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Abstract

The trinomial transform of a sequence is a generalization of the well-known bino-

mial transform, replacing binomial coefficients with trinomial coefficients. We examine

Pascal-like triangles under the trinomial transform, focusing on ternary linear recurrent

sequences. We determine the sums and alternating sums of the elements in columns,

and we give some examples of the trinomial transform triangle.

1 Introduction

The binomial transform of a sequence (ai)
∞
i=0 is a sequence (bn)

∞
n=0 defined by bn =

∑n

i=0

(

n

i

)

ai.
This transformation is invertible with formula an =

∑n

i=0

(

n

i

)

(−1)n−ibi. Several studies
[4, 6, 7, 10] examine the properties and the generalizations of the binomial transform. One
generation is the trinomial transform. Let it be given by

bn =
2n
∑

i=0

(

n

i

)

2

ai,

where for 0 ≤ i ≤ 2n
(

n

i

)

2

=
i

∑

j=0

(

n

j

)(

j

i− j

)
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holds with the classical binomial coefficients. It is known that the trinomial triangle (Fig-
ure 2) determines the trinomial coefficients

(

n

i

)

2
that arise in the expansion of (1 + x+ x2)n.

(For example, Belbachir et al. [5] discussed some details of the trinomial coefficients, the
trinomial tringle and their generalizations.)

To the best of our knowledge, this transformation has not been previously studied or
even mentioned in journals, although there are eleven sequences in the OEIS [8], which are
trinomial transforms of certain sequences, that do not appear in the literature We will refer
to some of them in the last section.

In this article, we define an arithmetic structure similar to an infinite triangle, where the
terms are arranged in rows and columns. Let the trinomial transform triangle T be defined
the following way. Row 0 consists of the terms of a given sequence (ak)

∞
k=0, and any term

in an other row is the sum of the three terms directly above it according to Figure 1. The
exact definition is

ak0 = ak,

akn = ak−1
n−1 + akn−1 + ak+1

n−1, (1 ≤ n ≤ k). (1)

Let the ℓth (ℓ ≥ 0) diagonal sequence of T be the sequence (an+l
n )∞n=0. We shall give

some properties of triangle T and show that the 0th or main diagonal sequence of T is the
trinomial transform sequence of (ak). In particular, we show that the trinomial transform of
a ternary linear recurrent sequence is also a ternary linear recurrent sequence. Moreover, we
give some properties of T , for example, sums and partial sums in the columns. The author
[6] dealt with a generalized binomial transform triangle.

In the last section, we present some special examples for the trinomial transform triangles.

a00 · · ·a10 · · ·a20 · · ·a30 · · ·a40 · · ·a50 · · ·a60 · · ·

a11 · · ·a21 · · ·a31 · · ·a41 · · ·a51 · · ·a61 · · ·

a22 · · ·a32 · · ·a42 · · ·a52 · · ·a62 · · ·

a33 · · ·a43 · · ·a53 · · ·a63 · · ·

...
...

...
. . .

Figure 1: Construction of the trinomial transform triangle T

2



2 Trinomial triangle and its partial sum triangle

Most of our proofs are based on the elements of the trinomial triangle (or Feinberg’s triangle
named by Anatriello and Vincenzi [2]) and its partial sum triangle, therefore first of all we
define them and give some known basic properties [1, 5].

Let the trinomial coefficient
(

n

k

)

2
be the kth term of the nth row in the trinomial triangle,

where 0 ≤ n and 0 ≤ k ≤ 2n (see Figure 2 and A027907 in the OEIS [8]). The terms of the
triangle satisfy the relations

(

n

0

)

2

=

(

n

2n

)

2

= 1 (0 ≤ n),

(

n

k

)

2

=

(

n− 1

k − 2

)

2

+

(

n− 1

k − 1

)

2

+

(

n− 1

k

)

2

(1 ≤ n).

We use the convention
(

n

k

)

2
= 0 for k /∈ {0, 1, . . . , 2n}. (For more details and some

generalization of binomial and trinomial coefficients see [5].) Now, we take the partial sums
of terms in columns of the trinomial triangle. Let

[(

n

k

)]

2
denote the partial sum of values of

(

n

k

)

2
and all the terms above it in its column, so that

[(

n

k

)]

2

=
n

∑

j=0

(

n− j

k − j

)

2

.

Without zero elements, we also have

[(

n

k

)]

2

=
n

∑

i=|n−k|

(

i

i− (n− k)

)

2

=
n

∑

i=|n−k|

i−n+k
∑

j=0

(

i

j

)(

j

i− n+ k − j

)

.

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1
1 5 15 30 45 51 45 30 15 5 1

1 6 21 50 90 126 141 126 90 50 21 6 1

Figure 2: Trinomial triangle (A027907)

By arranging them into an infinite triangle, we gain the partial sum triangle of trinomial
triangle (or partial sum trinomial triangle — see Figure 3). It is not in the OEIS yet, but
the partial sum sequences of the central trinomial coefficients and of the two neighbouring
column sequences do — see A097893, A097861, and A097894.
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1
1 2 1

1 3 5 3 1
1 4 9 12 9 4 1

1 5 14 25 31 25 14 5 1
1 6 20 44 70 82 70 44 20 6 1

1 7 27 70 134 196 223 196 134 70 27 7 1

Figure 3: Partial sum triangle of trinomial triangle

Our major aim in this paper is not to examine the partial sum trinomial triangle, but we
give some of its properties that we use in the following sections.

From the vertical symmetry of the trinomial triangle,
(

n

k

)

2
=

(

n

2n−k

)

2
, the partial sum

trinomial triangle also has a symmetry axis and
[(

n

k

)]

2

=

[(

n

2n− k

)]

2

.

Moreover, if n ≥ k, then
[(

n

k

)]

2

=
k

∑

i=0

(

n− i

k − i

)

2

=
k

∑

i=0

n−i
∑

j=0

(

n− i

j

)(

j

k − i− j

)

.

Furthermore, this triangle evidently satisfies the recursive relations below.
[(

n

k

)]

2

=

{

1, if k = 0 or k = 2n;
[(

n−1
k−1

)]

2
+
(

n

k

)

2
, otherwise.

(2)

[(

n

k

)]

2

=























1, if k = 0 or k = 2n;

n+ 1, if k = 1 or k = 2n− 1;
[(

n−1
n−2

)]

2
+
[(

n−1
n−1

)]

2
+
[(

n−1
n

)]

2
+ 1, if 2 ≤ n = k;

[(

n−1
k−2

)]

2
+
[(

n−1
k−1

)]

2
+
[(

n−1
k

)]

2
, otherwise.

(3)

Theorem 1 provides summation identities for the partial sum trinomial triangle, as a
corollary of the last section.

Theorem 1. The partial sum trinomial triangle satisfies the following summation expres-
sions

2n
∑

k=0

[(

n

k

)]

2

=
3n+1 − 1

2
,

2n
∑

k=0

(−1)k
[(

n

k

)]

2

=

{

0, if n is odd;

1, otherwise,

2n
∑

k=0

k

[(

n

k

)]

2

= n
3n+1 − 1

2
,

2n
∑

k=0

(−1)kk

[(

n

k

)]

2

=

{

0, if n is odd or n = 0;

n, otherwise.
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3 Trinomial transform triangle

Any term of T can be determined by the terms of sequence (ak) with trinomial coefficients.
Recall ak0 = ak.

Theorem 2. For any 0 ≤ n ≤ k, we have

akn =
k+n
∑

i=k−n

(

n

i− k + n

)

2

ai0. (4)

Proof. The proof is by induction on n. For n = 0 the statement is trivial. For clarity in case
n = 1, we have

ak1 = ak−1
0 + ak0 + ak+1

0 =

(

1

0

)

2

ak−1
0 +

(

1

1

)

2

ak0 +

(

1

2

)

2

ak+1
0 =

k+1
∑

i=k−1

(

1

i− k + 1

)

2

ai0.

Let us suppose that the result is true for n− 1, so, for example,

akn−1 =
k+n−1
∑

i=k−n+1

(

n− 1

i− k + n− 1

)

2

ai0.

Using (3), we have

akn = ak−1
n−1 + akn−1 + ak+1

n−1

=
k+n−2
∑

i=k−n

(

n− 1

i− k + n

)

2

ai0 +
k+n−1
∑

i=k−n+1

(

n− 1

i− k + n− 1

)

2

ai0 +
k+n
∑

i=k−n+2

(

n− 1

i− k + n− 2

)

2

ai0

=

(

n− 1

0

)

2

ak−n
0 +

((

n− 1

1

)

2

+

(

n− 1

0

)

2

)

ak−n+1
0

+

((

n− 1

2

)

2

+

(

n− 1

1

)

2

+

(

n− 1

0

)

2

)

ak−n+2
0 + · · ·

+

((

n− 1

i− k + n− 2

)

2

+

(

n− 1

i− k + n− 1

)

2

+

(

n− 1

i− k + n

)

2

)

ai0 + · · ·

+

((

n− 1

2n− 3

)

2

+

(

n− 1

2n− 2

)

2

)

ak+n−1
0 +

(

n− 1

2n− 2

)

2

ak+n
0

=
k+n
∑

i=k−n

(

n

i− k + n

)

2

ai0.
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We let (bn) denote the 0th diagonal sequence (ann) in T . If k = n, then we obtain the
next corollary from Theorem 2.

Corollary 3. The diagonal sequence (bn) of the trinomial transform triangle is the trinomial
transform sequence of (ak).

Let (sn)
∞
n=0 be the sum sequence of the values of columns in T , so that

sn =
n

∑

i=0

ani . (5)

Theorem 4.

sn =
n

∑

i=0

n+i
∑

j=n−i

(

i

j − n+ i

)

2

aj0 =
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

an+k−i
0 .

Proof. Substitute (4) into (5) and put k = i+ j − n.

Let us express the term sn by the help of the terms of the partial sum trinomial triangle
and for it, first, we have to prove the theorem below.

Theorem 5. If n ≤ k, then

n
∑

i=0

aki =
k+n
∑

ℓ=k−n

[(

n

ℓ− k + n

)]

2

aℓ0. (6)

Proof. We prove again by induction. The case n = 0 is clear, and for clarity in case n = 1,
we have

∑1
i=0 a

k
i = ak0 + ak1 = ak−1

0 + 2ak0 + ak+1
0 . The hypothesis of induction for n− 1 is

n−1
∑

i=0

aki =
k+n−1
∑

ℓ=k−n+1

[(

n− 1

ℓ− k + n+ 1

)]

2

aℓ0.
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Now, using (2), we obtain

n
∑

i=0

aki =
n−1
∑

i=0

aki + akn

=
k+n−1
∑

ℓ=k−n+1

[(

n− 1

ℓ− k + n+ 1

)]

2

aℓ0 +
k+n
∑

i=k−n

(

n

i− k + n

)

2

ai0

=
k+n−1
∑

ℓ=k−n+1

[(

n− 1

ℓ− k + n+ 1

)]

2

aℓ0 +

(

n

0

)

2

ak−n
0 +

(

n

2n

)

2

ak+n
0 +

k+n−1
∑

ℓ=k−n+1

(

n

ℓ− k + n

)

2

aℓ0

=

(

n

0

)

2

ak−n
0 +

k+n−1
∑

ℓ=k−n+1

([(

n− 1

ℓ− k + n+ 1

)]

2

+

(

n

ℓ− k + n

)

2

)

aℓ0 +

(

n

2n

)

2

ak+n
0

=
k+n
∑

ℓ=k−n

[(

n

ℓ− k + n

)]

2

aℓ0.

The same induction method yields the following theorem.

Theorem 6. If 0 ≤ j ≤ n, then we have

k
∑

i=0

aki =

k+n−j
∑

ℓ=k−n+j

[(

n− j

ℓ− k + n− j

)]

2

aℓj.

Applying Theorem 5 for the case k = n, we obtain the main theorem of this section.

Theorem 7. The column sum sequence can be given with the expression

sn =
2n
∑

ℓ=0

[(

n

ℓ

)]

2

aℓ0.

4 Trinomial transform triangles generated by ternary

homogeneous linear recurrent sequences

From this point on we examine the case ak0 = ak, where (ak)
∞
k=0 is a ternary linear recursive

sequence with initial values a0, a1, a2 ∈ Z (|a0|+ |a1|+ |a2| 6= 0). And it is defined for 3 ≤ k
by

ak = αak−1 + βak−2 + γak−3, (7)
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where α, β, γ ∈ Z, γ 6= 0. (In general, the results of this section hold for an integral domain.)
From now on, we will use three important variables

A = α2 + α + 2β + 3,

B = −2α2 + αβ + 2αγ − β2 − 2α− 3β + 3γ − 3,

C = α2 − αβ − αγ + β2 − βγ + γ2 + α + β − 2γ + 1.

Theorem 8. The terms in the rows satisfy the same ternary relation,

akn = αak−1
n + βak−2

n + γak−3
n (0 ≤ n ≤ k − 3). (8)

Proof. We prove by induction on n. If n = 0, then (8) is the definition of ak. We suppose
that it holds for up to row n− 1. Then

akn = ak−1
n−1 + akn−1 + ak+1

n−1

= αak−2
n−1 + βak−3

n−1 + γak−4
n−1 + αak−1

n−1 + βak−2
n−1 + γak−3

n−1 + αakn−1 + βak−1
n−1 + γak−2

n−1

= α(akn−1 + ak−1
n−1 + ak−2

n−1) + β(ak−1
n−1 + ak−2

n−1 + ak−3
n−1) + γ(ak−2

n−1 + ak−3
n−1 + ak−4

n−1)

= αak−1
n + βak−2

n + γak−3
n .

Remark 9. Let us extend the sequence (ak) for negative indices, so that let ak = 0, if k < 0.
From definition (1), the initial values of sequences of rows are a−n

n = a0, a
−n+1
n = na0 + a1,

and a−n+2
n =

(

n+1
2

)

a0 + na1 + a2 with extension for negative indices. It can be easily proved
by induction.

Theorem 10. The terms in the diagonals can be described by the same ternary recurrence
relation,

an+ℓ
n = Aan+ℓ−1

n−1 + Ban+ℓ−2
n−2 + Can+ℓ−3

n−3 (3 ≤ n, 0 ≤ ℓ). (9)

Proof. We prove it by induction first on ℓ and second on n.
First, let n = 3. In case ℓ = 0, 1, 3, we can check the recurrence (9) by computer. (For

example the expression of a33 contains more than hundred characters. Figure 4 shows a small
part of the triangle based on initial elements x, y and z.) Now, we suppose that (9) holds
for up to ℓ− 1. We obtain

a6+ℓ
3 = αa5+ℓ

3 + βa4+ℓ
3 + γa3+ℓ

3

= α
(

Aa4+ℓ
2 + Ba3+ℓ

1 + Ca2+ℓ
0

)

+ β
(

Aa3+ℓ
2 + Ba2+ℓ

1 + Ca1+ℓ
0

)

+ γ
(

Aa2+ℓ
2 + Ba1+ℓ

1 + Caℓ0
)

= A
(

αa4+ℓ
2 + βa3+ℓ

2 + γa2+ℓ
2

)

+ B
(

αa3+ℓ
1 + βa2+ℓ

1 + γa1+ℓ
1

)

+ C
(

αa2+ℓ
0 + βa1+ℓ

0 + γaℓ0
)

= Aa5+ℓ
2 + Ba4+ℓ

1 + Ca3+ℓ
0 .
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Second, we suppose in case any ℓ that (9) holds for up to 4 ≤ n− 1, and thus we have

an+ℓ
n = an+ℓ−1

n−1 + an+ℓ
n−1 + an+ℓ+1

n−1

= Aan+ℓ−2
n−2 + Ban+ℓ−3

n−3 + Can+ℓ−4
n−4 +Aan+ℓ−1

n−2 + Ban+ℓ−2
n−3 + Can+ℓ−3

n−4

+ Aan+ℓ
n−2 + Ban+ℓ−1

n−3 + Can+ℓ−2
n−4

= A
(

an+ℓ−2
n−2 + an+ℓ−1

n−2 + an+ℓ
n−2

)

+ B
(

an+ℓ−3
n−3 + an+ℓ−2

n−3 + an+ℓ−1
n−3

)

+ C
(

an+ℓ−4
n−4 + an+ℓ−3

n−4 + an+ℓ−2
n−4

)

= Aan+ℓ−1
n−1 + Ban+ℓ−2

n−2 + Can+ℓ−3
n−3 .

x y z γx+ βy + αz

αγx+
(αβ + γ)y+
(α2 + β)z

x+ y + z
γx+ (β + 1)y
+(α + 1)z

(αγ + γ)x+
(αβ + β + γ)y+
(α2 + α + β + 1)z

(αγ + 2γ + 1)x+
(αβ + 2β + γ + 2)y+
(α2 + 2α + β + 3)z

Figure 4: A part of the growing of T

Theorem 10 for case ℓ = 0 and Figure 4 provide the main statement of this section.

Corollary 11 (Main corollary). The trinomial transform sequence of a given ternary linear
recurrent sequence (ak) defined by (7) is the ternary linear recurrent sequence (bk) defined by

bn = Abn−1 + Bbn−2 + Cbn−3 (3 ≤ n, 0 ≤ ℓ),

with initial values b0 = a0, b1 = a0 + a1 + a2 and b2 = (αγ + 2γ + 1)a0 + (αβ + 2β + γ +
2)a1 + (α2 + 2α + β + 3)a2.

Moreover, we can give a general statement for the linear homogenous recurrence sequences
according to Barbero et al. [3].

9



Theorem 12. Let (ak) be a linear recurrent sequence of degree r with characteristic polyno-
mial given by p(t), and zeros ω1, ω2, . . . , ωr are all different. Then its trinomial transform
sequence (bk) is a linear recurrent sequence of degree r, and zeros of the characteristic poly-
nomial of (bk) are ω2

1 + ω1 + 1, ω2
2 + ω2 + 1, . . . , ω2

r + ωr + 1.

Proof. Our proof is similar to the proof of Barbero et al. [3, Thm. 10]. If p(t) has distinct
complex zeros ω1, . . . , ωr, then by Binet formula

an =
r

∑

j=1

Ajω
n
j ,

for some complex Ai derived from initial conditions [9, Thm. C.1. p. 33]. For all terms of
(bk), we have

bn =
2n
∑

i=0

(

n

i

)

2

ai =
2n
∑

i=0

(

n

i

)

2

r
∑

j=1

Ajω
i
j =

r
∑

j=1

Aj(ω
2
j + ωj + 1)n .

It is surprising that a ternary recurrence relation with rational coefficients holds for the
finite column sequences (aki )

k
i=0. The following theorem formulates it precisely.

Theorem 13. The terms in the column k can be described by the ternary recurrence relation

akn =
P

γ
akn−1 +

Q

γ
akn−2 +

C

γ
akn−3 (3 ≤ n ≤ k),

where P = αγ − β + 3γ and Q = αβ − 2αγ + βγ − α + 2β.

Proof. The proof is very similar to that of Theorem 10. We use the induction method.
First, let n = 3. For cases k = 3, 4, 5 we can check the equation

γak3 = Pak2 +Qak1 + Cak0. (10)

Now, we suppose that the equation (10) holds up to k − 1. So the condition of induction
yields the equations

α(γak−1
3 ) = α(Pak−1

2 +Qak−1
1 + Cak−1

0 ),

β(γak−2
3 ) = β(Pak−2

2 +Qak−2
1 + Cak−2

0 ),

γ(γak−3
3 ) = γ(Pak−3

2 +Qak−3
1 + Cak−3

0 ).

Summing the equations and applying Theorem 8 we obtain that (10) holds for any k.
Second, if we suppose that

γakn−1 = Pakn−2 +Qakn−3 + Cakn−4 (11)

10



holds for any 4 ≤ n ≤ k, then we have

γak−1
n−1 = Pak−1

n−2 +Qak−1
n−3 + Cak−1

n−4,

γakn−1 = Pakn−2 +Qakn−3 + Cakn−4,

γak+1
n−1 = Pak−3

n+1 +Qak−3
n+1 + Cak+1

n−4.

Using (1) for the sum of the equations we obtain

γakn = Pakn−1 +Qakn−2 + Cakn−3.

4.1 Sums and alternating sums of columns

We give (sn) as a linear recurrent sequence with coefficients given by the coefficients of
sequences (an) and (bn). Recall (sn) was defined in (5).

Theorem 14. If n ≥ 6, then the sequence (sn) can be described by the sixth order homoge-
neous linear recurrence relation

sn = (α +A)sn−1 + (B − αA+ β)sn−2 − (αB + βA− C − γ)sn−3

− (αC + βB + γA)sn−4 − (βC + γB)sn−5 − γCsn−6. (12)

Proof. First, we prove that the recurrence relations of sequences (akn), (a
n+ℓ
n ) (ℓ ≥ 0) are

the same as relation (12). Extend relation (8) to sixth order homogeneous linear recurrence
relation by sum of akn, Aak−1

n , Bak−2
n and Cak−3

n , moreover extend (9) also by sum of an+ℓ
n ,

αan+ℓ−1
n−1 , βan+ℓ−2

n−2 and γan+ℓ−3
n−3 . Then we obtain the same coefficients as in (12).

Second, we give the connection between sn and sn−2. It is from

sn−1 − an−1
0 =

n−1
∑

i=1

an−1
i =

n−1
∑

i=1

(

an−2
i−1 + an−1

i−1 + ani−1

)

=
n−2
∑

i=0

an−2
i +

n−2
∑

i=0

an−1
i +

n−2
∑

i=0

ani

= sn−2 + sn−1 − an−1
n−1 + sn − ann−1 − ann.

Reordering the equation, we have

sn = −sn−2 + an−1
n−1 + ann−1 + ann − an−1

0 .

Third, we have finished the preparations to prove the theorem by induction on n. Because
of the complexity in case n = 6, we can check the recurrence (12) by computer. Then we

11



suppose that (12) holds for cases up to n− 1. We obtain

sn = −sn−2 + an−1
n−1 + ann−1 + ann − an−1

0

= −((α +A)sn−3 − (B − αA+ β)sn−4 − (αB + βA− C − γ)sn−5

−(αC + βB + γA)sn−6 − (βC + γB)sn−7 − γCsn−8)

+(α +A)an−2
n−2 + (B − αA+ β)an−3

n−3 + (αB + βA− C − γ)an−4
n−4

+(αC + βB + γA)an−5
n−5 + (βC + γB)an−6

n−6 + γCan−7
n−7

+ · · ·

−(α +A)an−2
0 − (B − αA+ β)an−3

0 − (αB + βA− C − γ)an−4
0

−(αC + βB + γA)an−5
0 − (βC + γB)an−6

0 − γCan−7
0

= (α +A)(−sn−3 + an−2
n−2 + an−1

n−2 + an−1
n−1 − an−2

0 )

+ (B − αA+ β)(−sn−4 + an−3
n−3 + an−2

n−3 + an−2
n−2 − an−3

0 )

− (αB + βA− C − γ)(−sn−5 + an−4
n−4 + an−3

n−4 + an−3
n−3 − an−4

0 )

− (αC + βB + γA)(−sn−6 + an−5
n−5 + an−4

n−5 + an−4
n−4 − an−5

0 )

− (βC + γB)(−sn−7 + an−6
n−6 + an−5

n−6 + an−5
n−5 − an−6

0 )

− γC(−sn−8 + an−7
n−7 + an−6

n−7 + an−6
n−6 − an−7

0 )

= (α +A)sn−1 + (B − αA+ β)sn−2 − (αB + βA− C − γ)sn−3

−(αC + βB + γA)sn−4 − (βC + γB)sn−5 − γCsn−6.

Let (s̄n) be the alternating sum of the values of columns n, so that

s̄n =
n

∑

i=0

(−1)iani =
n

∑

i=0

2i
∑

k=0

(−1)i
(

i

k

)

2

an+k−i
0 .

Theorem 15. If n ≥ 6, then the alternating sum sequences (s̄n) can be described by the
sixth order homogeneous linear recurrence relation

s̄n = (α−A)s̄n−1 + (B + αA+ β)s̄n−2 − (αB − βA+ C − γ)s̄n−3

+ (αC − βB + γA)s̄n−4 + (βC − γB)s̄n−5 + γCs̄n−6.

Proof. Row by row the signs of the terms in the alternating sums change in directions parallel
to the diagonal, hence we have to change the sign of A and C in the summation relation
(12). They have influence on the signs of every next and third terms, respectively. In a row
the signs of the terms do not change.

5 Examples

In this section, we give some examples for the trinomial transform triangles generated by
ternary linear recurrent sequences.
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5.1 Fibonacci sequence

Let the base sequence be the Fibonacci sequence (Fk)
∞
k=0 defined by F0 = 0, F1 = 1 and

Fk = Fk−1 + Fk−2, k ≥ 2 (A000045). If we extend it to a ternary recurrence (with sum of
Fk and Fk−1), then we obtain that Fk = 2Fk−1 − Fk−3, k ≥ 3. So let ak0 = Fk for any k,
moreover α = 2, β = 0 and γ = −1.

When we substitute the initial values into T , then we have the Fibonacci trinomial
transform triangle, see Table 1.

0 1 2 3 4 5 6 7 8 9
0 0 1 1 2 3 5 8 13 21 34
1 2 4 6 10 16 26 42 68 110
2 12 20 32 52 84 136 220 356
3 64 104 168 272 440 712 1152
4 336 544 880 1424 2304 3728
5 1760 2848 4608 7456 12064
6 9216 14912 24128 39040
7 48256 78080 126336
8 252672 408832
9 1323008
sn 0 3 17 92 485 2545 13334 69831 365661 1914660

s̄n 0 −1 9 −48 257 −1343 7042 −36861 193029 −1010680

Table 1: Fibonacci trinomial transform triangle

Having observed the rows of Table 1, we have found that they are the well-known
i-Fibonacci sequences, defined by F

[i]
0 = 0, F

[i]
1 = i and F

[i]
j = F

[i]
j−1+F

[i]
j−2, j ≥ 2. This result

is expressed in the following theorem.

Theorem 16. The terms of the rows in Table 1 are the terms of the 2n-Fibonacci sequences,
so that

akn = F
[2n]
k+n.

Proof. Obviously, for case n = 1 the theorem is true. Let us suppose that the result is also
true for n−1. As the relation between the Fibonacci and i-Fibonacci sequences is i·Fk = F

[i]
k ,

we gain

akn = ak−1
n−1 + akn−1 + ak+1

n−1 = F
[2n−1]
k−1+n−1 + F

[2n−1]
k+n−1 + F

[2n−1]
k+1+n−1)

= 2F
[2n−1]
k−n = F

[2n]
k−n.

For all the directions parallel to the diagonal of Table 1 and for the trinomial transform
sequence, we obtain from (9) and Theorem 11 the following corollaries.
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Corollary 17. If 2 ≤ n ≤ k, then

akn = 6ak−1
n−1 − 4ak−2

n−2.

Corollary 18. The trinomial transform sequence (bn) of the Fibonacci sequence is the binary
sequence bn = 6bn−1 − 4bn−2 with initial elements b0 = 0, b1 = 2. (The main diagonal of
Table 1.)

In OEIS the trinomial transform of the Fibonacci numbers is the sequence A082761
(1, 4, 20, 104, . . .), which can be seen in Table 1 as the second diagonal.

We obtain the following corollaries from the theorems of the previous section.

Corollary 19. If 2 ≤ n ≤ k, then

F
[2n]
k+n = 2F

[2n−1]
k+n−1 + 4F

[2n−2]
k+n−2,

F
[2n]
k+n = 6F

[2n−1]
k+n−2 − 4F

[2n−2]
k+n−4.

Corollary 20. For the sum and alternating sum of columns, we have

sn =
n

∑

i=0

F
[2n]
i+n =

2n
∑

i=0

[(

n

i

)]

2

Fi =
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

Fn+k−i,

s̄n =
n

∑

i=0

(−1)iF
[2n]
i+n =

n
∑

i=0

(−1)i
2i
∑

k=0

(

i

k

)

2

Fn+k−i.

Moreover, if n ≥ 4, then

sk = 7sk−1 − 9sk−2 − 2sk−3 + 4sk−4,

s̄k = −5s̄k−1 + 3s̄k−2 + 10s̄k−3 + 4s̄k−4.

with initial values s0 = 0, s1 = 3, s2 = 17, s3 = 92, and s̄0 = 0, s̄1 = −1, s̄2 = 9, s̄3 = −48.

5.2 Tribonacci sequence

Let the base sequence ak0 be the Tribonacci sequence (A000073), defined by tk = tk−1+tk−2+
tk−3, k ≥ 3 with initial values t0 = 0, t1 = 0, t2 = 1. So let ak0 = tk and α = β = γ = 1. The
Tribonacci trinomial transform triangle is depicted in Table 2.

Easy to see that akn = ak+2
n−1 = · · · = ak+2n

0 = tk+2n, and from it with the statements in
the previous section, we have the following corollaries.

Corollary 21. In the case 3 ≤ n ≤ k, we obtain

akn = 7ak−1
n−1 − 5ak−2

n−2 + ak−3
n−3,

akn = 3akn−1 + akn−2 + akn−3

Moreover, the terms of sequence (akn)
k
n=0 are every second terms of the Tribonacci numbers,

so that ann = t3n.
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0 1 2 3 4 5 6 7 8 9
0 0 0 1 1 2 4 7 13 24 44
1 1 2 4 7 13 24 44 81 149
2 7 13 24 44 81 149 274 504
3 44 81 149 274 504 927 1705
4 274 504 927 1705 3136 5768
5 1705 3136 5768 10609 19513
6 10609 19513 35890 66012
7 66012 121415 223317
8 410744 755476
9 2555757
sk 0 1 10 62 388 2419 15058 93708 583100 3628245

s̄k 0 −1 6 −34 212 −1315 8190 −50948 317036 −1972637

Table 2: Tribonacci trinomial transform triangle

Corollary 22. The trinomial transform sequence (bn) of the Tribonacci sequence is the
ternary sequence bn = 6bn−1 − 4bn−2 + bn−3 with initial terms b0 = 0, b1 = 1, b2 = 7. (The
main diagonal of Table 2.)

In OEIS the trinomial transform of the Tribonacci numbers is the sequence A192806
(1, 1, 4, 24, 149, 927, . . .), which is the third diagonal in Table 1 with an additional first term.

Corollary 23. For the sum and alternating sum of columns, we have

sn =
n

∑

i=0

tn+2i =
2n
∑

i=0

[(

n

i

)]

2

ti =
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

tn+k−i,

s̄n =
n

∑

i=0

(−1)itn+2i =
n

∑

i=0

(−1)i
2i
∑

k=0

(

i

k

)

2

tn+k−i.

In addition,

sn = 8sn−1 − 11sn−2 − 3sn−4 + 4sn−5 − sn−6 (n ≥ 6),

s̄n = −6s̄n−1 + 3s̄n−2 + 12s̄n−2 + 13s̄n−4 + 6s̄n−5 + s̄n−6 (n ≥ 6),

with initial values s0 = 0, s1 = 1, s2 = 10, s3 = 62, s4 = 388, s5 = 2419, and s̄0 = 0,
s̄1 = −1, s̄2 = 6, s̄3 = −34, s̄4 = 212, s̄5 = −1315.

5.3 The constant sequence 1

In this subsection, we give Table 3 generated by the constant sequence 1 (A000012) and the
expressions that prove Theorem 1.
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0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 3 3 3 3 3 3 3 3 3
2 9 9 9 9 9 9 9 9
3 27 27 27 27 27 27 27
4 81 81 81 81 81 81
5 243 243 243 243 243
6 729 729 729 729
7 2187 2187 2187
8 6561 6561
9 19683
sk 1 4 13 40 121 364 1093 3280 9841 29524

s̄k 1 −2 7 −20 61 −182 547 −1640 4921 −14762

Table 3: Trinomial transform triangle generated by the constant sequence 1

One can easily see that akn = 3n (A000244). It implies that the trinomial transform
sequence of the constant sequence 1 is the sequence 3n. Moreover, the columns also form
geometric sequences with common ratio 3. Thus

sn =
2n
∑

i=0

[(

n

i

)]

2

=
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

=
n

∑

i=0

3i =
3n+1 − 1

2
(A003462),

s̄n =
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

(−1)i =
n

∑

i=0

(−3)i =
3(−3)n + 1

4
(A014983),

5.4 Natural numbers

Let ak0 = k, the non-negative integers (A001477). We obtain that akn = k3n, and the trinomial
transform of the natural sequence is the sequence n3n (A036290).

In this case, the columns also form geometric sequences with common ratio 3 (see Table 4).
Thus

sn =
2n
∑

i=0

i

[(

n

i

)]

2

=
n

∑

i=0

2i
∑

k=0

n

(

i

k

)

2

=
n

∑

i=0

n3i = n
3n+1 − 1

2
,

s̄n =
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

(−1)in =
n

∑

i=0

n(−3)i = n
3(−3)n + 1

4
.
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0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 3 6 9 12 15 18 21 24 27
2 18 27 36 45 54 63 72 81
3 81 108 135 162 189 216 243
4 324 405 486 567 648 729
5 1215 1458 1701 1944 2187
6 4374 5103 5832 6561
7 15309 17496 19683
8 52488 59049
9 177147
sk 0 4 26 120 484 1820 6558 22960 78728 265716

s̄k 0 −2 14 −60 244 −910 3282 −11480 39368 −132858

Table 4: Trinomial transform triangle generated by natural numbers

5.5 Two other sequences

In this subsection, we give two cases without tables, whose trinomial transform sequences
are the all 1’s sequence and the natural numbers mentioned in the previous subsections. We
gain the results with very easy calculations.

First, let ak0 = (−1)k (A033999). Then akn = (−1)n+k and bn = 1.

sn =
2n
∑

i=0

(−1)i
[(

n

i

)]

2

=
n

∑

i=0

2i
∑

k=0

(−1)n+k−i

(

i

k

)

2

=
n

∑

i=0

(−1)n+i =

{

0, if n is odd;

1, if n is even.

s̄n =
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

(−1)i =
n

∑

i=0

1 = n+ 1.

Second, let ak0 = (−1)kk (A038608). Then akn = (−1)n+kk and bn = n.

sn =
2n
∑

i=0

(−1)ii

[(

n

i

)]

2

=
n

∑

i=0

2i
∑

k=0

(−1)n+k−in

(

i

k

)

2

=
n

∑

i=0

(−1)n+in

=

{

0, if n is odd or n = 0;

n, otherwise.

s̄n = n
n

∑

i=0

2i
∑

k=0

(

i

k

)

2

(−1)i =
n

∑

i=0

n = n2 + n (A002378).
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