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Abstract

We obtain explicit formulas for the p-adic valuations of Fibonomial coefficients

which extend some results in the literature.

1 Introduction

The Fibonacci sequence (Fn)n≥1 is given by the recurrence relation Fn = Fn−1 + Fn−2 for
n ≥ 3 with the initial values F1 = F2 = 1. For each m ≥ 1 and 1 ≤ k ≤ m, the Fibonomial
coefficients

(

m

k

)

F
are defined by

(

m

k

)

F

=
F1F2F3 · · ·Fm

(F1F2F3 · · ·Fk)(F1F2F3 · · ·Fm−k)
=

Fm−k+1Fm−k+2 · · ·Fm

F1F2F3 · · ·Fk

,

where Fn is the nth Fibonacci number. If k = 0, we define
(

m

k

)

F
= 1 and if k > m, we define

(

m

k

)

F
= 0. It is well known that

(

m

k

)

F
is an integer for all positive integers m and k. So it
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is natural to consider the divisibility properties and the p-adic valuation of
(

m

k

)

F
. As usual,

p always denotes a prime and the p-adic valuation (or p-adic order) of a positive integer n,
denoted by νp(n), is the exponent of p in the prime factorization of n. In addition, the order
(or the rank) of appearance of n in the Fibonacci sequence, denoted by z(n), is the smallest
positive integer k such that n | Fk. The Fibonacci sequence and the triangle of Fibonomial
coefficients are, respectively, A000045 and A010048 in OEIS [25]. Also see A055870 and
A003267 for signed Fibonomial triangle and central Fibonomial coefficients, respectively.

In 1989, Knuth and Wilf [8] gave a short description of the p-adic valuation of
(

m

k

)

C

where C is a regularly divisible sequence. However, this does not give explicit formulas
for

(

m

k

)

F
. Then recently, there has been some interest in explicitly evaluating the p-adic

valuation of Fibonomial coefficients of the form
(

pb

pa

)

F
. For example, Marques and Trojovský

[10, 11] and Marques, Sellers, and Trojovský [12] deal with the case b = a + 1, a ≥ 1.
Ballot [2, Theorem 4.2] extends the Kummer-like theorem of Knuth and Wilf [8, Theorem
2], which gives the p-adic valuation of Fibonomials, to all Lucasnomials, and, in particular,

uses it to determine explicitly the p-adic valuation of Lucasnomials of the form
(

pb

pa

)

U
, for all

nondegenerate fundamental Lucas sequences U and all integers b > a ≥ 0, [2, Theorem 7.1].
Note that in the formula given by Marques and Trojovský [11, Theorem 1] for U = F

and b = a + 1, only the case of a even is actually explicitly computed. It appears, using
the theorem of Ballot [1, Theorem 7.1], that their stated result for a odd is correct only for
primes p for which p2 does not divide Fz(p), where z(p) is the rank of appearance of p in the
Fibonacci sequence. Also see Examples 16 and 18 in this article.

Our purpose is to extend Ballot’s theorem, Theorem 7.1, in the case U = F and b ≥ a > 0

and obtain explicit formulas for
(

ℓ1p
b

ℓ2pa

)

F
, where ℓ1 and ℓ2 are arbitrary positive integers such

that ℓ1p
b > ℓ2p

a. This leads us to study the p-adic valuations of integers of the forms

⌊

ℓpa

m

⌋

! or

⌊

ℓ1p
b − ℓ2p

a

m

⌋

!, (1)

where p ≡ ±1 (mod m). For instance, we obtain in Example 17 the following result: for
positive integers a, b, ℓ with b ≥ a, and a prime p distinct from 2 and 5, if p ≡ ±1 (mod 5),
then

νp

((

ℓpb

pa

)

F

)

=

{

b+ νp(Fz(p)) + νp(ℓ), if z(p) | ℓ;

0, otherwise.

Furthermore, if p ≡ ±2 (mod 5), then

νp

((

ℓpb

pa

)

F

)

=



















0, if ℓ ≡ 1− 2ε (mod z(p));

b+ νp(Fz(p)) + νp(ℓ), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is odd,
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where ε = 1 if a and b have different parity and ε = 0 otherwise. We also obtain the
corresponding results for p ∈ {2, 5} in Examples 15 and 19. These extend all the main
results in [10, 11, 12] and Ballot’s theorem, Theorem 7.1, in the case U = F .

Recall that for each x ∈ R, ⌊x⌋ is the largest integer less than or equal to x, {x} is the
fractional part of x given by {x} = x − ⌊x⌋, and ⌈x⌉ is the smallest integer larger than
or equal to x. In addition, we write a mod m to denote the least nonnegative residue of a
modulo m. We also use the Iverson notation: if P is a mathematical statement, then

[P ] =

{

1, if P holds;

0, otherwise.

For example, [5 ≡ −1 (mod 4)] = 0 and [3 ≡ −1 (mod 4)] = 1.
We organize this article as follows. In Section 2, we give some preliminaries and useful

results which are needed in the proof of the main theorems. In Section 3, we give exact
formulas for the p-adic valuations of integers (1). In Section 4, we apply the results obtained
in Section 3 to Fibonomial coefficients. Our most general theorem is Theorem 13. Finally, in
Section 5, we give the p-adic valuations of some specific sub-families of Fibonomial coefficients
of type (1), since generally, the more specific the family, the shortest the formula becomes.

For more information related to Fibonacci numbers, we invite the readers to visit the
second author’s Researchgate account [23] which contains some freely downloadable versions
of his publications [5, 6, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

2 Preliminaries and lemmas

Recall that for each odd prime p and a ∈ Z, the Legendre symbol (a
p
) is defined by

(

a

p

)

=











0, if p | a;

1, if a is a quadratic residue of p;

−1, if a is a quadratic nonresidue of p.

Then we have the following result.

Lemma 1. Let p 6= 5 be a prime and let m and n be positive integers. Then the following
statements hold.

(i) If p > 2, then Fp−( 5
p
) ≡ 0 (mod p).

(ii) n | Fm if and only if z(n) | m.

(iii) z(p) | p+ 1 if and only if p ≡ 2 or − 2 (mod 5), and z(p) | p− 1 otherwise.

(iv) gcd(z(p), p) = 1.
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Proof. These are well known results. For example, (i) and (ii) can be found in [4, p. 410]
and [26], respectively. Then (iii) follows from (i) and (ii). By (iii), z(p) | p ± 1. Since
gcd(p, p± 1) = 1, we obtain gcd(z(p), p) = 1. This proves (iv).

Lengyel’s result and Legendre’s formula given in the following lemmas are important
tools in evaluating the p-adic valuation of Fibonomial coefficients. We also refer the reader
to [10, 11, 12, 15] for other similar applications of Lengyel’s result.

Lemma 2. (Lengyel [9]) For n ≥ 1, we have

ν2(Fn) =











0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

ν2(n) + 2, if n ≡ 0 (mod 6),

ν5(Fn) = ν5(n), and if p is a prime distinct from 2 and 5, then

νp(Fn) =

{

νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p)) :

0, if n 6≡ 0 (mod z(p)),

Lemma 3. (Legendre’s formula) Let n be a positive integer and let p be a prime. Then

νp(n!) =
∞
∑

k=1

⌊

n

pk

⌋

.

In the proof of the main results, we will deal with a lot of calculation involving the floor
function. So it is useful to recall the following results.

Lemma 4. For n ∈ Z and x ∈ R, the following holds

(i) ⌊n+ x⌋ = n+ ⌊x⌋,

(ii) {n+ x} = {x},

(iii) ⌊x⌋+ ⌊−x⌋ =

{

−1, if x 6∈ Z;

0, if x ∈ Z,

(iv) {−x} =

{

1− {x}, if x 6∈ Z;

0, if x ∈ Z,

(v) ⌊x+ y⌋ =

{

⌊x⌋+ ⌊y⌋, if {x}+ {y} < 1;

⌊x⌋+ ⌊y⌋+ 1, if {x}+ {y} ≥ 1,

(vi)
⌊

⌊x⌋
n

⌋

=
⌊

x
n

⌋

for n ≥ 1.
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Proof. These are well-known results and can be proved easily. For more details, see in [1,
Exercise 13, p. 72] or in [3, Chapter 3]. We also refer the reader to [14] for a nice application
of (v).

The next lemma is used often in counting the number of positive integers n ≤ x lying in
a residue class a mod q, see for instance in [24, Proof of Lemma 2.6].

Lemma 5. For x ∈ [1,∞), a, q ∈ Z and q ≥ 1, we have

∑

1≤n≤x
n≡ a (mod q)

1 =

⌊

x− a

q

⌋

−

⌊

−
a

q

⌋

. (2)

Proof. Replacing a by a+ q and applying Lemma 4, we see that the value on the right-hand
side of (2) is not changed. Obviously, the left-hand side is also invariant when we replace a

by a+ q. So it is enough to consider only the case 1 ≤ a ≤ q. Since n ≡ a (mod q), we write
n = a+ kq where k ≥ 0 and a+ kq ≤ x. So k ≤ x−a

q
. Therefore

∑

1≤n≤x
n≡ a (mod q)

1 =
∑

0≤k≤x−a
q

1 =

⌊

x− a

q

⌋

+ 1 =

⌊

x− a

q

⌋

−

⌊

−
a

q

⌋

.

It is convenient to use the Iverson notation and to denote the least nonnegative residue
of a modulo m by a mod m. Therefore we will do so from this point on.

Lemma 6. Let n and k be integers, m a positive integer, r = n mod m, and s = k mod m.
Then

⌊

n− k

m

⌋

=
⌊ n

m

⌋

−

⌊

k

m

⌋

− [r < s].

Proof. By Lemma 4(i) and the fact that 0 ≤ r < m, we obtain

⌊ n

m

⌋

=

⌊

n− r

m
+

r

m

⌋

=
n− r

m
+
⌊ r

m

⌋

=
n− r

m
.

Similarly,
⌊

k
m

⌋

= k−s
m

. Therefore
⌊

n−k
m

⌋

is equal to

⌊

n− r

m
−

k − s

m
+

r − s

m

⌋

=
n− r

m
−

k − s

m
+

⌊

r − s

m

⌋

=

{

⌊

n
m

⌋

−
⌊

k
m

⌋

, if r ≥ s;
⌊

n
m

⌋

−
⌊

k
m

⌋

− 1, if r < s.
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3 The p-adic valuation of integers in special forms

In this section, we calculate the p-adic valuation of
⌊

ℓpa

m

⌋

! and other integers in similar forms.

Theorem 7. Let p be a prime and let a ≥ 0, ℓ ≥ 0, and m ≥ 1 be integers. Assume that
p ≡ ±1 (mod m) and let δ = [ℓ 6≡ 0 (mod m)]. Then

νp

(⌊

ℓpa

m

⌋

!

)

=



















ℓ(pa−1)
m(p−1)

− a
{

ℓ
m

}

+ νp
(⌊

ℓ
m

⌋

!
)

, if p ≡ 1 (mod m);

ℓ(pa−1)
m(p−1)

− a
2
δ + νp

(⌊

ℓ
m

⌋

!
)

, if p ≡ −1 (mod m) and a is even;

ℓ(pa−1)
m(p−1)

− a−1
2
δ −

{

ℓ
m

}

+ νp
(⌊

ℓ
m

⌋

!
)

, if p ≡ −1 (mod m) and a is odd.

We remark that if m = 1 or 2, then the expressions in each case of this theorem are all
equal.

Proof. The result is easily verified when a = 0 or ℓ = 0. So we assume throughout that
a ≥ 1 and ℓ ≥ 1. We also use Lemmas 4(i), 4(vi), and 5 repeatedly without reference. By
Legendre’s formula, we obtain

νp

(⌊

ℓpa

m

⌋

!

)

=
∞
∑

j=1

⌊

ℓpa

mpj

⌋

=
a
∑

j=1

⌊

ℓpa−j

m

⌋

+
∞
∑

j=a+1

⌊

ℓpa−j

m

⌋

=
a
∑

j=1

⌊

ℓpa−j

m

⌋

+ νp

(⌊

ℓ

m

⌋

!

)

.

(3)
From (3), it is immediate that for m = 1, we obtain

νp ((ℓp
a)!) =

ℓ(pa − 1)

p− 1
+ νp(ℓ!).

So we assume throughout that m ≥ 2.

Case 1. p ≡ 1 (mod m). Then, for every k ≥ 0, pk ≡ 1 (mod m) and
⌊

ℓpk

m

⌋

=

⌊

ℓ(pk − 1)

m
+

ℓ

m

⌋

=
ℓ(pk − 1)

m
+

⌊

ℓ

m

⌋

.

Therefore the sum
∑a

j=1

⌊

ℓpa−j

m

⌋

appearing in (3) is equal to

a
∑

j=1

(

ℓ(pa−j − 1)

m
+

⌊

ℓ

m

⌋)

=

(

ℓ

m

a
∑

j=1

pa−j

)

− a

(

ℓ

m
−

⌊

ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
− a

{

ℓ

m

}

.

Case 2. p ≡ −1 (mod m). Then for k ≥ 0, we have pk ≡ 1 (mod m) if k is even, and
pk ≡ −1 (mod m) if k is odd. Therefore

⌊

ℓpk

m

⌋

=

⌊

ℓ(pk − 1)

m
+

ℓ

m

⌋

=
ℓ(pk − 1)

m
+

⌊

ℓ

m

⌋

if k ≥ 0 and k is even,

⌊

ℓpk

m

⌋

=

⌊

ℓ(pk + 1)

m
−

ℓ

m

⌋

=
ℓ(pk + 1)

m
+

⌊

−
ℓ

m

⌋

if k ≥ 0 and k is odd.
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Therefore the sum
∑a

j=1

⌊

ℓpa−j

m

⌋

appearing in (3) is equal to

∑

1≤j≤a
a−j≡ 0 (mod 2)

(

ℓ(pa−j − 1)

m
+

⌊

ℓ

m

⌋)

+
∑

1≤j≤a
a−j≡ 1 (mod 2)

(

ℓ(pa−j + 1)

m
+

⌊

−
ℓ

m

⌋)

=
ℓ

m

∑

1≤j≤a

pa−j −
∑

1≤j≤a
j≡a (mod 2)

(

ℓ

m
−

⌊

ℓ

m

⌋)

+
∑

1≤j≤a
j≡ a−1 (mod 2)

(

ℓ

m
+

⌊

−
ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
+
⌊

−
a

2

⌋

(

ℓ

m
−

⌊

ℓ

m

⌋)

−

⌊

−
a− 1

2

⌋(

ℓ

m
+

⌊

−
ℓ

m

⌋)

. (4)

By Lemma 4(iii), we see that

⌊

ℓ

m

⌋

+

⌊

−
ℓ

m

⌋

= −[ℓ 6≡ 0 (mod m)] = −δ.

Therefore if a is even, then (4) is equal to

ℓ(pa − 1)

m(p− 1)
−

a

2

(

ℓ

m
−

⌊

ℓ

m

⌋)

+
a

2

(

ℓ

m
+

⌊

−
ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
+

a

2

(⌊

ℓ

m

⌋

+

⌊

−
ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
−

a

2
δ,

and if a is odd, then (4) is equal to

ℓ(pa − 1)

m(p− 1)
−

a+ 1

2

(

ℓ

m
−

⌊

ℓ

m

⌋)

+
a− 1

2

(

ℓ

m
+

⌊

−
ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
+

a− 1

2

(⌊

ℓ

m

⌋

+

⌊

−
ℓ

m

⌋)

+

⌊

ℓ

m

⌋

−
ℓ

m

=
ℓ(pa − 1)

m(p− 1)
−

(

a− 1

2

)

δ −

{

ℓ

m

}

.

This completes the proof.

We can combine every case in Theorem 7 into a single form as given in the next corollary.

Corollary 8. Assume that p, a, ℓ, m, and δ satisfy the same assumptions as in Theorem 7.
Then the p-adic valuation of

⌊

ℓpa

m

⌋

! is

ℓ(pa − 1)

m(p− 1)
−
⌊a

2

⌋

δ −

{

ℓ

m

}

[a ≡ 1 (mod 2)]

+ δ
⌊a

2

⌋

(

1− 2

{

ℓ

m

})

[p ≡ 1 (mod m)] + νp

(⌊

ℓ

m

⌋

!

)

. (5)
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Proof. This is merely a combination of each case from Theorem 7. For example, when
p ≡ −1 (mod m), the right-hand side of (5) reduces to

ℓ(pa − 1)

m(p− 1)
−
⌊a

2

⌋

δ −

{

ℓ

m

}

[a ≡ 1 (mod 2)] + νp

(⌊

ℓ

m

⌋

!

)

=







ℓ(pa−1)
m(p−1)

− a
2
δ + νp

(⌊

ℓ
m

⌋

!
)

, if a is even;

ℓ(pa−1)
m(p−1)

−
(

a−1
2

)

δ −
{

ℓ
m

}

+ νp
(⌊

ℓ
m

⌋

!
)

, if a is odd,

which is the same as Theorem 7. The other cases are similar. We leave the details to the
reader.

Next we deal with the p-adic valuation of an integer of the form
⌊

ℓ1p
b−ℓ2p

a

m

⌋

! where a, b,

ℓ1, ℓ2, and m are positive integers. It is natural to assume ℓ1p
b − ℓ2p

a > 0. In addition, if

a = b, then the above expression is reduced to
⌊

(ℓ1−ℓ2)pb

m

⌋

!, which can be evaluated by using

Theorem 7. We consider the case b ≥ a in Theorem 9 and the other case in Theorem 10.

Theorem 9. Let p be a prime, let a be a nonnegative integer, and let b, m, ℓ1, ℓ2 be positive
integers satisfying b ≥ a and ℓ1p

b − ℓ2p
a > 0. Assume that p ≡ ±1 (mod m). Then the

following statements hold.

(i) If p ≡ 1 (mod m), then

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
− a

{

ℓ1 − ℓ2

m

}

+ νp

(⌊

ℓ1p
b−a − ℓ2

m

⌋

!

)

.

(ii) If p ≡ −1 (mod m) and a ≡ b (mod 2), then

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−

{

ℓ1 − ℓ2

m

}

[a ≡ 1 (mod 2)]

−
⌊a

2

⌋

[ℓ1 6≡ ℓ2 (mod m)] + νp

(⌊

ℓ1p
b−a − ℓ2

m

⌋

!

)

.

(iii) If p ≡ −1 (mod m) and a 6≡ b (mod 2), then

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−

{

−
ℓ1 + ℓ2

m

}

[a ≡ 1 (mod 2)]

−
⌊a

2

⌋

[ℓ1 6≡ −ℓ2 (mod m)] + νp

(⌊

ℓ1p
b−a − ℓ2

m

⌋

!

)

.

We remark that if m = 1, the expressions in each case of this theorem are equal.
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Proof. The result is easily checked when a = 0, and as discussed above, if b = a, then the
result can be verified using Theorem 7. So we assume throughout that a ≥ 1 and b > a.
Similar to the proof of Theorem 7, we use Lemmas 4(i), 4(vi), and 5 repeatedly without
reference. Then, as for (3), we obtain

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
a
∑

j=1

⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

+
∞
∑

j=a+1

⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

=
a
∑

j=1

⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

+ νp

(⌊

ℓ1p
b−a − ℓ2

m

⌋

!

)

. (6)

We see that when m = 1, (6) becomes

νp
(

(ℓ1p
b − ℓ2p

a)!
)

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

p− 1
+ νp

(

(ℓ1p
b−a − ℓ2)!

)

.

So assume throughout that m ≥ 2. We begin with the proof of (i). Suppose that p ≡
1 (mod m). For each 1 ≤ j ≤ a, we have

⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

=

⌊

ℓ1p
b−j − ℓ1

m
−

ℓ2p
a−j − ℓ2

m
+

ℓ1 − ℓ2

m

⌋

=
ℓ1p

b−j − ℓ2p
a−j

m
−

ℓ1 − ℓ2

m
+

⌊

ℓ1 − ℓ2

m

⌋

.

Then the sum
∑a

j=1

⌊

ℓ1p
b−j−ℓ2p

a−j

m

⌋

appearing in (6) is equal to

ℓ1

m

∑

1≤j≤a

pb−j −
ℓ2

m

∑

1≤j≤a

pa−j − a

(

ℓ1 − ℓ2

m
−

⌊

ℓ1 − ℓ2

m

⌋)

=
ℓ1

m

(

pb−a(pa − 1)

p− 1

)

−
ℓ2

m

(

pa − 1

p− 1

)

− a

{

ℓ1 − ℓ2

m

}

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
− a

{

ℓ1 − ℓ2

m

}

.

This proves (i). So from this point on, we assume that p ≡ −1 (mod m). For each 1 ≤ j ≤ a,
we have
⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

=

⌊

ℓ1p
b−j − (−1)b−jℓ1

m
−

ℓ2p
a−j − (−1)a−jℓ2

m
+

(−1)b−jℓ1 − (−1)a−jℓ2

m

⌋

=
ℓ1p

b−j − ℓ2p
a−j

m
−

(−1)b−jℓ1 − (−1)a−jℓ2

m
+

⌊

(−1)b−jℓ1 − (−1)a−jℓ2

m

⌋

=







ℓ1p
b−j−ℓ2p

a−j

m
− (−1)b−j(ℓ1−ℓ2)

m
+
⌊

(−1)b−j(ℓ1−ℓ2)
m

⌋

, if a ≡ b (mod 2);

ℓ1p
b−j−ℓ2p

a−j

m
− (−1)b−j(ℓ1+ℓ2)

m
+
⌊

(−1)b−j(ℓ1+ℓ2)
m

⌋

, if a 6≡ b (mod 2).
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Case 1. a ≡ b (mod 2). Then the sum
∑a

j=1

⌊

ℓ1p
b−j−ℓ2p

a−j

m

⌋

appearing in (6) is equal to

ℓ1

m

∑

1≤j≤a

pb−j −
ℓ2

m

∑

1≤j≤a

pa−j −

(

ℓ1 − ℓ2

m

)

∑

1≤j≤a

(−1)b−j +
∑

1≤j≤a

⌊

(−1)b−j(ℓ1 − ℓ2)

m

⌋

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−

(

ℓ1 − ℓ2

m

)

∑

1≤j≤a

(−1)b−j +
∑

1≤j≤a

⌊

(−1)b−j(ℓ1 − ℓ2)

m

⌋

. (7)

Observe that
∑

1≤j≤a

(−1)b−j =

{

0, if a is even;

1, if a is odd.

So we have
(

ℓ1 − ℓ2

m

)

∑

1≤j≤a

(−1)b−j =

(

ℓ1 − ℓ2

m

)

[a ≡ 1 (mod 2)].

It remains to calculate the last term in (7). If ℓ1 ≡ ℓ2 (mod m), then we obtain by Lemma
4(iii) that

∑

1≤j≤a

⌊

(−1)b−j(ℓ1 − ℓ2)

m

⌋

=

{

0, if a is even;
⌊

ℓ1−ℓ2
m

⌋

, if a is odd;

=

⌊

ℓ1 − ℓ2

m

⌋

[a ≡ 1 (mod 2)].

Similarly, if ℓ1 6≡ ℓ2 (mod m), then we obtain by Lemma 4(iii) that

∑

1≤j≤a

⌊

(−1)b−j(ℓ1 − ℓ2)

m

⌋

=







−a
2
, if a is even;

⌊

ℓ1−ℓ2
m

⌋

− a−1
2
, if a is odd;

=

⌊

ℓ1 − ℓ2

m

⌋

[a ≡ 1 (mod 2)]−
⌊a

2

⌋

.

In any case,

∑

1≤j≤a

⌊

(−1)b−j(ℓ1 − ℓ2)

m

⌋

=

⌊

ℓ1 − ℓ2

m

⌋

[a ≡ 1 (mod 2)]−
⌊a

2

⌋

[ℓ1 6≡ ℓ2 (mod m)].

Therefore (7) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
−

(

ℓ1 − ℓ2

m

)

[a ≡ 1 (mod 2)] +

⌊

ℓ1 − ℓ2

m

⌋

[a ≡ 1 (mod 2)]

−
⌊a

2

⌋

[ℓ1 6≡ ℓ2 (mod m)]

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−

{

ℓ1 − ℓ2

m

}

[a ≡ 1 (mod 2)]−
⌊a

2

⌋

[ℓ1 6≡ ℓ2 (mod m)].
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This proves (ii). Next we prove (iii).

Case 2. a 6≡ b (mod 2). Similar to Case 1, the sum
∑a

j=1

⌊

ℓ1p
b−j−ℓ2p

a−j

m

⌋

appearing in (6) is

equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
−

(

ℓ1 + ℓ2

m

)

∑

1≤j≤a

(−1)b−j +
∑

1≤j≤a

⌊

(−1)b−j(ℓ1 + ℓ2)

m

⌋

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
+

(

ℓ1 + ℓ2

m

)

[a ≡ 1 (mod 2)] +
∑

1≤j≤a

⌊

(−1)b−j(ℓ1 + ℓ2)

m

⌋

. (8)

If ℓ1 ≡ −ℓ2 (mod m), then we obtain by Lemma 4(iii) that

∑

1≤j≤a

⌊

(−1)b−j(ℓ1 + ℓ2)

m

⌋

=

{

0, if a is even;
⌊

− ℓ1+ℓ2
m

⌋

, if a is odd;

=

⌊

−
ℓ1 + ℓ2

m

⌋

[a ≡ 1 (mod 2)].

Similarly, if ℓ1 6≡ −ℓ2 (mod m), then we obtain by Lemma 4(iii) that

∑

1≤j≤a

⌊

(−1)b−j(ℓ1 + ℓ2)

m

⌋

=

{

−a
2
, if a is even;

⌊

− ℓ1+ℓ2
m

⌋

− a−1
2
, if a is odd;

=

⌊

−
ℓ1 + ℓ2

m

⌋

[a ≡ 1 (mod 2)]−
⌊a

2

⌋

.

In any case,
∑

1≤j≤a

⌊

(−1)b−j(ℓ1+ℓ2)
m

⌋

=
⌊

− ℓ1+ℓ2
m

⌋

[a ≡ 1 (mod 2)] −
⌊

a
2

⌋

[ℓ1 6≡ −ℓ2 (mod m)].

Therefore (8) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
+

(

ℓ1 + ℓ2

m

)

[a ≡ 1 (mod 2)] +

⌊

−
ℓ1 + ℓ2

m

⌋

[a ≡ 1 (mod 2)]

−
⌊a

2

⌋

[ℓ1 6≡ −ℓ2 (mod m)]

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−

{

−
ℓ1 + ℓ2

m

}

[a ≡ 1 (mod 2)]−
⌊a

2

⌋

[ℓ1 6≡ −ℓ2 (mod m)].

This completes the proof.

Next we replace the assumption b ≥ a in Theorem 9 by b < a. The calculation follows
from the same idea so we skip the details of the proof. Although we do not use it in this
article, it may be useful for future reference. So we record it in the next theorem.

Theorem 10. Let p be a prime, let b be a nonnegative integer, and let a, m, ℓ1, ℓ2 be positive
integers satisfying b < a and ℓ1p

b − ℓ2p
a > 0. Assume that p ≡ ±1 (mod m). Then the

following statements hold.
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(i) If p ≡ 1 (mod m), then

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
(ℓ1 − ℓ2p

a−b)(pb − 1)

m(p− 1)
− b

{

ℓ1 − ℓ2

m

}

+ νp

(⌊

ℓ1 − ℓ2p
a−b

m

⌋

!

)

.

(ii) If p ≡ −1 (mod m) and a ≡ b (mod 2), then

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
(ℓ1 − ℓ2p

a−b)(pb − 1)

m(p− 1)
−

{

ℓ1 − ℓ2

m

}

[b ≡ 1 (mod 2)]

−

⌊

b

2

⌋

[ℓ1 6≡ ℓ2 (mod m)] + νp

(⌊

ℓ1 − ℓ2p
a−b

m

⌋

!

)

.

(iii) If p ≡ −1 (mod m) and a 6≡ b (mod 2), then

νp

(⌊

ℓ1p
b − ℓ2p

a

m

⌋

!

)

=
(ℓ1 − ℓ2p

a−b)(pb − 1)

m(p− 1)
−

{

ℓ1 + ℓ2

m

}

[b ≡ 1 (mod 2)]

−

⌊

b

2

⌋

[ℓ1 6≡ ℓ2 (mod m)] + νp

(⌊

ℓ1 − ℓ2p
a−b

m

⌋

!

)

.

Proof. We begin by writing νp

(⌊

ℓ1p
b−ℓ2p

a

m

⌋

!
)

as

b
∑

j=1

⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

+
∞
∑

j=b+1

⌊

ℓ1p
b−j − ℓ2p

a−j

m

⌋

.

The second sum above is νp

(⌊

ℓ1−ℓ2p
a−b

m

⌋

!
)

. The first sum can be evaluated in the same way

as in Theorem 9. We leave the details to the reader.

When we put more restrictions on the range of ℓ1 and ℓ2, the expression νp

(⌊

ℓ1p
b−a−ℓ2
m

⌋

!
)

appearing in Theorems 9 and 10 can be evaluated further. Nevertheless, since we do not
need it in our application, we do not give them here. In the future, we plan to put it in the
second author’s Researchgate account. So the interested reader can find it there.

4 The p-adic valuations of Fibonomial coefficients

Recall that the binomial coefficients
(

m

k

)

is defined by

(

m

k

)

=

{

m!
k!(m−k)!

, if 0 ≤ k ≤ m;

0, if k < 0 or k > m.
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A classical result of Kummer states that for 0 ≤ k ≤ m, νp
((

m

k

))

is equal to the number of
carries when we add k and m− k in base p. From this, it is not difficult to show that for all
primes p and positive integers k, b, a with b ≥ a, we have

νp

((

pb

pa

))

= b− a, or more generally, νp

((

pa

k

))

= a− νp(k).

Knuth and Wilf [8] also obtain the result analogous to that of Kummer for a C-nomial
coefficient. However, our purpose is to obtain νp

((

m

k

)

F

)

is an explicit form. So we first

express νp
((

m

k

)

F

)

in terms of the p-adic valuation of some binomial coefficients in Theorem
11. Then we write it in a form which is easy to use in Corollary 12. Then we apply it to

obtain the p-adic valuation of Fibonomial coefficients of the form
(

ℓ1p
b

ℓ2pa

)

F
.

Theorem 11. Let 0 ≤ k ≤ m be integers. Then the following statements hold.

(i) Let m′ =
⌊

m
6

⌋

, k′ =
⌊

k
6

⌋

, and let r = m mod 6 and s = k mod 6 be the least nonnegative
residues of m and k modulo 6, respectively. Then

ν2

((

m

k

)

F

)

= ν2

((

m′

k′

))

+

⌊

r + 3

6

⌋

−

⌊

r − s+ 3

6

⌋

−

⌊

s+ 3

6

⌋

− 3

⌊

r − s

6

⌋

+ [r < s]ν2

(⌊

m− k + 6

6

⌋)

.

(ii) ν5
((

m

k

)

F

)

= ν5
((

m

k

))

.

(iii) Suppose that p is a prime, p 6= 2, and p 6= 5. Let m′ =
⌊

m
z(p)

⌋

, k′ =
⌊

k
z(p)

⌋

, and let

r = m mod z(p), and s = k mod z(p) be the least nonnegative residues of m and k

modulo z(p), respectively. Then

νp

((

m

k

)

F

)

= νp

((

m′

k′

))

+ [r < s]

(

νp

(⌊

m− k + z(p)

z(p)

⌋)

+ νp(Fz(p))

)

.

Proof. We will use Lemmas 4(i) and 5 repeatedly without reference. In addition, it is useful
to recall that for every a, b ∈ N, νp(ab) = νp(a)+νp(b) and if b | a, then νp(

a
b
) = νp(a)−νp(b).

Since the formulas to prove clearly hold when k = 0 or m, we assume m ≥ 2 and 1 ≤ k < m.
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By Lemma 2, we obtain, for every ℓ ≥ 1,

ν2(F1F2F3 · · ·Fℓ) =
∑

1≤n≤ℓ
n≡ 3 (mod 6)

ν2(Fn) +
∑

1≤n≤ℓ
n≡ 0 (mod 6)

ν2(Fn)

=
∑

1≤n≤ℓ
n≡ 3 (mod 6)

1 +
∑

1≤n≤ℓ
n≡ 0 (mod 6)

(ν2(n) + 2)

=

⌊

ℓ+ 3

6

⌋

+ 2

⌊

ℓ

6

⌋

+
∑

1≤j≤ ℓ
6

ν2(6j)

=

⌊

ℓ+ 3

6

⌋

+ 3

⌊

ℓ

6

⌋

+
∑

1≤j≤ ℓ
6

ν2(j)

=

⌊

ℓ+ 3

6

⌋

+ 3

⌊

ℓ

6

⌋

+ ν2

(⌊

ℓ

6

⌋

!

)

. (9)

Then we obtain from the definition of
(

m

k

)

F
and from (9) that

ν2

((

m

k

)

F

)

= ν2(F1F2 · · ·Fm)− ν2(F1F2 · · ·Fm−k)− ν2(F1F2 · · ·Fk)

=

(⌊

m+ 3

6

⌋

−

⌊

m− k + 3

6

⌋

−

⌊

k + 3

6

⌋)

+ 3

(

⌊m

6

⌋

−

⌊

m− k

6

⌋

−

⌊

k

6

⌋)

+ ν2

(⌊m

6

⌋

!
)

− ν2

(⌊

m− k

6

⌋

!

)

− ν2

(⌊

k

6

⌋

!

)

. (10)

The expression in the first parenthesis in (10) is equal to

⌊

m− r

6
+

r + 3

6

⌋

−

⌊

(m− r)− (k − s)

6
+

r − s+ 3

6

⌋

−

⌊

k − s

6
+

s+ 3

6

⌋

=
m− r

6
+

⌊

r + 3

6

⌋

−
(m− r)− (k − s)

6
−

⌊

r − s+ 3

6

⌋

−
k − s

6
−

⌊

s+ 3

6

⌋

=

⌊

r + 3

6

⌋

−

⌊

r − s+ 3

6

⌋

−

⌊

s+ 3

6

⌋

.

Similarly, the expression in the second parenthesis is

3

(

⌊r

6

⌋

−

⌊

r − s

6

⌋

−
⌊s

6

⌋

)

= −3

⌊

r − s

6

⌋

.

Therefore (10) becomes

ν2

((

m

k

)

F

)

=

⌊

r + 3

6

⌋

−

⌊

r − s+ 3

6

⌋

−

⌊

s+ 3

6

⌋

− 3

⌊

r − s

6

⌋

+ ν2

(

⌊x+ y⌋!

⌊x⌋!⌊y⌋!

)

(11)
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where x = m−k
6

and y = k
6
. By Lemma 4(v), we see that

⌊x+ y⌋!

⌊x⌋!⌊y⌋!
=







(

⌊x+y⌋
⌊y⌋

)

, if {x}+ {y} < 1;
(

⌊x+y⌋
⌊y⌋

)

(⌊x⌋+ 1), if {x}+ {y} ≥ 1;

=







(

m′

k′

)

, if {x}+ {y} < 1;
(

m′

k′

) (⌊

m−k+6
6

⌋)

, if {x}+ {y} ≥ 1.

By Lemma 4(ii), we obtain

{x} =

{

(m− r)− (k − s)

6
+

r − s

6

}

=

{

r − s

6

}

and {y} =

{

k − s

6
+

s

6

}

=
s

6
.

If r ≥ s, then {x}+{y} =
{

r−s
6

}

+ s
6
= r−s

6
+ s

6
= r

6
< 1. If r < s, then we obtain by Lemma

4(iv) that {x}+ {y} =
{

− s−r
6

}

+ s
6
= 1− s−r

6
+ s

6
= 1 + r

6
≥ 1. Therefore

⌊x+ y⌋!

⌊x⌋!⌊y⌋!
=







(

m′

k′

)

, if r ≥ s;
(

m′

k′

) (⌊

m−k+6
6

⌋)

, if r < s.
(12)

Substituting (12) in (11), we obtain part (i) of this theorem. The calculation in parts (ii)
and (iii) are similar, so we give fewer details than given in part (i). By Lemma 2, for every
ℓ ≥ 1, we have

ν5(F1F2 · · ·Fℓ) =
∑

1≤n≤ℓ

ν5(Fn) =
∑

1≤n≤ℓ

ν5(n) = ν5(ℓ!),

which implies

ν5

((

m

k

)

F

)

= ν5(m!)− ν5(k!)− ν5((m− k)!) = ν5

((

m

k

))

.

For (iii), we apply Lemmas 2 and 1(iv) to obtain

νp(F1F2 · · ·Fℓ) =
∑

1≤n≤ℓ
n≡ 0 (mod z(p))

νp(Fn) =
∑

1≤n≤ℓ
n≡ 0 (mod z(p))

(νp(n) + νp(Fz(p)))

=
∑

1≤k≤ ℓ
z(p)

νp(kz(p)) +

⌊

ℓ

z(p)

⌋

νp(Fz(p))

= νp

(⌊

ℓ

z(p)

⌋

!

)

+

⌊

ℓ

z(p)

⌋

νp(Fz(p)).

As in part (i), the above implies that

νp

((

m

k

)

F

)

= νp

(

⌊x+ y⌋!

⌊x⌋!⌊y⌋!

)

+ (⌊x+ y⌋ − ⌊x⌋ − ⌊y⌋)νp(Fz(p)), (13)
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where x = m−k
z(p)

and y = k
z(p)

. In addition, if r ≥ s, then {x} + {y} < 1 and if r < s, then

{x} + {y} ≥ 1. Therefore (13) can be simplified to the desired result. This completes the
proof.

By Theorem 11(ii), we see that the 5-adic valuations of Fibonomial and binomial coeffi-
cients are the same. So we focus our investigation only on the p-adic valuations of Fibonomial
coefficients when p 6= 5. Calculating r and s in Theorem 11(i) in every case and writing
Theorem 11(iii) in another form, we obtain the following corollary.

Corollary 12. Let m, k, r, and s be as in Theorem 11. Let

A2 = ν2

(⌊m

6

⌋

!
)

− ν2

(⌊

k

6

⌋

!

)

− ν2

(⌊

m− k

6

⌋

!

)

,

and for each prime p 6= 2, 5, let Ap = νp

(⌊

m
z(p)

⌋

!
)

− νp

(⌊

k
z(p)

⌋

!
)

− νp

(⌊

m−k
z(p)

⌋

!
)

. Then the

following statements hold.

(i) ν2

((

m

k

)

F

)

=







































A2, if r ≥ s and (r, s) 6= (3, 1), (3, 2), (4, 2);

A2 + 1, if (r, s) = (3, 1), (3, 2), (4, 2);

A2 + 3, if r < s and (r, s) 6= (0, 3), (1, 3), (2, 3),

(1, 4), (2, 4), (2, 5);

A2 + 2, if (r, s) = (0, 3), (1, 3), (2, 3), (1, 4), (2, 4),

(2, 5).

(ii) For p 6= 2, 5, we have

νp

((

m

k

)

F

)

=

{

Ap, if r ≥ s;

Ap + νp(Fz(p)), if r < s.

Proof. For (i), we have 0 ≤ r ≤ 5 and 0 ≤ s ≤ 5, so we can directly consider every case and
reduce Theorem 11(i) to the result in this corollary. In addition, (ii) follows directly from
(13).

In a series of papers (see [11] and references therein), Marques and Trojovský obtain a

formula for νp

(

(

pb

pa

)

F

)

only when b = a + 1. Then Ballot [2] extends it to any case b > a.

Corollary 12 enables us to compute νp

(

(

ℓ1p
b

ℓ2pa

)

F

)

. We illustrate this in the next theorem.

Theorem 13. Let a, b, ℓ1, and ℓ2 be positive integers and b ≥ a. Let p 6= 5 be a prime. As-

sume that ℓ1p
b > ℓ2p

a and let mp =
⌊

ℓ1p
b−a

z(p)

⌋

and kp =
⌊

ℓ2
z(p)

⌋

. Then the following statements

hold.
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(i) If a ≡ b (mod 2), then ν2

(

(

ℓ12b

ℓ22a

)

F

)

is equal to































ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a+ 2 + ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);
⌈

a
2

⌉

+ 1 + ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 2 (mod 3);
⌈

a+1
2

⌉

+ ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 1 (mod 3),

and if a 6≡ b (mod 2), then ν2

(

(

ℓ12b

ℓ22a

)

F

)

is equal to































ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ −ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a+ 2 + ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);
⌈

a+1
2

⌉

+ ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 1 (mod 3);
⌈

a
2

⌉

+ 1 + ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 2 (mod 3).

(ii) Let p 6= 5 be an odd prime and let r = ℓ1p
b mod z(p) and s = ℓ2p

a mod z(p). If
p ≡ ±1 (mod 5), then

νp

((

ℓ1p
b

ℓ2pa

)

F

)

= [r < s]
(

a+ νp (mp − kp) + νp(Fz(p))
)

+ νp

((

mp

kp

))

,

and if p ≡ ±2 (mod 5), then νp

(

(

ℓ1p
b

ℓ2pa

)

F

)

is equal to







































































































νp

(

(

mp

kp

)

)

, if r = s or ℓ2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1 ≡ 0 (mod z(p)) and

ℓ2 6≡ 0 (mod z(p));
a
2
+ νp

(

(

mp

kp

)

)

, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is even;
a
2
+ νp(Fz(p)) + νp (mp − kp) + νp

(

(

mp

kp

)

)

, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is even;
a+1
2

+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is odd;
a−1
2

+ νp(Fz(p)) + νp

(

(

mp

kp

)

)

, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is odd.
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Remark 14. In the proof of this theorem, we also show that the condition r = s in Theorem
13(ii) is equivalent to ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)). It seems more natural to
write r = s in the statement of the theorem, but it is more convenient in the proof to use
the condition ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)).

Proof of Theorem 13. We apply Corollary 12 to calculate ν2

(

(

ℓ12b

ℓ22a

)

F

)

with m = ℓ12
b, k =

ℓ22
a, r = ℓ12

b mod 6, and s = ℓ22
a mod 6. For convenience, we also let r′ = ℓ1 mod 3,

and s′ = ℓ2 mod 3. Therefore A2 given in Corollary 12 is

A2 = ν2

(⌊

ℓ12
b−1

3

⌋

!

)

− ν2

(⌊

ℓ22
a−1

3

⌋

!

)

− ν2

(⌊

ℓ12
b−1 − ℓ22

a−1

3

⌋

!

)

. (14)

By Corollary 8, the first term on the right-hand side of (14) is equal to

ℓ1(2
b−1 − 1)

3
−

⌊

b− 1

2

⌋

[ℓ1 6≡ 0 (mod 3)]−

{

ℓ1

3

}

[b ≡ 0 (mod 2)] + ν2

(⌊

ℓ1

3

⌋

!

)

=
ℓ1(2

b−1 − 1)

3
−

⌊

b− 1

2

⌋

[r′ 6= 0]−
r′

3
[b ≡ 0 (mod 2)] + ν2

(⌊

ℓ1

3

⌋

!

)

. (15)

Similarly, the second term is

ℓ2(2
a−1 − 1)

3
−

⌊

a− 1

2

⌋

[s′ 6= 0]−
s′

3
[a ≡ 0 (mod 2)] + ν2

(⌊

ℓ2

3

⌋

!

)

. (16)

To evaluate the third term on the right-hand side of (14), we divide the proof into two cases
according to the parity of a and b.

Case 1. a ≡ b (mod 2). Observe that ℓ1 ≡ ℓ2 (mod 3) if and only if r′ = s′. In addition,
{

ℓ1−ℓ2
3

}

=
{

r′−s′

3

}

and
⌊

r′−s′

3

⌋

= −[r′ < s′]. Then by Theorem 9, the third term on the
right-hand side of (14) is equal to

(ℓ12
b−a − ℓ2)(2

a−1 − 1)

3
−

{

r′ − s′

3

}

[a ≡ 0 (mod 2)]−

⌊

a− 1

2

⌋

[r′ 6= s′] + ν2

(⌊

ℓ12
b−a − ℓ2

3

⌋

!

)

=
(ℓ12

b−a − ℓ2)(2
a−1 − 1)

3
−

(

r′ − s′

3
+ [r′ < s′]

)

[a ≡ 0 (mod 2)]−

⌊

a− 1

2

⌋

[r′ 6= s′]

+ ν2

(⌊

ℓ12
b−a − ℓ2

3

⌋

!

)

. (17)

Recall that m2 =
⌊

ℓ12b−a

3

⌋

and k2 =
⌊

ℓ2
3

⌋

. Since b − a is even, 2b−a ≡ 1 (mod 3) and we

obtain by Lemma 6 that

⌊

ℓ12
b−a − ℓ2

3

⌋

= m2 − k2 − [r′ < s′].

18



Therefore ν2

(⌊

ℓ12b−a−ℓ2
3

⌋

!
)

is equal to

ν2(m2!)− [r′ < s′]ν2(m2 − k2)− ν2

(

m2!

(m2 − k2)!

)

.

By Corollary 8, ν2(m2!) is equal to

ℓ1(2
b−a − 1)

3
−

b− a

2
[r′ 6= 0] + ν2

(⌊

ℓ1

3

⌋

!

)

.

We substitute the value of ν2

(⌊

ℓ12b−a−ℓ2
3

⌋

!
)

in (17) and then substitute (15), (16), and (17)

in (14) to obtain A2. We see that there are some cancellations. For instance,

r′

3

(

[a ≡ 0 (mod 2)]− [b ≡ 0 (mod 2)]
)

= 0.

and

ν2

(

m2!

(m2 − k2)!

)

− ν2

(⌊

ℓ2

3

⌋

!

)

= ν2

((

m2

k2

))

Then we obtain

A2 = −

⌊

b− 1

2

⌋

[r′ 6= 0] +

⌊

a− 1

2

⌋

[s′ 6= 0] + [r′ < s′][a ≡ 0 (mod 2)]

+

⌊

a− 1

2

⌋

[r′ 6= s′] +
b− a

2
[r′ 6= 0] + [r′ < s′]ν2(m2 − k2) + ν2

((

m2

k2

))

. (18)

Next we divide the calculation of A2 into 4 cases:

• Case 1.1. ℓ1 ≡ ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3),

• Case 1.2. ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3),

• Case 1.3. ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 2 (mod 3),

• Case 1.4. ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 1 (mod 3).

Since the calculation in each case is similar, we only show the details in Case 1.1 and Case
1.2. So assume that ℓ1 ≡ ℓ2 (mod 3). Then r′ = s′ and (18) becomes

A2 = −

⌊

b− 1

2

⌋

[r′ 6= 0] +

⌊

a− 1

2

⌋

[r′ 6= 0] +
b− a

2
[r′ 6= 0] + ν2

((

m2

k2

))

Since −
⌊

b−1
2

⌋

+
⌊

a−1
2

⌋

+ b−a
2

= 0, we see that A2 = ν2

(

(

m2

k2

)

)

. Next if ℓ2 ≡ 0 (mod 3), then

s′ = 0 and the same calculation leads to A2 = ν2

(

(

m2

k2

)

)

. Next assume that ℓ1 ≡ 0 (mod 3)

and ℓ2 6≡ 0 (mod 3). Then r′ = 0, s′ 6= 0, and (18) becomes

A2 =

⌊

a− 1

2

⌋

+ [a ≡ 0 (mod 2)] +

⌊

a− 1

2

⌋

+ ν2(m2 − k2) + ν2

((

m2

k2

))

.
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Observing that the sum of the first three terms above is equal to a − 1, we obtain A2 =

a− 1 + ν2(m2 − k2) + ν2

(

(

m2

k2

)

)

. The other cases are similar. Therefore A2 is































ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a− 1 + ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);
⌊

a
2

⌋

+ ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 2 (mod 3);
⌊

a−1
2

⌋

+ ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 1 (mod 3).

Recall that r = ℓ12
b mod 6 and s = ℓ22

a mod 6. Therefore

r =











0, if ℓ1 ≡ 0 (mod 3);

2, if b is even and ℓ1 ≡ 2 (mod 3) or if b is odd and ℓ1 ≡ 1 (mod 3);

4 if b is even and ℓ1 ≡ 1 (mod 3) or if b is odd and ℓ1 ≡ 2 (mod 3),

and

s =











0, if ℓ2 ≡ 0 (mod 3);

2, if a is even and ℓ2 ≡ 2 (mod 3) or if a is odd and ℓ2 ≡ 1 (mod 3);

4 if a is even and ℓ2 ≡ 1 (mod 3) or if a is odd and ℓ2 ≡ 2 (mod 3).

To obtain the formula for ν2

(

(

ℓ12b

ℓ22a

)

F

)

, we divide the calculation into 4 cases: Case 1.1 to

Case 1.4 as before. Then we consider the values of r and s in each case, and substitute A2 in
Corollary 12. This leads to the desired result. Since the calculation in each case is similar,

we only give the details in Case 1.3. In this case, A2 =
⌊

a
2

⌋

+ ν2(m2 − k2) + ν2

(

(

m2

k2

)

)

,

(r, s) = (2, 4) if a and b are odd, and (r, s) = (4, 2) if a and b are even. By Corollary 12, we
obtain

ν2

((

ℓ12
b

ℓ22a

)

F

)

=

{

A2 + 2, if a and b are odd;

A2 + 1, if a and b are even,

=
⌈a

2

⌉

+ 1 + ν2(m2 − k2) + ν2

((

m2

k2

))

,

as required. The other cases are similar.

Case 2. a 6≡ b (mod 2). The calculation in this case is similar to Case 1, so we omit some
details. By Theorem 9, the third term on the right-hand side of (14) is equal to

(ℓ12
b−a − ℓ2)(2

a−1 − 1)

3
−

{

−
r′ + s′

3

}

[a ≡ 0 (mod 2)]−

⌊

a− 1

2

⌋

[ℓ1 6≡ −ℓ2 (mod 3)]

+ ν2

(⌊

ℓ12
b−a − ℓ2

3

⌋

!

)

. (19)
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Since b− a is odd, ℓ12
b−a ≡ −r′ (mod 3) and we obtain by Lemma 6 that

⌊

ℓ12
b−a − ℓ2

3

⌋

= m2 − k2 − B

where B = [(r′, s′) ∈ {(0, 1), (0, 2), (2, 2)}]. Similar to Case 1, ν2

(⌊

ℓ12b−a−ℓ2
3

⌋

!
)

is

ν2 (m2!)−Bν2 (m2 − k2)− ν2

(

m2!

(m2 − k2)!

)

.

Then we evaluate ν2(m2!) by Corollary 8, and substitute all of these in (14) to obtain that
A2 is equal to

(

b− a− 1

2
−

⌊

b− 1

2

⌋)

[r′ 6= 0]−
r′

3
[b ≡ 0 (mod 2)] +

⌊

a− 1

2

⌋

[s′ 6= 0]

+

(

s′

3
+

{

−
r′ + s′

3

})

[a ≡ 0 (mod 2)] +

⌊

a− 1

2

⌋

[ℓ1 6≡ −ℓ2 (mod 3)] +
r′

3

+ Bν2 (m2 − k2) + ν2

((

m2

k2

))

.

Then we divide the calculation into 4 cases and obtain that A2 is






























ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ −ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a− 1 + ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);
⌊

a−1
2

⌋

+ ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 1 (mod 3);
⌊

a
2

⌋

+ ν2 (m2 − k2) + ν2

(

(

m2

k2

)

)

, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 2 (mod 3).

We illustrate the calculation of A2 above only for the case ℓ2 ≡ 0 (mod 3) since the other
cases are similar. So suppose ℓ2 ≡ 0 (mod 3). So s′ = 0. If r′ = 0, then it is easy to see that

A2 is equal to ν2

(

(

m2

k2

)

)

. So assume that r′ 6= 0. Then A2 is equal to x + y + ν2

(

(

m2

k2

)

)

,

where

x =
b− a− 1

2
−

⌊

b− 1

2

⌋

+

⌊

a− 1

2

⌋

=

{

0, if a is odd;

−1, if a is even,

y =
−r′

3
[b ≡ 0 (mod 2)] +

{

−
r′

3

}

[a ≡ 0 (mod 2)] +
r′

3
=

{

0, if a is odd;

1, if a is even.

Therefore A2 = ν2

(

(

m2

k2

)

)

, as required. As in Case 1, we divide the calculation of ν2

(

(

ℓ12b

ℓ22a

)

F

)

into 4 cases according to the value of A2, which leads to the desired result. This proves (i).
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For (ii), we apply Corollary 12 with m = ℓ1p
b and k = ℓ2p

a. For convenience, we let
r′ = ℓ1 mod z(p) and s′ = ℓ2 mod z(p). The calculation of this part is similar to that of
part (i), so we omit some details. We have

Ap = νp

(⌊

ℓ1p
b

z(p)

⌋

!

)

− νp

(⌊

ℓ2p
a

z(p)

⌋

!

)

− νp

(⌊

ℓ1p
b − ℓ2p

a

z(p)

⌋

!

)

. (20)

Case 1. p ≡ ±1 (mod 5). Then by Lemma 1(iii), p ≡ 1 (mod z(p)). By Corollary 8, the
first term on the right-hand side of (20) is equal to

ℓ1(p
b − 1)

z(p)(p− 1)
+ νp

(⌊

ℓ1

z(p)

⌋

!

)

−

⌊

b

2

⌋

[r′ 6= 0]−
r′

z(p)
[b ≡ 1 (mod 2)] +

⌊

b

2

⌋

[r′ 6= 0]

(

1−
2r′

z(p)

)

=
ℓ1(p

b − 1)

z(p)(p− 1)
−

br′

z(p)
+ νp

(⌊

ℓ1

z(p)

⌋

!

)

,

and similarly, the second term is

ℓ2(p
a − 1)

z(p)(p− 1)
−

as′

z(p)
+ νp

(⌊

ℓ2

z(p)

⌋

!

)

.

By Theorem 9, the third term is

(ℓ1p
b−a − ℓ2)(p

a − 1)

z(p)(p− 1)
− a

(

r′ − s′

z(p)
+ [r′ < s′]

)

+ νp

(⌊

ℓ1p
b−a − ℓ2

z(p)

⌋

!

)

.

Since p ≡ 1 (mod z(p)), we obtain by Lemma 6 that

⌊

ℓ1p
b−a − ℓ2

z(p)

⌋

= mp − kp − [r′ < s′].

Therefore νp

(⌊

ℓ1p
b−a−ℓ2
z(p)

⌋

!
)

is equal to

νp (mp!)− [r′ < s′]νp (mp − kp)− νp

(

mp!

(mp − kp)!

)

.

As usual, the first term above can be evaluated by Corollary 8 and is equal to

ℓ1(p
b−a − 1)

z(p)(p− 1)
− (b− a)

r′

z(p)
+ νp

(⌊

ℓ1

z(p)

⌋

!

)

.

We substitute all of these in (20) to obtain

Ap = [r′ < s′] (a+ νp (mp − kp)) + νp

((

mp

kp

))

.
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Since p ≡ 1 (mod z(p)), r = r′ and s = s′. Substituting Ap and applying Corollary 12, we
obtain the desired result.

Case 2. p ≡ ±2 (mod 5). Then by Lemma 1(iii), p ≡ −1 (mod z(p)). By Corollary 8, the
first term on the right-hand side of (20) is equal to

ℓ1(p
b − 1)

z(p)(p− 1)
−

⌊

b

2

⌋

[r′ 6= 0]−
r′

z(p)
[b ≡ 1 (mod 2)] + νp

(⌊

ℓ1

z(p)

⌋

!

)

.

Similarly, the second term is

ℓ2(p
a − 1)

z(p)(p− 1)
−
⌊a

2

⌋

[s′ 6= 0]−
s′

z(p)
[a ≡ 1 (mod 2)] + νp

(⌊

ℓ2

z(p)

⌋

!

)

.

For the third term, we divide the proof into two cases according to the parity of a and b.

Case 2.1. a ≡ b (mod 2). Then by Theorem 9, the third term on the right-hand side of
(20) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

z(p)(p− 1)
−

(

r′ − s′

z(p)
+ [r′ < s′]

)

[a ≡ 1 (mod 2)]−
⌊a

2

⌋

[r′ 6= s′]

+ νp

(⌊

ℓ1p
b−a − ℓ2

z(p)

⌋

!

)

.

As in Case 1, we apply Lemma 6 to write
⌊

ℓ1p
b−a − ℓ2

z(p)

⌋

= mp − kp − [r′ < s′],

and then use Corollary 8 to show that νp

(⌊

ℓ1p
b−a−ℓ2
z(p)

⌋

!
)

is equal to

ℓ1(p
b−a − 1)

z(p)(p− 1)
−

b− a

2
[r′ 6= 0] + νp

(⌊

ℓ1

z(p)

⌋

!

)

− [r′ < s′]νp (mp − kp)− νp

(

mp!

(mp − kp)!

)

.

Substituting all of these in (20), we see that Ap is equal to

−

⌊

b

2

⌋

[r′ 6= 0] +
⌊a

2

⌋

[s′ 6= 0] + [r′ < s′][b ≡ 1 (mod 2)] +
⌊a

2

⌋

[r′ 6= s′] +
b− a

2
[r′ 6= 0]

+ [r′ < s′]νp (mp − kp) + νp

((

mp

kp

))

=































νp

(

(

mp

kp

)

)

, if ℓ1 ≡ ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));
⌊

a
2

⌋

+ νp

(

(

mp

kp

)

)

, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ > s′;
⌈

a
2

⌉

+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ < s′.
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Recall that r = ℓ1p
b mod z(p) and s = ℓ2p

a mod z(p). If a and b are even, then pb ≡

pa ≡ 1 (mod z(p)), r = r′, and s = s′, and we can obtain νp

(

(

ℓ1p
b

ℓ2pa

)

F

)

by substituting Ap in

Corollary 12. Suppose a and b are odd. Then r ≡ −r′ (mod z(p)) and s ≡ −s′ (mod z(p))
and thus when r and s are both nonzero or are both zero, we have

r ≥ s if and only if r′ ≤ s′.

Similar to the above, we can obtain νp

(

(

ℓ1p
b

ℓ2pa

)

F

)

by the substitution of Ap in Corollary 12.

We see that νp

(

(

ℓ1p
b

ℓ2pa

)

)

is equal to























































νp

(

(

mp

kp

)

)

, if ℓ1 ≡ ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));

a
2
+ νp

(

(

mp

kp

)

)

, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even;

a
2
+ νp(Fz(p)) + νp (mp − kp) + νp

(

(

mp

kp

)

)

, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even;

a+1
2

+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd;

a−1
2

+ νp(Fz(p)) + νp

(

(

mp

kp

)

)

, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd.

Since a ≡ b (mod 2), we see that pa ≡ pb (mod z(p)) and therefore

ℓ1 ≡ ℓ2 (mod z(p)) ⇔ r = s (21)

So the condition ℓ1 ≡ ℓ2 (mod z(p)) can be replaced by r = s.

Case 2.2. a 6≡ b (mod 2). The calculation in this case is similar to that given before. So we
skip some details. By Theorem 9, the third term on the right-hand side of (20) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

z(p)(p− 1)
−[a ≡ 1 (mod 2)]B1−

⌊a

2

⌋

[ℓ1 6≡ −ℓ2 (mod z(p))]+νp

(⌊

ℓ1p
b−a − ℓ2

z(p)

⌋

!

)

,

where B1 =
{

− r′+s′

z(p)

}

= − r′+s′

z(p)
+ [r′ + s′ > 0] + [r′ + s′ > z(p)]. Since p ≡ −1 (mod z(p)),

we obtain by Lemma 6 and a straightforward verification that

⌊

ℓ1p
b−a − ℓ2

z(p)

⌋

= mp − kp − ε,

where ε = [−r′ mod z(p) < s′] = [r′ = 0 and s′ 6= 0] + [r′ + s′ > z(p)]. Then by Corollary 8,

νp

(⌊

ℓ1p
b−a−ℓ2
z(p)

⌋

!
)

is equal to

ℓ1(p
b−a − 1)

z(p)(p− 1)
−

⌊

b− a

2

⌋

[r′ 6= 0]−
r′

z(p)
+ νp

(⌊

ℓ1

z(p)

⌋

!

)

−B2 − νp

(

mp!

(mp − kp)!

)

,
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where B2 = ενp (mp − kp). Since a 6≡ b (mod 2), [b ≡ 1 (mod 2)] = 1− [a ≡ 1 (mod 2)] and
⌊

b−a
2

⌋

+
⌊

a
2

⌋

−
⌊

b
2

⌋

+ [a ≡ 1 (mod 2)]. We substitute all of these in (20) to obtain that Ap is
equal to

(⌊

b− a

2

⌋

−

⌊

b

2

⌋)

[r′ 6= 0] +
⌊a

2

⌋(

[s′ 6= 0] + [ℓ1 6≡ −ℓ2 (mod z(p))]
)

+ ([r′ + s′ > 0] + [r′ + s′ > z(p)]) [a ≡ 1 (mod 2)] + B2 + νp

((

mp

kp

))

=































νp

(

(

mp

kp

)

)

, if ℓ1 ≡ −ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));
⌊

a
2

⌋

+ νp

(

(

mp

kp

)

)

, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ + s′ < z(p);
⌈

a
2

⌉

+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ + s′ > z(p).

Recall that r = ℓ1p
b mod z(p) and s = ℓ2p

a mod z(p). Suppose that a is odd and b is even.
Then r = r′ and s ≡ −s′ (mod z(p)). Moreover, if s′ 6= 0, then s = z(p)− s′ and thus

r < s ⇔ r′ + s′ < z(p) and r > s ⇔ r′ + s′ > z(p).

Similarly, if a is even and b is odd, then r ≡ −r′ (mod z(p)) and s = s′, and for r′ 6= 0, we
have

r < s ⇔ r′ + s′ > z(p) and r > s ⇔ r′ + s′ < z(p).

From the above observation and the substitution ofAp in Corollary 12, we see that νp

(

(

ℓ1p
b

ℓ2pa

)

F

)

is equal to






















































νp

(

(

mp

kp

)

)

, if ℓ1 ≡ −ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));

a+1
2

+ νp (mp − kp) + νp

(

(

mp

kp

)

)

, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd;

a−1
2

+ νp(Fz(p)) + νp

(

(

mp

kp

)

)

, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd;

a
2
+ νp

(

(

mp

kp

)

)

, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even;

a
2
+ νp(Fz(p)) + νp (mp − kp) + νp

(

(

mp

kp

)

)

, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even.

Since a 6≡ b (mod 2), we see that pa ≡ −pb (mod z(p)) and therefore

ℓ1 ≡ −ℓ2 (mod z(p)) ⇔ r = s.

Combining this with (21), we conclude that

ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)) ⇔ r = s.

This completes the proof.
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5 Examples

In this last section, we give several examples to show applications of our main results. We
also recall from Remark 14 that the condition r = s in Theorem 13(ii) can be replaced by
ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)). In the calculation given in this section, we will use
this observation without further reference.

Example 15. Let a, b, and ℓ be positive integers and b ≥ a. We assert that for ℓ 6≡ 0 (mod 3),
we have

ν2

((

ℓ · 2b

2a

)

F

)

=

⌈

a+ 1

2

⌉

(ε1ε2 + ε′1ε
′
2) , (22)

where ε1 = [ℓ ≡ 2 (mod 3)], ε2 = [a ≡ b (mod 2)], ε′1 = [ℓ ≡ 1 (mod 3)], and ε′2 = [a 6≡
b (mod 2)]. In addition, if ℓ ≡ 0 (mod 3), then

ν2

((

ℓ · 2b

2a

)

F

)

= b+ 2 + ν2(ℓ). (23)

Proof. We apply Theorem 13 to verify our assertion. Here m2 =
⌊

ℓ·2b−a

3

⌋

and k2 =
⌊

1
3

⌋

= 0.

So we immediately obtain the following: if a ≡ b (mod 2), then

ν2

((

ℓ · 2b

2a

)

F

)

=











0, if ℓ ≡ 1 (mod 3);

a+ 2 + ν2(m2), if ℓ ≡ 0 (mod 3);
⌈

a+1
2

⌉

, if ℓ ≡ 2 (mod 3),

and if a 6≡ b (mod 2), then

ν2

((

ℓ · 2b

2a

)

F

)

=











0, if ℓ ≡ 1 (mod 3);

a+ 2 + ν2(m2), if ℓ ≡ 0 (mod 3);
⌈

a+1
2

⌉

, if ℓ ≡ 1 (mod 3).

This proves (22). If ℓ ≡ 0 (mod 3), then m2 =
ℓ
3
· 2b−a and ν2(m2) is equal to

ν2(m2) = ν2 (ℓ) + ν2(2
b−a)− ν2(3) = b− a+ ν2 (ℓ) ,

which implies (23).

Example 16. Substituting ℓ = 1 in Example 15, we see that

ν2

((

2b

2a

)

F

)

=

⌈

a+ 1

2

⌉

[a 6≡ b (mod 2)]

=

{

0, if a ≡ b (mod 2);
⌈

a+1
2

⌉

, if a 6≡ b (mod 2).
(24)

Our example also implies that (24) still holds for the 2-adic valuations of
(

2b+2c

2a

)

F
,
(

7·2b

2a

)

F
,

(

5·2b+1

2a

)

F
,
(

13·2b

2a

)

F
, etc.
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Example 17. Let a, b, and ℓ be positive integers, b ≥ a, and p a prime distinct from 2 and
5. If p ≡ ±1 (mod 5), then

νp

((

ℓpb

pa

)

F

)

=
(

b+ νp(Fz(p)) + νp(ℓ)
)

[ℓ ≡ 0 (mod z(p))],

and if p ≡ ±2 (mod 5), then

νp

((

ℓpb

pa

)

F

)

=



















0, if ℓ ≡ 1− 2ε (mod z(p));

b+ νp(Fz(p)) + νp(ℓ), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is odd,

where ε = [a 6≡ b (mod 2)].

Proof. Similar to Example 15, we verify this by applying Theorem 13. Here mp =
⌊

ℓpb−a

z(p)

⌋

,

kp =
⌊

1
z(p)

⌋

= 0, r = ℓpb mod z(p), and s = pa mod z(p). We first assume that p ≡

±1 (mod 5). Then by Lemma 1, we have p ≡ 1 (mod z(p)). Therefore s = 1, r ≡
ℓ (mod z(p)), and

νp

((

ℓpb

pa

)

F

)

=
(

a+ νp(mp) + νp(Fz(p))
)

[ℓ ≡ 0 (mod z(p))].

Similarly, if p ≡ ±2 (mod 5) and a ≡ b (mod 2), then we obtain by Lemma 1 and Theorem
13 that

νp

((

ℓpb

pa

)

F

)

=



















0, if ℓ ≡ 1 (mod z(p));

a+ νp(mp) + νp(Fz(p)), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ mod 0, 1z(p) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0, 1 (mod z(p)) and a is odd.

In addition, if p ≡ ±2 (mod 5) and a 6≡ b (mod 2), then

νp

((

ℓpb

pa

)

F

)

=



















0, if ℓ ≡ −1 (mod z(p));

a+ νp(mp) + νp(Fz(p)), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ 0,−1 (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0,−1 (mod z(p)) and a is odd.

It remains to calculate νp(mp) when ℓ ≡ 0 (mod z(p)). In this case, we have

νp(mp) = νp

(

ℓpb−a

z(p)

)

= νp(ℓ) + νp(p
b−a)− νp(z(p)) = b− a+ νp(ℓ).

This implies the desired result.
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Example 18. Substituting ℓ = 1 in Example 17, we see that for p 6= 2, 5, we have

νp

((

pb

pa

)

F

)

=











0, if p ≡ ±1 (mod 5) or a ≡ b (mod 2);
a
2
, if p ≡ ±2 (mod 5), a 6≡ b (mod 2), and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5), a 6≡ b (mod 2), and a is odd.

(25)

Our example also implies that (25) still holds for the p-adic valuations of
(

pb+2c

pa

)

F
and

(

(z(p)+1)·pb

pa

)

F
. Similarly, for p 6= 2, 5, we have

νp

((

2pb

pa

)

F

)

=











0, if p ≡ ±1 (mod 5);
a
2
, if p ≡ ±2 (mod 5) and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5) and a is odd.

(26)

In addition, (26) also holds when
(

2pb

pa

)

F
is replaced by

(

ℓpb

pa

)

F
for ℓ 6≡ 0,±1 (mod z(p)) and

p 6= 2, 5. Furthermore, replacing
(

2pb

pa

)

F
by
(

(z(p)−1)pb

pa

)

F
, the formula becomes











0, if p ≡ ±1 (mod 5) or a 6≡ b (mod 2);
a
2
, if p ≡ ±2 (mod 5), a ≡ b (mod 2), and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5), a ≡ b (mod 2), and a is odd.

Example 19. We know that the 5-adic valuations of Fibonomial coefficients are the same
as those of binomial coefficients. For example, by Theorem 11(ii) and Kummer’s theorem,
we obtain

ν5

((

ℓ · 5b

5a

)

F

)

= ν5

((

ℓ · 5b

5a

))

= b− a+ ν5(ℓ),

for every a, b, ℓ ∈ N with b ≥ a. Similarly, ν5

(

(

5b

ℓ·5a

)

F

)

= b − a − ν5(ℓ) for every a, b, ℓ ∈ N

such that 5b > ℓ · 5a.

Example 20. Let a, b, and ℓ be positive integers and 2b > ℓ · 2a. Let m2 =
⌊

2b−a

3

⌋

and

k2 =
⌊

ℓ
3

⌋

. Then

ν2

((

2b

ℓ · 2a

)

F

)

= ν2

((

m2

k2

))

+

(⌈

a+ 2

2

⌉

+ ν2(m2 − k2)

)

ε1ε2 +

⌈

a+ 1

2

⌉

ε3ε4, (27)

where ε1 = [a ≡ b (mod 2)], ε2 = [ℓ ≡ 2 (mod 3)], ε3 = [a 6≡ b (mod 2)], and ε4 = [ℓ ≡
1 (mod 3)].

Proof. Similar to Example 15, this follows from the application of Theorem 13. So we leave
the details to the reader.
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Example 21. Let k ≥ 2. We observe that

⌊

2k

3

⌋

=

{

2k−1
3

, if k is even;
2(2k−1−1)

3
, if k is odd,

which implies,

ν2

(⌊

2k

3

⌋)

= [k ≡ 1 (mod 2)]. (28)

By a similar reason, we also see that for k ≥ 3,

ν2

(⌊

2k

3

⌋

− 1

)

= 2[k ≡ 0 (mod 2)]. (29)

From (27), (28), and (29), we obtain the following results:

(i) if b− a ≥ 2, then ν2

(

(

2b

3·2a

)

F

)

= [a 6≡ b (mod 2)],

(ii) if b− a ≥ 3, then ν2

(

(

2b

5·2a

)

F

)

is equal to

[a 6≡ b (mod 2)] +

(⌈

a+ 2

2

⌉

+ 2[a ≡ b (mod 2)]

)

[a ≡ b (mod 2)]

= 1 +

⌈

a+ 4

2

⌉

[a ≡ b (mod 2)],

(iii) if b− a ≥ 3, then ν2

(

(

2b

6·2a

)

F

)

= [a ≡ b (mod 2)],

(iv) if b− a ≥ 4, then ν2

(

(

2b

7·2a

)

F

)

= [a ≡ b (mod 2)] +
⌈

a+1
2

⌉

[a 6≡ b (mod 2)].

Example 22. Let p 6= 5 be an odd prime and let a, b, and ℓ be positive integers, pb > ℓpa,

mp =
⌊

pb−a

z(p)

⌋

, and kp =
⌊

ℓ
z(p)

⌋

. Then the following statements hold.

(i) If p ≡ ±1 (mod 5), then

νp

((

pb

ℓpa

)

F

)

=
(

a+ νp (mp − kp) + νp(Fz(p))
)

[ℓ 6≡ 0, 1 (mod z(p))] + νp

((

mp

kp

))

,

(ii) If p ≡ ±2 (mod 5), then νp

(

(

pb

ℓpa

)

F

)

is equal to

νp

((

mp

kp

))

+ε1ε2ε5

(⌈a

2

⌉

+ νp(mp − kp) + ε3νp(Fz(p))
)

+ε1ε4(1−ε5)
(⌊a

2

⌋

+ ε3νp(Fz(p))
)

(30)
where ε1 = [ℓ 6≡ 0 (mod z(p))], ε2 = [ℓ 6≡ 1 (mod z(p))], ε3 = [b ≡ 0 (mod 2)],
ε4 = [ℓ 6≡ −1 (mod z(p))], and ε5 = [a ≡ b (mod 2)].
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Proof. Similar to Example 17, this follows from the application of Lemma 1 and Theorem
13. Since (i) is easily verified, we only give the proof of (ii). The calculation is done in two

cases. If p ≡ ±2 (mod 5) and a ≡ b (mod 2), then νp

(

(

pb

ℓpa

)

F

)

is equal to


















νp

(

(

mp

kp

)

)

, if ℓ ≡ 0, 1 (mod z(p));

a
2
+ νp(Fz(p)) + νp(mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ 6≡ 0, 1 (mod z(p)) and a is even;

a+1
2

+ νp(mp − kp) + νp

(

(

mp

kp

)

)

, if ℓ 6≡ 0, 1 (mod z(p)) and a is odd,

= νp

((

mp

kp

))

+ ε1ε2

(⌈a

2

⌉

+ νp(mp − kp) + ε3νp(Fz(p))
)

,

where ε1 = [ℓ 6≡ 0 (mod z(p))], ε2 = [ℓ 6≡ 1 (mod z(p))], and ε3 = [b ≡ 0 (mod 2)]. If
p ≡ ±2 (mod 5) and a 6≡ b (mod 2), then

νp

((

pb

ℓpa

)

F

)

=



















νp

(

(

mp

kp

)

)

, if ℓ ≡ 0,−1 (mod z(p));

a
2
+ νp

(

(

mp

kp

)

)

, if ℓ 6≡ 0,−1 (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)) + νp

(

(

mp

kp

)

)

, if ℓ 6≡ 0,−1 (mod z(p)) and a is odd,

= νp

((

mp

kp

))

+ ε1ε4

(⌊a

2

⌋

+ ε3νp(Fz(p))
)

,

where ε1, ε2, ε3 are as above and ε4 = [ℓ 6≡ −1 (mod z(p))]. Let ε5 = [a ≡ b (mod 2)]. Then
both cases can be combined to obtain (ii).

Example 23. Let k ≥ 2. We observe that z(7) = 8 and
⌊

7k

8

⌋

=

{

7k−1
8

, if k is even;
7(7k−1−1)

8
, if k is odd.

Therefore

ν7

(⌊

7k

8

⌋)

= [k ≡ 1 (mod 2)] and ν7

(⌊

7k

8

⌋

− 1

)

= 0. (31)

From (30) and (31), we obtain the following results:

(i) if b− a ≥ 2, then ν7

(

(

7b

8·7a

)

F

)

= [a 6≡ b (mod 2)],

(ii) if b− a ≥ 2, then ν7

(

(

7b

9·7a

)

F

)

=
(⌊

a+2
2

⌋

+ [b ≡ 0 (mod 2)]
)

[a 6≡ b (mod 2)],

(iii) if b− a ≥ 2, then ν7

(

(

7b

15·7a

)

F

)

is equal to

[a 6≡ b (mod 2)] +
(⌈a

2

⌉

+ [b ≡ 0 (mod 2)]
)

[a ≡ b (mod 2)].

To keep this article not too lengthy, we plan to give more applications of our main results
in the next article.
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