generalization of Eq. (4):

a
∑

k=−a

(−1)k
(

a+ b

a+ k

)(

b+ c

b+ k

)(

c+ a

c+ k

)

=
(a+ b+ c)!

a! · b! · c!
, (5)
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where a, b, and c are non-negative integers. Both identities are known in the literature as
Dixon’s identities or Dixon’s formulas. For a = b = c = n, Eq. (5) becomes Eq. (4).

There are many proofs of Eq. (5): for example, see [13, 15, 17, 21]. However, there are
not so many direct proofs of Eq. (4). Our goal is to give an elementary proof of Eq. (4)
without using Eq. (5).

In order to find the desired proof, we discovered the method of D sums. Unfortunately,
the method of D sums does not work on Eq. (5).

In 1998, Calkin [9, Thm. 1] proved that the alternating binomial sum
∑

2n

k=0
(−1)k

(

2n

k

)m

is divisible by
(

2n

n

)

for all non-negative integers n and all positive integers m. Calkin used
arithmetical techniques in his proof.

There are several generalizations of Calkin’s result. In 2007, Guo, Jouhet, and Zeng
proved, among other things, two generalizations of Calkin’s result [18, Thm. 1.2, Thm. 1.3].
In the same paper they proposed several conjectures including Conjecture 5.3 which is a
refinement of Calkin’s result. In 2010, Cao and Pan [10, Thm. 1.1] proved, among other
results, Conjecture 5.3.

The rest of the paper is structured as follows. In Sections 3 and 4, we prove our main
Theorems 2 and 3, respectively. In Section 5, we give a brief explanation of our method of
D sums.

In Section 6, we consider two non-negative sums with absolute values: S1(2n,m) =
∑

2n

k=0

(

2n

k

)m
|n− k| and S2(2n+ 1,m) =

∑

2n+1

k=0

(

2n+1

k

)m ∣
∣

2n+1

2
− k
∣

∣. We assert, among other,

that the first sum S1(2n,m) is divisible by n
(

2n

n

)

for all positive integers n and all positive
integers m . Similarly, we assert, among other, that the second sum S2(2n+1,m) is divisible
by (2n+ 1)

(

2n

n

)

for all non-negative integers n and all positive integers m.
In Section 7, we begin with motivation for studying S1(2n,m) and S2(2n + 1,m) sums.

Then we apply the method of D sums to prove our assertions for the sum S1(2n,m). Proofs
of our assertions for the second sum S2(2n + 1,m) are omitted because they are similar to
the proofs for the first sum S1(2n,m).

In Section 8, we consider the alternating binomial sum S3(2n,m) =
∑

2n

k=0
(−1)k

(

2n

k

)m
.

We give a sketch of the proof of Calkin’s result [9, Thm. 1] by using our method of D
sums. Also, we give a sketch of the proof of Eq. (4).

3 Proof of Theorem 2

We use three well-known binomial identities.
The first one is the Chu-Vandermonde convolution formula:

c
∑

k=0

(

a

k

)(

b

c− k

)

=

(

a+ b

c

)

, (6)

where a, b, and c are non-negative integers.
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Let a, b, and c be non-negative integers such that a ≥ b ≥ c. The second identity is

(

a

b

)(

b

c

)

=

(

a

c

)(

a− c

b− c

)

. (7)

The third identity is symmetry of binomial coefficients.

Proof. Let n, j, and t be as in Definition 1. By Definition 1, we know that

DS(n, j, t+ 1) =

n−2j
∑

l=0

(

n− j

l

)(

n− j

j + l

)(

n

j + l

)t+1

F (n, j + l). (8)

According to Eq. (6), we have

(

n− j

l

)

=
l
∑

u=0

(

n− 2j − l

u

)(

j + l

l − u

)

. (9)

Obviously, the following inequalities

u ≤ l, (10)

u ≤ n− 2j − l. (11)

hold.
From Inequalities (10) and (11), we obtain the following inequalities:

0 ≤ u ≤

⌊

n− 2j

2

⌋

, (12)

u ≤ l ≤ n− 2j − u. (13)

We use Eq. (9), the symmetry
(

n−j

j+l

)

=
(

n−j

n−2j−l

)

, and the symmetry
(

j+l

l−u

)

=
(

j+l

j+u

)

, and

then permute terms in Eq. (8). Thus Eq. (8) becomes as follows:

DS(n, j, t+ 1) =

n−2j
∑

l=0

l
∑

u=0

(

n− 2j − l

u

)(

j + l

l − u

)(

n− j

j + l

)(

n

j + l

)t+1

F (n, j + l) (Eq. (9))

=

n−2j
∑

l=0

l
∑

u=0

(

n− 2j − l

u

)(

j + l

j + u

)(

n− j

n− 2j − l

)(

n

j + l

)(

n

j + l

)t

F (n, j + l) ( by symmetry)

=

n−2j
∑

l=0

l
∑

u=0

(

n− j

n− 2j − l

)(

n− 2j − l

u

)(

n

j + l

)(

j + l

j + u

)(

n

j + l

)t

F (n, j + l) (perm.) (14)
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We apply Eq. (7) twice. It follows that
(

n− j

n− 2j − l

)(

n− 2j − l

u

)

=

(

n− j

u

)(

n− j − u

n− 2j − l − u

)

and (15)

(

n

j + l

)(

j + l

j + u

)

=

(

n

j + u

)(

n− j − u

l − u

)

. (16)

If we use Eqns. (15) and (16), Eq. (14) becomes

DS(n, j, t+ 1)

=

n−2j
∑

l=0

l
∑

u=0

(

n− j

u

)(

n− j − u

n− 2j − l − u

)(

n

j + u

)(

n− j − u

l − u

)(

n

j + l

)t

F (n, j + l). (17)

We now exchange the order of summation. If we take Inequalities (12) and (13) into
consideration along with the symmetry

(

n−j−u

n−2j−l−u

)

=
(

n−j−u

j+l

)

, Eq. (17) becomes

DS(n, j, t+ 1)

=

⌊n−2j

2
⌋

∑

u=0

n−2j−u
∑

l=u

(

n− j

u

)(

n− j − u

n− 2j − l − u

)(

n

j + u

)(

n− j − u

l − u

)(

n

j + l

)t

F (n, j + l) (Ineq.)

=

⌊n−2j

2
⌋

∑

u=0

n−2j−u
∑

l=u

(

n− j

u

)(

n− j − u

j + l

)(

n

j + u

)(

n− j − u

l − u

)(

n

j + l

)t

F (n, j + l) (symmetry)

=

⌊n−2j

2
⌋

∑

u=0

(

n

j + u

)(

n− j

u

) n−2j−u
∑

l=u

(

n− j − u

l − u

)(

n− j − u

j + l

)(

n

j + l

)t

F (n, j + l). (18)

We substitute u+v for l. From the Inequality (12), we know that 0 ≤ j+u ≤ ⌊n
2
⌋. Then

Eq. (18) becomes as follows:

⌊n−2j

2
⌋

∑

u=0

(

n

j + u

)(

n− j

u

) n−2j−2u
∑

v=0

(

n− j − u

v

)(

n− j − u

j + u+ v

)(

n

j + u+ v

)t

F (n, j + u+ v)

=

⌊n−2j

2
⌋

∑

u=0

(

n

j + u

)(

n− j

u

)

DS(n, j + u, t) (by Eq. (2)). (19)

From Eqns. (18) and (19), we obtain

DS(n, j, t+ 1) =

⌊n−2j

2
⌋

∑

u=0

(

n

j + u

)(

n− j

u

)

DS(n, j + u, t).

This completes the proof of Theorem 2.
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4 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 2. We use the same three binomial
identities as in the previous proof.

Proof. By Definition 1 and Eq. (2), we know that

DS(n, j, 0) =

n−2j
∑

l=0

(

n− j

l

)(

n− j

j + l

)

F (n, j + l). (20)

We use Eq. (9) and the symmetry
(

j+l

l−u

)

=
(

j+l

j+u

)

. Again, Inequalities (10), (11), (12), and

(13) hold.
Then Eq. (20) becomes as follows:

DS(n, j, 0) =

n−2j
∑

l=0

(

l
∑

u=0

(

n− 2j − l

u

)(

j + l

l − u

)

)

(

n− j

j + l

)

F (n, j + l) (by Eq. (9))

=

n−2j
∑

l=0

l
∑

u=0

(

n− j

j + l

)(

j + l

l − u

)(

n− 2j − l

u

)

F (n, j + l) (permutation)

=

n−2j
∑

l=0

l
∑

u=0

(

n− j

j + l

)(

j + l

j + u

)(

n− 2j − l

u

)

F (n, j + l) (by symmetry). (21)

By Eq. (7) and the symmetry
(

n−2j−u

l−u

)

=
(

n−2j−u

n−2j−l

)

, it follows that

(

n− j

j + l

)(

j + l

j + u

)

=

(

n− j

j + u

)(

n− 2j − u

n− 2j − l

)

. (22)

If we use Eq. (22), Eq. (21) becomes

DS(n, j, 0) =

n−2j
∑

l=0

l
∑

u=0

(

n− j

j + u

)(

n− 2j − u

n− 2j − l

)(

n− 2j − l

u

)

F (n, j + l). (23)

By Eq. (7) and the symmetry
(

n−2j−2u

n−2j−l−u

)

=
(

n−2j−2u

l−u

)

, it follows that

(

n− 2j − u

n− 2j − l

)(

n− 2j − l

u

)

=

(

n− 2j − u

u

)(

n− 2j − 2u

l − u

)

. (24)

If we use Eq. (24), Eq. (23) becomes

DS(n, j, 0) =

n−2j
∑

l=0

l
∑

u=0

(

n− j

j + u

)(

n− 2j − u

u

)(

n− 2j − 2u

l − u

)

F (n, j + l). (25)
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We exchange the order of summation. If we take Inequalities (12) and (13) into consideration,
Eq. (25) becomes as follows:

DS(n, j, 0) =

⌊n−2j

2
⌋

∑

u=0

n−2j−u
∑

l=u

(

n− j

j + u

)(

n− 2j − u

u

)(

n− 2j − 2u

l − u

)

F (n, j + l) (Ineq.)

=

⌊n−2j

2
⌋

∑

u=0

(

n− j

j + u

)(

n− 2j − u

u

) n−2j−u
∑

l=u

(

n− 2j − 2u

l − u

)

F (n, j + l). (26)

We substitute l by u+ v. Then Eq. (26) becomes

DS(n, j, 0) =

⌊n−2j

2
⌋

∑

u=0

(

n− j

j + u

)(

n− 2j − u

u

) n−2j−2u
∑

v=0

(

n− 2j − 2u

v

)

F (n, j + u+ v). (27)

Eq. (27) completes the proof of Theorem 3.

5 How Does This Method Work?

In one particular situation, Theorem 2 implies a simple consequence which is important for
us.

Let n be a fixed non-negative integer. Let t0 be a non-negative integer, and let j be an
arbitrary integer in the range 0 ≤ j ≤ ⌊n

2
⌋. Suppose that q = q(n) is a positive integer which

divides DS(n, j, t0) sums for all j in the given range. We want q to be as large as possible.
Then it can be shown, by Theorem 2, that q divides DS(n, j, t0 + 1) for all j in the given
range.

By induction, it follows that q divides DS(n, j, t) for all t such that t ≥ t0 and for all j
in the given range. By Eq. (3), it follows that q divides S(n, t+ 2) for all t such that t ≥ t0.
This is exactly how this method works.

6 Two applications for non-negative sums

We give two applications of our method of D sums for non-negative sums with absolute
values.

Let n and j be non-negative integers such that j ≤ n, and let t andm be positive integers.
First, we consider the sum S1(2n,m) =

∑

2n

k=0

(

2n

k

)m
|n− k|. It is known [4, p. 3] that

2n
∑

k=0

(

2n

k

)

|n− k| = n

(

2n

n

)

. (28)
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Therefore, we have

S1(2n, 1) = n

(

2n

n

)

.

We establish the following two lemmas:

Lemma 4.

DS1
(2n, j, 0) = n

(

2n− j

n

)(

2n− j − 1

n

)

for 0 ≤ j ≤ n.

Lemma 5.

DS1
(2n, j, 1) = n

(

2n

n

) n−1−j
∑

u=0

(

n

j + u

)(

2n− j

u

)(

2n− j − u− 1

n

)

for 0 ≤ j ≤ n.

In particular, Lemmas 4 and 5 imply the following formulas:

S1(2n, 2) = n

(

2n

n

)(

2n− 1

n

)

, (29)

S1(2n, 3) = n

(

2n

n

) n−1
∑

u=0

(

n

u

)(

2n

u

)(

2n− u− 1

n

)

. (30)

If n is a positive integer, Lemma 5 suggests setting q1(2n) = n
(

2n

n

)

.
We establish the following theorem:

Theorem 6. Let n be a positive integer. The sum DS1
(2n, j, t) is divisible by n

(

2n

n

)

for all

positive integers t and all integers j such that 0 ≤ j ≤ n.

We conclude that

Corollary 7. Let n be a positive integer. The sum S1(2n,m) is divisible by n
(

2n

n

)

for all

positive integers m .

Next, we consider the sum S2(2n+ 1,m) =
∑

2n+1

k=0

(

2n+1

k

)m ∣
∣

2n+1

2
− k
∣

∣. It is known [4, p.
3] that

2n+1
∑

k=0

(

2n+ 1

k

) ∣

∣

∣

∣

2n+ 1

2
− k

∣

∣

∣

∣

= (2n+ 1)

(

2n

n

)

. (31)

Therefore, we have

S2(2n+ 1, 1) = (2n+ 1)

(

2n

n

)

.

We establish the following two lemmas:

Lemma 8.

DS2
(2n+ 1, j, 0) = (2n+ 1− j)

(

2n− j

n

)2

for 0 ≤ j ≤ n.
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Lemma 9.

DS2
(2n+1, j, 1) = (2n+1)

(

2n

n

) n−j
∑

u=0

(

n

j + u

)(

2n+ 1− j

u

)(

2n− j − u

n

)

for 0 ≤ j ≤ n.

In particular, Lemmas 8 and 9 imply the following formulas:

S2(2n+ 1, 2) = (2n+ 1)

(

2n

n

)2

, (32)

S2(2n+ 1, 3) = (2n+ 1)

(

2n

n

) n
∑

u=0

(

n

u

)(

2n+ 1

u

)(

2n− u

n

)

. (33)

Lemma 9 suggests setting q2(2n+ 1) = (2n+ 1)
(

2n

n

)

. We establish the following theorem:

Theorem 10. Let n be a non-negative integer. The sum DS2
(2n + 1, j, t) is divisible by

(2n+ 1)
(

2n

n

)

for all positive integers t and all integers j such that 0 ≤ j ≤ n.

We conclude that

Corollary 11. Let n be a non-negative integer. Then the sum S2(2n+ 1,m) is divisible by

(2n+ 1)
(

2n

n

)

for all positive integers m.

Due to clarity and brevity of this paper, we prove only Lemma 4, Lemma 5, Theorem 6,
and Corollary 7. Proofs of Lemma 8, Lemma 9, Theorem 10, and Corollary 11 are similar to
proofs of Lemma 4, Lemma 5, Theorem 6, and Corollary 7, respectively. Therefore, proofs
of Lemma 8, Lemma 9, Theorem 10, and Corollary 11 are omitted.

7 Details of Theorem 6

7.1 Motivation

The Identity (28) has a long history [6, Introduction]. It was a problem in the 1974 Putnam
competition [2, Problem A4]. Best [3, Thm. 3] considered this identity in an application to
Hadamard matrices. See also [14, Thm. 15.2], [1, Chapter 2.5], and [7].

Tuenter [22] considered centered binomial sums of the form

Sr(n) =
2n
∑

k=0

(

2n

k

)

|n− k|r,

which are a generalization of the Identity (28).
Brent [4] considered binomial sums

Ur(n) =
n
∑

k=0

(

n

k

)

|n/2− k|r,

9



which are a generalization of Tuenter’s sums. Brent gave recurrence relations for Ur(n),
where he used facts U1(2n) = n

(

2n

n

)

and U1(2n + 1) = (2n + 1)
(

2n

n

)

. Brent cited a solution
by Hillman [20] of the Putnam problem 35-A4. Hillman gave a closed form for U1(n), i.e.,
U1(n) = n

(

n−1

⌊n
2
⌋

)

.

Identities (28) and (31) are connected with the following binomial identity [5, 6]:

n
∑

i=−n

n
∑

j=−n

(

2n

n+ i

)(

2n

n+ j

)

|i2 − j2| = 2n2

(

2n

n

)2

. (34)

The Identity (34) can be used in proofs of lower bounds for the Hadamard maximal deter-
minant problem.

We consider the sum S1(2n,m) as another generalization of the Identity (28). Similarly,
we consider the sum S2(2n+ 1,m) as another generalization of the Identity (31).

7.2 Proof of Lemma 4

Let n be a non-negative integer, and let m be a positive integer. We defined the sum
S1(2n,m) as

S1(2n,m) =
2n
∑

k=0

(

2n

k

)m

|n− k|. (35)

Obviously, the sum S1(2n,m) is an instance of the sum (1), where

F1(2n, k) = |n− k|. (36)

Let j be a non-negative integer such that j ≤ n.
The proof of Lemma 4 is based on Theorem 3 and Eq. (28).

Proof. By Theorem 3, we have

DS1
(2n, j, 0) =

⌊ 2n−2j

2
⌋

∑

u=0

(

2n− j

j + u

)(

2n− 2j − u

u

) 2n−2j−2u
∑

v=0

(

2n− 2j − 2u

v

)

F1(2n, j + u+ v)

=

n−j
∑

u=0

(

2n− j

j + u

)(

2n− 2j − u

u

) 2n−2j−2u
∑

v=0

(

2n− 2j − 2u

v

)

F1(2n, j + u+ v) (37)

=

n−j
∑

u=0

(

2n− j

j + u

)(

2n− 2j − u

u

) 2n−2j−2u
∑

v=0

(

2n− 2j − 2u

v

)

|n− j − u− v|. (38)

Note that in Eq. (37), we used Eq. (36).
By Eq. (28), we obtain

2n−2j−2u
∑

v=0

(

2n− 2j − 2u

v

)

|n− j − u− v| = (n− j − u)

(

2(n− j − u)

n− j − u

)

. (39)

10



If we use Eq. (39), the symmetry
(

2n−j

j+u

)

=
(

2n−j

2n−2j−u

)

, and the symmetry
(

2n−2j−u

u

)

=
(

2n−2j−u

2n−2j−2u

)

, Eq. (38) becomes as follows:

n−j
∑

u=0

(

2n− j

j + u

)(

2n− 2j − u

u

)

(n− j − u)

(

2(n− j − u)

n− j − u

)

(by Eq. (39)) (40)

=

n−1−j
∑

u=0

(

2n− j

2n− 2j − u

)(

2n− 2j − u

2n− 2j − 2u

)(

2n− 2j − 2u

n− j − u

)

(n− j − u) (symmetry). (41)

Note that the last term of the sum in Eq. (40) is equal to zero.
Furthermore, we have

(

2n− 2j − u

2n− 2j − 2u

)(

2n− 2j − 2u

n− j − u

)

=

(

2n− 2j − u

n− j − u

)(

n− j

n− j − u

)

(by Eq. (7))

=

(

2n− 2j − u

n− j

)(

n− j

u

)

(by symmetry).

Therefore, we obtain

(

2n− 2j − u

2n− 2j − 2u

)(

2n− 2j − 2u

n− j − u

)

=

(

2n− 2j − u

n− j

)(

n− j

u

)

. (42)

If we use Eq. (42), Eq. (41) becomes

DS1
(2n, j, 0) =

n−1−j
∑

u=0

(

2n− j

2n− 2j − u

)(

2n− 2j − u

n− j

)(

n− j

u

)

(n− j − u). (43)

By Eq. (7) and the symmetry
(

2n−j

n−j

)

=
(

2n−j

n

)

, it follows that

(

2n− j

2n− 2j − u

)(

2n− 2j − u

n− j

)

=

(

2n− j

n

)(

n

n− j − u

)

. (44)

If we use Eq. (44), Eq. (43) becomes as follows:

DS1
(2n, j, 0) =

n−1−j
∑

u=0

(

2n− j

n

)(

n

n− j − u

)(

n− j

u

)

(n− j − u) (by Eq. (44))

=

(

2n− j

n

) n−1−j
∑

u=0

(

n− j

u

)

(n− j − u)

(

n

n− j − u

)

(permutation) (45)

It is well-known that

k

(

n

k

)

= n

(

n− 1

k − 1

)

. (46)
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By Eq. (46), we get

(n− j − u)

(

n

n− j − u

)

= n

(

n− 1

n− 1− j − u

)

. (47)

If we use Eq. (47), Eq. (45) becomes

DS1
(2n, j, 0) = n

(

2n− j

n

) n−1−j
∑

u=0

(

n− j

u

)(

n− 1

n− 1− j − u

)

. (48)

By Eq. (6) and the symmetry
(

2n−1−j

n−1−j

)

=
(

2n−1−j

n

)

, we get

n−1−j
∑

u=0

(

n− j

u

)(

n− 1

n− 1− j − u

)

=

(

2n− 1− j

n

)

. (49)

Finally, if we put Eq. (49) in Eq. (48), we obtain

DS1
(2n, j, 0) = n

(

2n− j

n

)(

2n− 1− j

n

)

.

This completes the proof of Lemma 4.

7.3 Proof of Lemma 5

This proof is based on Theorem 2 and Lemma 4.

Proof. By Theorem 2, we have

DS1
(2n, j, 1) =

⌊ 2n−2j

2
⌋

∑

u=0

(

2n

j + u

)(

2n− j

u

)

DS1
(2n, j + u, 0) (by Theorem 2)

=

n−j
∑

u=0

(

2n

j + u

)(

2n− j

u

)

DS1
(2n, j + u, 0). (50)

By Lemma 4, we get

DS1
(2n, j + u, 0) = n

(

2n− j − u

n

)(

2n− 1− j − u

n

)

. (51)

Then Eq. (50) becomes as follows:

DS1
(2n, j, 1) =

n−j
∑

u=0

(

2n

j + u

)(

2n− j

u

)

n

(

2n− j − u

n

)(

2n− 1− j − u

n

)

(by Eq. (51))

= n

n−j
∑

u=0

(

2n

j + u

)(

2n− j − u

n

)(

2n− j

u

)(

2n− 1− j − u

n

)

(permutation)

= n

n−j
∑

u=0

(

2n

2n− j − u

)(

2n− j − u

n

)(

2n− j

u

)(

2n− 1− j − u

n

)

. (52)
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Note that we used the symmetry
(

2n

j+u

)

=
(

2n

2n−j−u

)

in Eq. (52). Furthermore, the last

term in Eq. (52) equals zero.
It is readily verified that

(

2n

2n− j − u

)(

2n− j − u

n

)

=

(

2n

n

)(

n

j + u

)

. (53)

Then Eq. (52) becomes as follows:

DS1
(2n, j, 1) = n

n−j
∑

u=0

(

2n

n

)(

n

j + u

)(

2n− j

u

)(

2n− 1− j − u

n

)

(by Eq. (53))

= n

(

2n

n

) n−1−j
∑

u=0

(

n

j + u

)(

2n− j

u

)(

2n− 1− j − u

n

)

. (54)

Eq. (54) implies that

DS1
(2n, j, 1) = n

(

2n

n

) n−1−j
∑

u=0

(

n

j + u

)(

2n− j

u

)(

2n− 1− j − u

n

)

.

This completes the proof of Lemma 5.

7.4 Proof of Theorem 6

We assume that n is a fixed positive integer and j is a fixed non-negative integer such that
j ≤ n. We use induction on t.

Proof. When t = 1, DS1
(2n, j, t) is divisible by n

(

2n

n

)

. This follows from Lemma 5. The base
case of induction is confirmed.

We now assume that DS1
(2n, k, t) is divisible by n

(

2n

n

)

for all non-negative integers k such
that k ≤ n.

What happens with DS1
(2n, j, t+ 1)? By Theorem 2, we have

DS1
(2n, j, t+ 1) =

n−j
∑

u=0

(

2n

j + u

)(

2n− j

u

)

DS1
(2n, j + u, t). (55)

Obviously, 0 ≤ u + j ≤ n for 0 ≤ u ≤ n − j. By induction hypothesis, DS1
(2n, j + u, t)

is divisible by n
(

2n

n

)

. By Eq. (55), it follows that DS1
(2n, j, t + 1) is divisible by n

(

2n

n

)

. By
induction, Theorem 6 follows.

13



7.5 Proof of Corollary 7

Proof. By Eq. (28), it follows that S1(2n, 1) is divisible by n
(

2n

n

)

.
Setting j = 0 in Lemma 4, we obtain Eq. (29). By Eq. (29), it follows that S1(2n, 2) is

divisible by n
(

2n

n

)

.
Let m ≥ 3. By Eq. (3), we know that S1(2n,m) = DS1

(2n, 0,m − 2). Since m − 2 ≥ 1,
we can apply Theorem 6. By Theorem 6, DS1

(2n, 0,m− 2) is divisible by n
(

2n

n

)

. By Eq. (3),

S1(2n,m) is divisible by n
(

2n

n

)

for m ≥ 3. This completes the proof of Corollary 7.

Remark 12. Note that

S1(2n, 2) =
n

2

(

2n

n

)2

. (56)

Setting j = 0 in Lemma 5 and using Eq. (3), we obtain Eq. (30).

8 The third application for the alternating sum

We give a sketch of the proof of Calkin’s result [9, Thm. 1] by using our method of D sums.
We use the well-known identity [16, Eq. (1.25), p. 4]

2n
∑

k=0

(−1)k
(

2n

k

)

=

{

0, if n > 0;

1, if n = 0,
(57)

where n is a non-negative integer. Eq. (57) plays the same role as Eq. (28) in the proof of
Theorem 6.

Let n be a non-negative integer and let m be a positive integer. Let S3(2n,m) denote the
sum

∑

2n

k=0
(−1)k

(

2n

k

)m
. Obviously, the sum S3(2n,m) is an instance of the sum (1), where

F3(2n, k) = (−1)k. By Eq. (57), we conclude that S3(2n, 1) is divisible by
(

2n

n

)

.
Furthermore, it is known

S3(2n, 2) = (−1)n
(

2n

n

)

, (Kummer’s formula)

S3(2n, 3) = (−1)n
(

2n

n

)(

3n

2n

)

. (Dixon’s formula (4))

Therefore, it follows that S3(2n,m) is divisible by
(

2n

n

)

for 1 ≤ m ≤ 3.
By Eq. (57) and Theorem 3, it can be proved that

DS3
(2n, j, 0) = (−1)n

(

2n− j

n

)

for 0 ≤ j ≤ n. (58)

By Theorem 2 and Eq. (58), it can be shown that

DS3
(2n, j, 1) = (−1)n

(

2n

n

)(

3n− j

2n

)

for 0 ≤ j ≤ n. (59)
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Setting j = 0 in Eq. (59) and using Eq. (3), we obtain Eq. (4). Hence, the method of D
sums gives a proof of Eq. (4).

Furthermore, Eq. (59) suggests setting q3(2n) =
(

2n

n

)

.

By Theorem 2, it can be shown that DS3
(2n, j, t) is divisible by

(

2n

n

)

for all positive
integers t and all integers j such that 0 ≤ j ≤ n.

Let m ≥ 4. By Eq. (3), we know that S3(2n,m) = DS3
(2n, 0,m − 2). Since m − 2 ≥ 2,

the sum DS3
(2n, 0,m− 2) is divisible by

(

2n

n

)

. By Eq. (3), S3(2n,m) is divisible by
(

2n

n

)

for
m ≥ 4.

Finally, we can conclude that S3(2n,m) is divisible by
(

2n

n

)

for all non-negative integers
n and all positive integers m. This proves Calkin’s result.

Remark 13. By using asymptotic methods, Bruijn [8] has proved that no closed form exists
for S3(n,m) when m ≥ 4. However, there are formulas for S3(2n, 4) and S3(2n, 5) [19, Eq.
(5.13), Eq. (5.12)]. Both formulas can be derived by using the method of D sums.
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[14] P. Erdős and J. Spencer, Probabilistic Methods In Combinatorics, Academic Press, 1974.

[15] I. Gessel and D. Stanton, Short proofs of Saalschütz’s and Dixon’s theorems, J. Combin.
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