A New Class of Refined Eulerian Polynomials

Hua Sun ${ }^{1}$
College of Sciences
Dalian Ocean University
Dalian 116023
P. R. China
sunhua@dlou.edu.cn

Abstract

In this note we introduce a new class of refined Eulerian polynomials defined by $$
A_{n}(p, q)=\sum_{\pi \in \mathfrak{S}_{n}} p^{\operatorname{odes}(\pi)} q^{\operatorname{edes}(\pi)},
$$ where odes (π) and edes (π) enumerate the number of descents of permutation π in odd and even positions, respectively. We show that the refined Eulerian polynomials $A_{2 k+1}(p, q), k=0,1,2, \ldots$, and $(1+q) A_{2 k}(p, q), k=1,2, \ldots$, have a nice symmetry property.

1 Introduction

Let $f(q)=a_{r} q^{r}+\cdots+a_{s} q^{s}(r \leq s)$, with $a_{r} \neq 0$ and $a_{s} \neq 0$, be a real polynomial. The polynomial $f(q)$ is palindromic if $a_{r+i}=a_{s-i}$ for any i. Following Zeilberger [7], define the darga of $f(q)$ to be $r+s$. The set of all palindromic polynomials of darga n is a vector space [6] with gamma basis

$$
\Gamma_{n}:=\left\{q^{i}(1+q)^{n-2 i} \mid 0 \leq i \leq\lfloor n / 2\rfloor\right\} .
$$

Let $f(p, q)$ be a nonzero bivariate polynomial. The polynomial $f(p, q)$ is palindromic of darga n if it satisfies the following two equations:

$$
\begin{gathered}
f(p, q)=f(q, p) \\
f(p, q)=(p q)^{n} f(1 / p, 1 / q)
\end{gathered}
$$

See Adin et al. [1] for details. It is known [4] that the set of all palindromic bivariate polynomials of darga n is a vector space with gamma basis

$$
\mathcal{B}_{n}:=\left\{(p q)^{i}(p+q)^{j}(1+p q)^{n-2 i-j} \mid i, j \geq 0,2 i+j \leq n\right\} .
$$

Let \mathfrak{S}_{n} denote the set of all permutations of the set $[n]:=\{1,2, \ldots, n\}$. For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$, an index $i \in[n-1]$ is a descent of π if $\pi_{i}>\pi_{i+1}$, and des (π) denotes the number of descents of π. The classic Eulerian polynomial is defined as the generating polynomial for the statistic des over the set \mathfrak{S}_{n}, i.e.,

$$
A_{n}(q)=\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{des}(\pi)}
$$

Foata and Schützenberger [3] proved that the Eulerian polynomial $A_{n}(q)$ can be expressed in terms of the gamma basis Γ_{n} with nonnegative integer coefficients. A polynomial with nonnegative coefficients under the gamma basis Γ_{n} is palindromic and unimodal [5].

Ehrenborg and Readdy [2] studied the number of ascents in odd position on 0, 1-words. We define similar statistics on permutations. For a permutation $\pi \in \mathfrak{S}_{n}$, an index $i \in[n-1]$ is an odd descent of π if $\pi_{i}>\pi_{i+1}$ and i is odd, an even descent of π if $\pi_{i}>\pi_{i+1}$ and i is even, an odd ascent of π if $\pi_{i}<\pi_{i+1}$ and i is odd, an even ascent of π if $\pi_{i}<\pi_{i+1}$ and i is even. Let Odes (π), Edes (π), $\operatorname{Oasc}(\pi)$ and $\operatorname{Easc}(\pi)$ denote the set of all odd descents, even descents, odd ascents and even ascents of π, respectively. The corresponding cardinalities are odes (π), edes (π), oasc (π) and easc (π), respectively. Note that we can also define the above four statistics on words of length n. The joint distribution of odd and even descents on \mathfrak{S}_{n} is denoted by $A_{n}(p, q)$, i.e.,

$$
A_{n}(p, q)=\sum_{\pi \in \mathfrak{S}_{n}} p^{\operatorname{odes}(\pi)} q^{\operatorname{edes}(\pi)}
$$

The polynomial $A_{n}(p, q)$ is a bivariate polynomial of degree $n-1$. The monomial with degree $n-1$ is $p^{\lfloor n / 2\rfloor} q^{\lfloor(n-1) / 2\rfloor}$ only. If $p=q$, then $A_{n}(q, q)=A_{n}(q)$ is the classic Eulerian polynomial. Thus $A_{n}(p, q), n=1,2, \ldots$, can be seen as a class of refined Eulerian polynomials. For example, we have

$$
\begin{aligned}
A_{1}(p, q) & =1 \\
A_{2}(p, q) & =1+p \\
A_{3}(p, q) & =1+2 p+2 q+p q \\
A_{4}(p, q) & =1+6 p+5 q+5 p^{2}+6 p q+p^{2} q \\
A_{5}(p, q) & =1+13 p+13 q+16 p^{2}+34 p q+16 q^{2}+13 p^{2} q+13 p q^{2}+p^{2} q^{2}, \\
A_{6}(p, q)= & 1+29 p+28 q+89 p^{2}+152 p q+61 q^{2}+61 p^{3}+152 p^{2} q \\
& +89 p q^{2}+28 p^{3} q+29 p^{2} q^{2}+p^{3} q^{2} .
\end{aligned}
$$

For convenience, we denote

$$
\widetilde{A}_{n}(p, q)= \begin{cases}A_{n}(p, q), & \text { if } n=2 k+1 \\ (1+q) A_{n}(p, q), & \text { if } n=2 k\end{cases}
$$

Our main result is the following
Theorem 1. For any $n=1,2, \ldots$, the polynomial $\widetilde{A}_{n}(p, q)$ is palindromic of darga $\left\lfloor\frac{n}{2}\right\rfloor$.
In the next section we give a proof of Theorem 1. In Section 3 we study the case $q=1$ and the case $p=1$, the polynomials $A_{n}(p, 1)$ and $A_{n}(1, q)$ are the generating functions for the statistics odes and edes over the set \mathfrak{S}_{n}, respectively. In the last section, we propose a conjecture that $\widetilde{A}_{n}(p, q)$ can be expressed in terms of the gamma basis $\mathcal{B}_{\left\lfloor\frac{n}{2}\right\rfloor}$ with nonnegative integer coefficients.

2 The proof of Theorem 1

Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$, we define the reversal π^{r} of π to be

$$
\pi^{r}:=\pi_{n} \pi_{n-1} \cdots \pi_{1}
$$

the complement π^{c} of π to be

$$
\pi^{c}:=\left(n+1-\pi_{1}\right)\left(n+1-\pi_{2}\right) \cdots\left(n+1-\pi_{n}\right),
$$

and the reversal-complement $\pi^{r c}$ of π to be

$$
\pi^{r c}:=\left(\pi^{c}\right)^{r}=\left(\pi^{r}\right)^{c}
$$

If i is a descent of π, then i is an ascent of π^{c} and if i is an ascent of π, then i is a descent of π^{c}. In other words, odes $(\pi)+\operatorname{odes}\left(\pi^{c}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and edes $(\pi)+\operatorname{edes}\left(\pi^{c}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor$. Then

$$
\begin{aligned}
A_{n}(p, q) & =\sum_{\pi \in \mathfrak{S}_{n}} p^{\operatorname{odes}(\pi)} q^{\operatorname{edes}(\pi)}=\sum_{\pi \in \mathfrak{S}_{n}} p^{\left\lfloor\frac{n}{2}\right\rfloor-\operatorname{odes}\left(\pi^{c}\right)} q^{\left\lfloor\frac{n-1}{2}\right\rfloor-\operatorname{edes}\left(\pi^{c}\right)} \\
& =p^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\left\lfloor\frac{n-1}{2}\right\rfloor} \sum_{\pi \in \mathfrak{G}_{n}}\left(\frac{1}{p}\right)^{\operatorname{odes}\left(\pi^{c}\right)}\left(\frac{1}{q}\right)^{\operatorname{edes}\left(\pi^{c}\right)}=p^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\left\lfloor\frac{n-1}{2}\right\rfloor} A_{n}\left(\frac{1}{p}, \frac{1}{q}\right) .
\end{aligned}
$$

Specially, for any $k=1,2, \ldots$, we have $A_{2 k}(p, q)=p^{k} q^{k-1} A_{2 k}(1 / p, 1 / q)$ and for any $k=$ $0,1,2, \ldots$, we have $A_{2 k+1}(p, q)=(p q)^{k} A_{2 k+1}(1 / p, 1 / q)$.

It can be derived that i is a descent of π if and only if i is an ascent of π^{c}. It is also easy to see that i is a descent of π if and only if $n-i$ is an ascent of π^{r}. Then, given a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{2 k+1} \in \mathfrak{S}_{2 k+1}$,
i is a descent of π if and only if $2 k+1-i$ is a descent of $\pi^{r c}$.
Specially, i is an odd descent of π if and only if $2 k+1-i$ is an even descent of $\pi^{r c}$, and i is an even descent of π if and only if $2 k+1-i$ is an odd descent of $\pi^{r c}$. So we have

$$
\widetilde{A}_{2 k+1}(p, q)=\sum_{\pi \in \mathfrak{S}_{2 k+1}} p^{\operatorname{odes}(\pi)} q^{\operatorname{edes}(\pi)}=\sum_{\pi \in \mathfrak{S}_{2 k+1}} p^{\operatorname{edes}\left(\pi^{r c}\right)} q^{\operatorname{odes}\left(\pi^{r c}\right)}=\widetilde{A}_{2 k+1}(q, p)
$$

Thus for any $k=1,2, \ldots$, the polynomial $\widetilde{A}_{2 k+1}(p, q)$ is palindromic of darga k.
In addition,

$$
\widetilde{A}_{2 k}(p, q)=(1+q) p^{k} q^{k-1} A_{2 k}\left(\frac{1}{p}, \frac{1}{q}\right)=\left(1+\frac{1}{q}\right) p^{k} q^{k} A_{2 k}\left(\frac{1}{p}, \frac{1}{q}\right)=(p q)^{k} \widetilde{A}_{2 k+1}\left(\frac{1}{p}, \frac{1}{q}\right) .
$$

The last part is to prove that $\widetilde{A}_{2 k}(p, q)=\widetilde{A}_{2 k}(q, p)$, that is,

$$
\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{odes}(\pi)}\left[q^{\operatorname{edes}(\pi)}+q^{\operatorname{edes}(\pi)+1}\right]=\sum_{\pi \in \mathfrak{S}_{2 k}} q^{\operatorname{odes}(\pi)}\left[p^{\operatorname{edes}(\pi)}+p^{\operatorname{edes}(\pi)+1}\right] .
$$

Let $\mathfrak{S}_{2 k}^{\prime}=\left\{\pi(2 k+1), \pi 0 \mid \pi \in \mathfrak{S}_{2 k}\right\}, \mathfrak{S}_{2 k}^{\prime \prime}=\left\{(2 k+1) \pi, 0 \pi \mid \pi \in \mathfrak{S}_{2 k}\right\}$, and let $\pi=$ $\pi_{1} \pi_{2} \cdots \pi_{2 k} \in \mathfrak{S}_{2 k}$. Define a map $\psi: \mathfrak{S}_{2 k}^{\prime} \rightarrow \mathfrak{S}_{2 k}^{\prime \prime}$ by

$$
\psi(\pi x)= \begin{cases}(2 k+1)\left(2 k+1-\pi_{2 k}\right)\left(2 k+1-\pi_{2 k-1}\right) \cdots\left(2 k+1-\pi_{1}\right), & \text { if } x=0 \\ 0\left(2 k+1-\pi_{2 k}\right)\left(2 k+1-\pi_{2 k-1}\right) \cdots\left(2 k+1-\pi_{1}\right), & \text { if } x=2 k+1\end{cases}
$$

Given a permutation $\pi \in \mathfrak{S}_{2 k}$, it is no hard to see that

$$
\begin{array}{lr}
\text { odes }(\pi(2 k+1))=\operatorname{odes}(\pi), & \text { edes }(\pi(2 k+1))=\operatorname{edes}(\pi), \\
\text { odes }(\pi 0)=\operatorname{odes}(\pi), & \text { edes }(\pi 0)=\operatorname{edes}(\pi)+1, \\
\text { odes }((2 k+1) \pi)=\operatorname{edes}(\pi)+1, & \text { edes }((2 k+1) \pi)=\operatorname{odes}(\pi), \\
\text { odes }(0 \pi)=\operatorname{edes}(\pi), & \operatorname{edes}(0 \pi)=\operatorname{odes}(\pi) .
\end{array}
$$

Thus

$$
\begin{aligned}
& \operatorname{odes}(\psi(\pi(2 k+1)))=\operatorname{odes}\left(0 \pi^{r c}\right)=\operatorname{edes}\left(\pi^{r c}\right), \\
& \operatorname{edes}(\psi(\pi(2 k+1)))=\operatorname{edes}\left(0 \pi^{r c}\right)=\operatorname{odes}\left(\pi^{r c}\right), \\
& \operatorname{odes}(\psi(\pi 0))=\operatorname{odes}\left((2 k+1) \pi^{r c}\right)=\operatorname{edes}\left(\pi^{r c}\right)+1, \\
& \operatorname{edes}(\psi(\pi 0))=\operatorname{edes}\left((2 k+1) \pi^{r c}\right)=\operatorname{odes}\left(\pi^{r c}\right) .
\end{aligned}
$$

Obviously, the map ψ is an involution. Then

$$
\begin{aligned}
& \sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{odes}(\pi)}\left[q^{\operatorname{edes}(\pi)}+q^{\operatorname{edes}(\pi)+1}\right] \\
& =\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{odes}(\pi(2 k+1))} q^{\operatorname{edes}(\pi(2 k+1))}+\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{odes}(\pi 0)} q^{\operatorname{edes}(\pi 0)} \\
& =\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{odes}(\psi(\pi(2 k+1)))} q^{\operatorname{edes}(\psi(\pi(2 k+1)))}+\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{odes}(\psi(\pi 0))} q^{\operatorname{edes}(\psi(\pi 0))} \\
& =\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{edes}\left(\pi^{r c}\right)} q^{\operatorname{odes}\left(\pi^{r c}\right)}+\sum_{\pi \in \mathfrak{S}_{2 k}} p^{\operatorname{edes}\left(\pi^{r c}\right)+1} q^{\operatorname{odes}\left(\pi^{r c}\right)} \\
& =\sum_{\pi \in \mathfrak{S}_{2 k}} q^{\operatorname{odes}(\pi)}\left[p^{\operatorname{edes}(\pi)}+p^{\operatorname{edes}(\pi)+1}\right]
\end{aligned}
$$

Thus for any $k=1,2, \ldots$, the polynomial $\widetilde{A}_{2 k}(p, q)$ is palindromic of darga k. This completes the proof.

3 The case $p=1$ and the case $q=1$

If $q=1$, the polynomial $A_{n}(p, 1)$ is the generating function for the statistic odes over the set \mathfrak{S}_{n}, and if $p=1$, the polynomial $A_{n}(1, q)$ is the generating function for the statistic edes over the set \mathfrak{S}_{n}. More precisely, we have

Proposition 2. Let n be a positive integer. Then

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{S}_{n}} p^{\text {odes }(\pi)}=A_{n}(p, 1)=\frac{n!}{2^{\left\lfloor\frac{n}{2}\right\rfloor}}(1+p)^{\left\lfloor\frac{n}{2}\right\rfloor} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{edes}(\pi)}=A_{n}(1, q)=\frac{n!}{2^{\left\lfloor\frac{n-1}{2}\right\rfloor}}(1+q)^{\left\lfloor\frac{n-1}{2}\right\rfloor} . \tag{2}
\end{equation*}
$$

Proof. It is easy to verify that the equalities 1 and 1 are true for $n=1$ and $n=2$. Let $n \geq 3$ and let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$. For any $i=1,2, \ldots,\lfloor n / 2\rfloor$, define a map $\varphi_{i}: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ by

$$
\varphi_{i}(\pi)=\pi_{1} \pi_{2} \cdots \pi_{2 i} \pi_{2 i-1} \cdots \pi_{n}
$$

i.e., $\varphi_{i}(\pi)$ is obtained by swapping $\pi_{2 i}$ with $\pi_{2 i-1}$ in π. Obviously, the map φ_{i} is an involution, $i=1,2, \ldots,\lfloor n / 2\rfloor$, and φ_{i} and φ_{j} commute for all $i, j \in\{1,2, \ldots,\lfloor n / 2\rfloor\}$. For any subset $S \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$, we define a map $\varphi_{S}: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ by

$$
\varphi_{S}(\pi)=\prod_{i \in S} \varphi_{i}(\pi)
$$

The group $\mathbb{Z}_{2}^{\lfloor n / 2\rfloor}$ acts on \mathfrak{S}_{n} via the maps $\varphi_{S}, S \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$. For any $\pi \in \mathfrak{S}_{n}$, let $\operatorname{Orb}{ }^{*}(\pi)$ denote the orbit including π under the group action. There is a unique permutation in $\operatorname{Orb}^{*}(\pi)$, denoted by $\hat{\pi}$, such that

$$
\hat{\pi}_{1}<\hat{\pi}_{2}, \hat{\pi}_{3}<\hat{\pi}_{4}, \ldots, \hat{\pi}_{2\lfloor n / 2\rfloor-1}<\hat{\pi}_{2\lfloor n / 2\rfloor} .
$$

It is not hard to prove that odes $(\hat{\pi})=0$ and odes $\left(\varphi_{S}(\hat{\pi})\right)=|S|$ for any $S \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$. Then

$$
\sum_{\sigma \in \operatorname{Orb}^{*}(\pi)} p^{\operatorname{odes}(\sigma)}=(1+p)^{\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Let \mathfrak{S}_{n}^{*} consist of all the permutations in \mathfrak{S}_{n} such that

$$
\pi_{1}<\pi_{2}, \pi_{3}<\pi_{4}, \ldots, \pi_{2\lfloor n / 2\rfloor-1}<\pi_{2\lfloor n / 2\rfloor} .
$$

The cardinality of the set \mathfrak{S}_{n}^{*} is

$$
\binom{n}{2}\binom{n-2}{2} \cdots\binom{n+2-2\left\lfloor\frac{n}{2}\right\rfloor}{ 2}=\frac{n!}{2\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Then

$$
\sum_{\pi \in \mathfrak{S}_{n}} p^{\operatorname{odes}(\pi)}=A_{n}(p, 1)=\frac{n!}{2^{\left\lfloor\frac{n}{2}\right\rfloor}}(1+p)^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Similarly, for any $i=1,2, \ldots,\lfloor(n-1) / 2\rfloor$, we define a map $\phi_{i}: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ by

$$
\phi_{i}(\pi)=\pi_{1} \cdots \pi_{2 i+1} \pi_{2 i} \cdots \pi_{n}
$$

i.e., $\phi_{i}(\pi)$ is obtained by swapping $\pi_{2 i}$ with $\pi_{2 i+1}$ in π. Obviously, the map ϕ_{i} is an involution, $i=1,2, \ldots,\lfloor(n-1) / 2\rfloor$, and ϕ_{i} and ϕ_{j} commute for all $i, j \in\{1,2, \ldots,\lfloor(n-1) / 2\rfloor\}$. For any subset $S \subseteq\{1,2, \ldots,\lfloor(n-1) / 2\rfloor\}$, we define a $\operatorname{map} \phi_{S}: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ by

$$
\phi_{S}(\pi)=\prod_{i \in S} \phi_{i}(\pi)
$$

The group $\mathbb{Z}_{2}^{\lfloor(n-1) / 2\rfloor}$ acts on \mathfrak{S}_{n} via the maps $\phi_{S}, S \in[\lfloor(n-1) / 2\rfloor]$. For any $\pi \in \mathfrak{S}_{n}$, let $\operatorname{Orb}^{* *}(\pi)$ denote the orbit including π under the group action. There is a unique permutation in $\operatorname{Orb}^{* *}(\pi)$, denoted by $\bar{\pi}$, such that

$$
\bar{\pi}_{2}<\bar{\pi}_{3}, \bar{\pi}_{4}<\bar{\pi}_{5}, \ldots, \bar{\pi}_{2\lfloor(n-1) / 2\rfloor}<\bar{\pi}_{2\lfloor(n-1) / 2\rfloor+1} .
$$

It is easily obtained that edes $(\bar{\pi})=0$ and $\operatorname{edes}\left(\phi_{S}(\bar{\pi})\right)=|S|$ for any $S \subseteq\{1,2, \ldots$, $\lfloor(n-1) / 2\rfloor\}$. Then

$$
\sum_{\sigma \in \mathrm{Orb}^{* *}(\pi)} q^{\operatorname{edes}(\sigma)}=(1+q)^{\left\lfloor\frac{n-1}{2}\right\rfloor} .
$$

Let $\mathfrak{S}_{n}^{* *}$ consist of all the permutations in \mathfrak{S}_{n} such that

$$
\pi_{2}<\pi_{3}, \pi_{4}<\pi_{5}, \ldots, \pi_{2\lfloor(n-1) / 2\rfloor}<\pi_{2\lfloor(n-1) / 2\rfloor+1}
$$

The cardinality of the set $\mathfrak{S}_{n}^{* *}$ is

$$
\begin{cases}\binom{n}{2}\binom{n-2}{2} \cdots\left(\begin{array}{c}
n+2-2\left\lfloor\frac{n-1}{2}\right\rfloor
\end{array}\right)=\frac{n!}{2^{\left\lfloor\frac{n-1}{2}\right\rfloor},} & \text { if } n \text { is odd, } \\
2\binom{n}{2}\binom{n-2}{2} \cdots\binom{n+2-2\left\lfloor\frac{n-1}{2}\right\rfloor}{ 2^{2}}=\frac{n!}{2^{\left\lfloor\frac{n-1}{2}\right\rfloor}}, & \text { if } n \text { is even. }\end{cases}
$$

Then

$$
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{edes}(\pi)}=A_{n}(1, q)=\frac{n!}{2^{\left\lfloor\frac{n-1}{2}\right\rfloor}}(1+q)^{\left\lfloor\frac{n-1}{2}\right\rfloor} .
$$

4 Remarks

The set of palindromic bivariate polynomials of darga k is a vector space with gamma basis

$$
\mathcal{B}_{k}=\left\{(p q)^{i}(p+q)^{j}(1+p q)^{k-2 i-j} \mid i, j \geq 0,2 i+j \leq k\right\} .
$$

Thus the refined Eulerian polynomials $\widetilde{A}_{n}(p, q), n=1,2, \ldots$, can be expanded in terms of the gamma basis $\mathcal{B}_{\left\lfloor\frac{n}{2}\right\rfloor}$. For example,

$$
\begin{aligned}
\widetilde{A}_{1}(p, q)= & A_{1}(p, q)=1 \\
\widetilde{A}_{2}(p, q)= & (1+q) A_{2}(p, q)=(1+q)(1+p)=1+p+q+p q \\
= & (1+p q)+(p+q) \\
\widetilde{A}_{3}(p, q)= & A_{3}(p, q)=1+2 p+2 q+p q=(1+p q)+2(p+q), \\
\widetilde{A}_{4}(p, q)= & (1+q) A_{4}(p, q)=(1+q)\left(1+6 p+5 q+5 p^{2}+6 p q+p^{2} q\right) \\
= & 1+6 p+6 q+5 p^{2}+12 p q+5 q^{2}+6 p^{2} q+6 p q^{2}+p^{2} q^{2} \\
= & (1+p q)^{2}+6(p+q)(1+p q)+5(p+q)^{2}, \\
\widetilde{A}_{5}(p, q)= & A_{5}(p, q)=1+13 p+13 q+16 p^{2}+34 p q+16 q^{2}+13 p^{2} q+13 p q^{2}+p^{2} q^{2} \\
= & (1+p q)^{2}+13(p+q)(1+p q)+16(p+q)^{2}, \\
\widetilde{A}_{6}(p, q)= & (1+q) A_{6}(p, q) \\
= & (1+q)\left(1+29 p+28 q+89 p^{2}+152 p q+61 q^{2}\right. \\
& \left.+61 p^{3}+152 p^{2} q+89 p q^{2}+28 p^{3} q+29 p^{2} q^{2}+p^{3} q^{2}\right) \\
= & 1+29 p+29 q+89 p^{2}+89 q^{2}+181 p q+61 p^{3}+241 p^{2} q \\
& +241 p q^{2}+61 q^{3}+181 p^{2} q^{2}+89 p^{3} q+89 p q^{3}+29 p^{3} q^{2}+29 p^{2} q^{3}+p^{3} q^{3} \\
= & (1+p q)^{3}+29(p+q)(1+p q)^{2}+89(p+q)^{2}(1+p q)+61(p+q)^{3} .
\end{aligned}
$$

We conjecture that for any $n \geq 1$, all c_{j} are positive integers in the following expansion

$$
\widetilde{A}_{n}(p, q)=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} c_{j}(p+q)^{j}(1+p q)^{\left\lfloor\frac{n}{2}\right\rfloor-j} .
$$

5 Acknowledgment

I am grateful to my advisor Prof. Yi Wang for his valuable comments and suggestions. I also would like to thank the referee for his/her careful reading and many helpful suggestions.

References

[1] R. M. Adin, E. Bagno, E. Eisenberg, S. Reches, and M. Sigron, Towards a combinatorial proof of Gessel's conjecture on two-sided gamma positivity: a reduction to simple permutations, preprint, 2017. Available at http://arxiv.org/abs/1711.06511.
[2] R. Ehrenborg and M. A. Readdy, The Gaussian coefficient revisited, J. Integer Sequences, 19 (2016), Article 16.7.8.
[3] D. Foata and M.-P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, 1970.
[4] Z. Lin, Proof of Gessel's γ-positivity conjecture, Electron. J. Combin., 23 (3) (2016), paper P3.15.
[5] T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.
[6] H. Sun, Y. Wang, and H. X. Zhang, Polynomials with palindromic and unimodal coefficients, Acta Mathematica Sinica, English Series, 31 (4) (2015), 565-575.
[7] D. Zeilberger, A one-line high school proof of the unimodality of the Gaussian polynomials $\binom{n}{k}_{q}$ for $k<20$, in D. Stanton, ed., q-Series and Partitions, IMA Volumes in Mathematics and Its Applications, Vol. 18, Springer, 1989, pp. 67-72.

2010 Mathematics Subject Classification: Primary 05A05; Secondary 05A15, 05A19.
Keywords: odd descent, even descent, Eulerian polynomial, γ-positivity.

Received January 31 2018; revised version received May 13 2018; May 17 2018. Published in Journal of Integer Sequences, May 262018.

Return to Journal of Integer Sequences home page.

