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Abstract

Jacobsthal was the first to study a certain kind of sum of floor functions. His work

was followed by that of Carlitz, Grimson, and Tverberg. More recently, Onphaeng and

Pongsriiam proved some sharp upper and lower bounds for the sums of Jacobsthal and

Tverberg. In this paper, we devise concise formulas for these sums, which we then use

to prove the upper and lower bounds claimed by Tverberg. Furthermore, we present

conjectural lower and upper bounds for these sums.

1 Introduction

In 1957, Jacobsthal [3] defined and studied a function of the form

fm({a1, a2}, k) =

⌊

a1 + a2 + k

m

⌋

−

⌊

a1 + k

m

⌋

−

⌊

a2 + k

m

⌋

+

⌊

k

m

⌋

for fixed m ∈ Z
+ with a1, a2, k ∈ Z. He also defined the functions

Sm({a1, a2}, K) =
K
∑

k=0

fm({a1, a2}, k), 0 ≤ a1, a2, K ≤ m− 1.

1Correspondence should be addressed to Elaine Wong: wongey@gmail.com .
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It is important to note that we can take advantage of the m-periodicity of fm, and so
we restrict our a1, a2, and K values accordingly for the sum. Jacobsthal, and then later
Carlitz [1], Grimson [2], and Tverberg [5], proved Sm({a1, a2}, K) ≥ 0. In 2012, Tverberg [5]
proposed a generalized notation for these sum functions for any set A = {a1, . . . , an} with
0 ≤ a1, . . . , an, K ≤ m− 1 and n = |A|, that is,

Sm({a1, . . . , an}, K) =
K
∑

k=0

∑

T⊂[1,n]

(−1)n−|T |

⌊

k +
∑

i∈T ai

m

⌋

.

He also claimed without proof the other upper and lower bounds of Sm for sets {a1, a2}
and {a1, a2, a3} (i.e., n = 2, 3). In 2017, Onphaeng and Pongsriiam [4] furnished a proof
for the upper bounds when n is even and ≥ 4 and the lower bounds when n is odd and
≥ 3. In this paper, we investigate the bounds for Sm for all n ∈ Z

+ and supply the missing
proofs of Tverberg’s upper bounds. Furthermore, we conjecture all the bounds for Sm not
previously mentioned and summarize the findings in Table 1. Authors who claimed their
bounds without proof are denoted with an asterisk (*). Otherwise, a proof is given in their
corresponding paper.

n Lower Bound Lower Bound Credit Upper Bound Upper Bound Credit

1 0 Trivial m− 1 Trivial

2 0

Jacobsthal;

⌊

m
2

⌋ Tverberg*;

Corollary 8

Carlitz;

Grimson;

Tverberg;

Theorem 9

3 −2
⌊

m
2

⌋

Tverberg*;
⌊

m
3

⌋ Tverberg*;

Corollary 14
Onphaeng,

Pongsriiam

4 −3
⌊

m
3

⌋

Conjecture 17*
4
⌊

m
2

⌋

Onphaeng,

(Conjecture) Pongsriiam

odd
−2n−2

⌊

m
2

⌋ Onphaeng,
(Conjectures) Conjecture 17*

(≥ 5) Pongsriiam

even
(Conjectures) Conjecture 17* 2n−2

⌊

m
2

⌋ Onphaeng,

(≥ 5) Pongsriiam

Table 1: Bounds for Sm({a1, . . . , an}, K)
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We discuss the case of n = 1 in this section as it sets the foundation for the main strategy
that we use to prove higher cases. We begin with an explicit definition of Jacobsthal’s sum.

Definition 1. For any m ∈ Z and a1, K ∈ Z
+ ∪ {0},

Sm({a1}, K) =
K
∑

k=0

(⌊

a1 + k

m

⌋

−

⌊

k

m

⌋)

.

The sum can be written concisely without using the summation symbol, which we show
below. Note that the periodicity that existed in the n ≥ 2 case does not exist here. However,
we only prove the following proposition for 0 ≤ K ≤ m− 1 because that is all that is needed
for higher values of n. We let a mod m denote the minimal non-negative representative in
the Z/m-equivalence class.

Proposition 2. For 0 ≤ K ≤ m− 1 and a1 ∈ Z
+ ∪ {0},

Sm({a1}, K) =
⌊a1
m

⌋

(K + 1) + max(0, (a1 mod m) +K −m+ 1).

Proof. We observe

⌊

a1 + k

m

⌋

=
⌊a1
m

⌋

+

⌊

k

m

⌋

+

⌊

{a1
m

}

+

{

k

m

}⌋

,

where {x} = x− ⌊x⌋, the fractional part of x. This notation is distinguished from the usual
set notation according to context. Furthermore, since 0 ≤ k ≤ m− 1,

⌊

{a1
m

}

+

{

k

m

}⌋

=

⌊

a1 mod m

m
+

k

m

⌋

.

The result is derived as follows:

K
∑

k=0

(⌊

a1 + k

m

⌋

−

⌊

k

m

⌋)

=
K
∑

k=0

(

⌊a1
m

⌋

+

⌊

k

m

⌋

+

⌊

{a1
m

}

+

{

k

m

}⌋

−

⌊

k

m

⌋)

=
⌊a1
m

⌋

(K + 1) +
K
∑

k=0

⌊

a1 mod m

m
+

k

m

⌋
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=
⌊a1
m

⌋

(K + 1) +

m−(a1 mod m)−1
∑

k=0

⌊

(a1 mod m) + k

m

⌋

+
K
∑

k=m−(a1 mod m)

⌊

(a1 mod m) + k

m

⌋

=
⌊a1
m

⌋

(K + 1) +

m−(a1 mod m)−1
∑

k=0

0 +
K
∑

k=m−(a1 mod m)

1

=
⌊a1
m

⌋

(K + 1) + max(0, (a1 mod m) +K −m+ 1).

The bounds for Sm({a1}, K) are then easily attained from Proposition 2.

Corollary 3. For 0 ≤ a1, K ≤ m− 1,

0 ≤ Sm({a1}, K) ≤ m− 1.

In particular, the maximum occurs precisely when a1 = K = m− 1.

Proof. The result follows from the fact that

Sm({a1}, K) = max(0, a1 +K −m+ 1).

In the following sections, we use similar methods to provide bounds when n > 1 for the
sums Sm({a1, . . . , an}, K).

2 Lower and upper bounds for n = 2

Carlitz [1], Grimson [2], Jacobsthal [3], and Tverberg [5] all proved the lower bound for
n = 2, while Tverberg was first to mention the upper bound for this case. In this section, we
prove the upper bound by introducing a new form for the sum just as before. We also use
this form to give a new proof for its lower bound. We do this by first writing out Jacobsthal’s
sum explicitly, and then making a generalization of Proposition 2.

Definition 4. For any m ∈ Z
+ and any a1, a2, K ∈ Z

+ ∪ {0},

Sm({a1, a2}, K) =
K
∑

k=0

(⌊

a1 + a2 + k

m

⌋

−

⌊

a1 + k

m

⌋

−

⌊

a2 + k

m

⌋

+

⌊

k

m

⌋)

.
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We show that the sum can be written concisely without using the summation symbol,
similar to Proposition 2.

Proposition 5. For 0 ≤ K ≤ m− 1, and any a1, a2 ∈ Z
+ ∪ {0},

Sm({a1, a2}, K) =

(⌊

a1 + a2
m

⌋

−
⌊a1
m

⌋

−
⌊a2
m

⌋

)

(K + 1)

+ max(0, ((a1 + a2) mod m) +K −m+ 1)

−max(0, (a1 mod m) +K −m+ 1)

−max(0, (a2 mod m) +K −m+ 1).

Proof. Rewriting the two-variable sum in Definition 4 as a series of one-variable sums,

Sm({a1, a2}, K) = Sm({a1 + a2}, K)− Sm({a1}, K)− Sm({a2}, K),

allows us to apply Proposition 2 to each sum to get our result.

A symmetry exists in Proposition 5. We outline the pattern in the lemma below. This,
along with a partial result in Theorem 7, gives us the desired upper and lower bounds in
Corollary 8 and Theorem 9, respectively.

Lemma 6. (Mirrored Sums) For 0 ≤ a1, a2 ≤ m− 1 and 0 ≤ K ≤ m− 2,

Sm({a1, a2}, K) = Sm({m− a1,m− a2},m− 2−K).

Proof. It is enough to show the claim for 0 ≤ a1 + a2 ≤ m. Otherwise, we have that
(m − a1) + (m − a2) < m, in which case we can use a similar argument by substituting a1
with m − a1 and a2 with m − a2. For the case a1 = a2 = 0, the result trivially holds by
Definition 4. For the case 0 < a1 + a2 < m, Proposition 5 simplifies to

Sm({a1, a2}, K) = max(0, a1 + a2 +K −m+ 1)

−max(0, a1 +K −m+ 1)−max(0, a2 +K −m+ 1).
(1)

Furthermore, we note that m < 2m− (a1 + a2) < 2m, which gives

Sm({m− a1,m− a2},m− 2−K) = m− 1−K +max(0,m− (a1 + a2)−K − 1)

−max(0,m− a1 −K − 1)−max(0,m− a2 −K − 1).

(2)

Now consider the following equations that use the fact that

max(0, x)−max(0,−x) = x, for all x ∈ R.
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max(0, a1 + a2 +K −m+ 1)−max(0,−a1 − a2 −K +m− 1)

= a1 + a2 +K −m+ 1,
(3)

max(0,m− a1 −K − 1)−max(0, a1 +K −m+ 1)

= m− a1 −K − 1,
(4)

max(0,m− a1 −K − 1)−max(0, a2 +K −m+ 1)

= m− a2 −K − 1.
(5)

Then, (3)+(4)+(5) confirms (1) = (2). Finally, we consider a1 + a2 = m. Here, Proposition
5 gives

Sm({a1, a2}, K)

= K + 1−max(0, a1 +K −m+ 1)−max(0, a2 +K −m+ 1),
(6)

Sm({m− a1,m− a2},m− 2−K)

= m− (K + 1)−max(0,m− a1 −K − 1)−max(0,m− a2 −K − 1).
(7)

In this case, (4)+(5) confirms (6) = (7). This concludes the proof.

We show the upper bound for half the range of K using differences.

Theorem 7. For 0 ≤ a1, a2 ≤ m− 1 and 0 ≤ K ≤
⌊

m
2

⌋

− 1,

Sm({a1, a2}, K) ≤
⌊m

2

⌋

.

Proof. We show the stronger result, that for 0 ≤ K ≤
⌊

m
2

⌋

− 1,

Sm({a1, a2}, K) ≤ K + 1.

For the case K = 0,

Sm({a1, a2}, 0) =

⌊

a1 + a2
m

⌋

+max(0, ((a1 + a2) mod m)−m+ 1)

−max(0, a1 −m+ 1)−max(0, a2 −m+ 1)

=

⌊

a1 + a2
m

⌋

+ 0− 0− 0

≤ 1.

For the case 1 ≤ K ≤
⌊

m
2

⌋

− 1, it is enough to show that

∆m := Sm({a1, a2}, K)− Sm({a1 + 1, a2}, K − 1) ≤ 1.
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By using Proposition 5 we explicitly write out the two sums

Sm({a1, a2}, K) =

⌊

a1 + a2
m

⌋

(K + 1)

+ max(0, ((a1 + a2) mod m) +K −m+ 1)

−max(0, a1 +K −m+ 1)

−max(0, a2 +K −m+ 1),

Sm({a1 + 1, a2}, K − 1) =

⌊

a1 + a2 + 1

m

⌋

K

+max(0, ((a1 + a2 + 1) mod m) +K −m)

−max(0, a1 +K −m+ 1)

−max(0, a2 +K −m).

We determine ∆m according to the possible values of a1 + a2 and a2 +K −m+ 1.

Case 1: (a1 + a2 < m and a2 +K −m + 1 ≤ 0) If a1 + a2 < m − 1, then both sums are
the same.

Sm({a1, a2}, K) = 0 + max(0, a1 + a2 +K −m+ 1)

−max(0, a1 +K −m+ 1)− 0,

Sm({a1 + 1, a2}, K − 1) = 0 + max(0, (a1 + 1) + a2 +K −m)

−max(0, (a1 + 1) +K −m)− 0.

If a1 + a2 = m− 1, then both sums evaluate to K. Therefore, we get ∆m = 0.

Case 2: (a1 + a2 < m and a2 +K −m+ 1 > 0) Again, we assume a1 + a2 < m− 1.

Sm({a1, a2}, K) = 0 + max(0, a1 + a2 +K −m+ 1)

−max(0, a1 +K −m+ 1)− (a2 +K −m+ 1),

Sm({a1 + 1, a2}, K − 1) = 0 + max(0, (a1 + 1) + a2 +K −m+ 1)

−max(0, (a1 + 1) +K −m)− (a2 +K −m).

Therefore, ∆m = Sm({a1, a2}, K)− Sm({a1 +1, a2}, K − 1) = −1. A similar argument holds
for a1 + a2 = m− 1.

Case 3: (a1 + a2 ≥ m and a2 +K −m+ 1 ≤ 0)

Sm({a1, a2}, K) = (K + 1) + max(0, (a1 + a2 −m) +K −m+ 1)

−max(0, a1 +K −m+ 1)− 0,

Sm({a1 + 1, a2}, K − 1) = K +max(0, (a1 + 1 + a2 −m) +K −m)

−max(0, (a1 + 1) +K −m)− 0.
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Therefore, ∆m = Sm({a1, a2}, K)− Sm({a1 + 1, a2}, K − 1) = +1.

Case 4: (a1 + a2 ≥ m and a2 +K −m+ 1 > 0) ∆m = 0 using similar reasoning to Case 2
and Case 3.

We summarize the four cases for 0 < K ≤
⌊

m
2

⌋

− 1 in the table below.

Case a1 + a2 a2 +K −m+ 1 ∆m

1 < m ≤ 0 0

2 < m > 0 −1

3 ≥ m ≤ 0 +1

4 ≥ m > 0 0

Table 2: Summary of ∆m values.

This shows that −1 ≤ ∆m ≤ 1. Thus, we have shown that

Sm({a1, a2}, K) ≤ Sm({a1, a2}, K − 1) + 1 ≤ K + 1 ≤
⌊m

2

⌋

,

for all 0 ≤ K ≤
⌊

m
2

⌋

− 1.

We apply Lemma 6 and Theorem 7 to show the upper bound for Sm.

Corollary 8. For 0 ≤ a1, a2, K ≤ m− 1,

Sm({a1, a2}, K) ≤
⌊m

2

⌋

.

Proof. For 0 ≤ K ≤
⌊

m
2

⌋

− 1, Theorem 7 gives the result. For
⌊

m
2

⌋

≤ K ≤ m − 2,
Sm({a1, a2}, K) = Sm({m − a1,m − a2},m − 2 − K) by Lemma 6. From there, we apply
Theorem 7 to the right hand side and get the result. Finally, for K = m− 1, it is easily seen
that Sm({a1, a2}, K) = 0. This completes the proof.

The lower bound is now easy to show using ∆m.

Theorem 9. For 0 ≤ a1, a2, K ≤ m− 1,

0 ≤ Sm({a1, a2}, K).

Proof. Without loss of generality, we assume that 0 ≤ a2 ≤ a1 ≤ m − 1. Consider 0 ≤
K ≤

⌊

m

2

⌋

− 1. Thus, the conditions of Case 2 (i.e., a1 + a2 < m and a2 +K −m + 1 > 0)
cannot be met because if a1 + a2 < m, then a2 ≤

⌊

m
2

⌋

. So, a2 + K − m + 1 ≤ 0. This
shows that ∆m 6= −1, which means ∆m = 0 or 1. This, along with Sm({a1, a2}, 0) ≥ 0, gives
us the lower bound as desired. Next, we consider

⌊

m
2

⌋

≤ K ≤ m − 2, and apply Lemma
6 to complete the argument. Lastly, Sm({a1, a2},m − 1) = 0. We now have the complete
result.
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3 Upper bound for n = 3

Onphaeng and Pongsriiam [4] already proved the lower bound for this case. In this section,
we follow the style of the previous sections by rewriting the sum, observing its symmetry,
and using a difference to prove the upper bound. This time, we use Tverberg’s formulation
to write out the sum explicitly.

Definition 10. For any m ∈ Z
+ and a1, a2, a3, K ∈ Z

+ ∪ {0},

Sm({a1, a2, a3}, K) =
K
∑

k=0

(⌊

a1 + a2 + a3 + k

m

⌋

−

⌊

a1 + a2 + k

m

⌋

−

⌊

a2 + a3 + k

m

⌋

−

⌊

a1 + a3 + k

m

⌋

+

⌊

a1 + k

m

⌋

+

⌊

a2 + k

m

⌋

+

⌊

a3 + k

m

⌋

−

⌊

k

m

⌋)

.

Like before, we show that the sum can be written concisely without using the summation
symbol.

Proposition 11. For 0 ≤ K ≤ m− 1 and a1, a2, a3 ∈ Z
+ ∪ {0},

Sm({a1, a2, a3}, K) =

(⌊

a1 + a2 + a3
m

⌋

−

⌊

a1 + a2
m

⌋

−

⌊

a2 + a3
m

⌋

−

⌊

a1 + a3
m

⌋

+
⌊a1
m

⌋

+
⌊a2
m

⌋

+
⌊a3
m

⌋

)

(K + 1)

+ max(0, ((a1 + a2 + a3) mod m) +K −m+ 1)

−max(0, ((a1 + a2) mod m) +K −m+ 1)

−max(0, ((a2 + a3) mod m) +K −m+ 1)

−max(0, ((a1 + a3) mod m) +K −m+ 1)

+ max(0, (a1 mod m) +K −m+ 1)

+ max(0, (a2 mod m) +K −m+ 1)

+ max(0, (a3 mod m) +K −m+ 1).

Proof. We can rewrite our three-variable sum in Definition 10 in terms of two-variable sums,
that is,

Sm({a1, a2, a3}, K) = Sm({a1, a2 + a3}, K)− Sm({a1, a2}, K)− Sm({a1, a3}, K). (8)

We then apply Proposition 5 to each sum to get our result.

A symmetry exists for Sm({a1, a2, a3}, K), similar to Lemma 6.
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Lemma 12. (Mirrored Sums) For 0 ≤ a1, a2, a3 ≤ m− 1 and 0 ≤ K ≤ m− 2,

Sm({a1, a2, a3}, K) = Sm({m− a1,m− a2,m− a3},m− 2−K).

Proof. As above, we rewrite the three-variable sum as a series of two-variable sums and then
reason as follows:

Sm({a1, a2, a3}, K)

= Sm({a1, a2 + a3}, K)− Sm({a1, a2}, K)− Sm({a1, a3}, K)

= Sm({a1, (a2 + a3) mod m}, K)− Sm({a1, a2}, K)− Sm({a1, a3}, K)

= Sm({m− a1,m− (a2 + a3) mod m},m− 2−K)

− Sm({m− a1,m− a2},m− 2−K)− Sm({m− a1,m− a3},m− 2−K)

= Sm({m− a1, (m− a2) + (m− a3)},m− 2−K)

− Sm({m− a1,m− a2},m− 2−K)− Sm({m− a1,m− a3},m− 2−K)

= Sm({m− a1,m− a2,m− a3},m− 2−K).

The first and fifth equalities come from (8). We take advantage of the ai-periodicity of the
sums in the second and fourth equalities. Lastly, we apply Lemma 6 in the third equality.

Next, we show the upper bound for half the range of K using ∆m.

Theorem 13. For 0 ≤ a1, a2, a3 ≤ m− 1 and 0 ≤ K ≤
⌊

m
2

⌋

− 1,

Sm({a1, a2, a3}, K) ≤
⌊m

3

⌋

.

Proof. Without loss of generality, we assume that 0 ≤ a3 ≤ a2 ≤ a1 ≤ m − 1. We break
down the proof into two cases of K, that is, we would like to show

Sm({a1, a2, a3}, K) ≤

{

K + 1, if 0 ≤ K ≤
⌊

m
3

⌋

− 1 (Case A);
⌊

m
3

⌋

, if
⌊

m
3

⌋

≤ K ≤
⌊

m
2

⌋

− 1 (Case B).

As above, we define a difference of sums,

✷m := Sm({a1, a2, a3}, K)− Sm({a1 + 1, a2, a3}, K − 1),

and note that✷m can be converted to ∆m via (8) as follows:

✷m = Sm({a1, a2, a3}, K)− Sm({a1 + 1, a2, a3}, K − 1)

= (Sm({a1, a2 + a3}, K)− Sm({a1 + 1, a2 + a3}, K − 1))

− (Sm({a1, a2}, K)− Sm({a1 + 1, a2}, K − 1))

− (Sm({a1, a3}, K)− Sm({a1 + 1, a3}, K − 1))

= ∆m({a1, a2 + a3}, K)−∆m({a1, a2}, K)−∆m({a1, a3}, K).
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Case A: From the proof of Theorem 9, we know that

∆m({a1, a2}, K) ≥ 0 and ∆m({a1, a3}, K) ≥ 0.

This, coupled with the fact that ∆m({a1, a2 + a3}, K) ≤ 1 (by Table 2), gives ✷m ≤ 1.
Furthermore, with Sm({a1, a2, a3}, 0) ≤ 1, we get Sm ≤ K + 1 as in the proof of Theorem 7.

Case B: If✷m ≤ 0, then we can use Case A (i.e., Sm ≤ K + 1 ≤
⌊

m
3

⌋

) to show

Sm({a1, a2, a3}, K) ≤ Sm({a1 + 1, a2, a3}, K − 1) ≤
⌊m

3

⌋

.

If✷m = 1, we show Sm ≤
⌊

m
3

⌋

directly. Observe that the only way to obtain✷m = 1 is
when

∆m({a1, a2 + a3}, K) = +1,

∆m({a1, a2}, K) = 0,

∆m({a1, a3}, K) = 0.

This arrangement is achieved when our assumed a1, a2, a3, K also satisfies all conditions
from Table 2. So, in Table 3, we organize each row according to the restrictions that must
be applied. The ‘type’ refers to the logical operator on the conditions in the same row in
order to achieve that particular ∆m value. Keeping these conditions in mind, we bound
Sm({a1, a2, a3}, K) according to whether a2 + a3 < m or not.

∆m Condition a Type Condition b

+1 (1a) a1 + (a2 + a3) mod m ≥ m AND (1b) ((a2 + a3) mod m) +K −m+ 1 ≤ 0

0 (2a) a1 + a2 ≥ m XOR (2b) a2 +K −m+ 1 ≤ 0

0 (3a) a1 + a3 ≥ m XOR (3b) a3 +K −m+ 1 ≤ 0

Table 3: Conditions on ∆m values for Case B

Case B1: a2 + a3 < m. Conditions (1a) and (1b) simplify to

m ≤ a1 + a2 + a3 < 2m AND a2 + a3 +K −m+ 1 ≤ 0,

which therefore satisfies (2b) and (3b), implying that it also satisfies ∼ (2a) and ∼ (3a) by
the XOR condition. Thus, we get

a1 + a2 < m AND a2 +K −m+ 1 ≤ 0,

a1 + a3 < m AND a3 +K −m+ 1 ≤ 0.
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Applying these conditions to Proposition 11 results in the following formula:

Sm({a1, a2, a3}, K) = K + 1−max(0, a1 + a2 +K −m+ 1)

−max(0, a1 + a3 +K −m+ 1) + max(0, a1 +K −m+ 1),

which can be broken down into the following four subcases.

Case B1.1: (a1 +K −m+ 1 > 0)

Sm({a1, a2, a3}, K) = −a1 − a2 − a3 +m ≤ −m+m = 0.

Case B1.2: (a1 +K −m+ 1 ≤ 0 and a1 + a3 +K −m+ 1 > 0)

Sm({a1, a2, a3}, K) = K + 1− (a1 + a2 +K −m+ 1)− (a1 + a3 +K −m+ 1)

= (m− a1 − a2 − a3)− (a1 +K) + (m− 1)

≤ 0−

⌊

2m

3

⌋

+ (m− 1)

≤
⌊m

3

⌋

,

because a1+ a2+ a3 ≥ m (1a) and a1 ≥ a2 ≥ a3 gives a1 ≥
⌊

m
3

⌋

. This, along with K ≥
⌊

m
3

⌋

,
gives us the second to last line.

Case B1.3: (a1 + a3 +K −m+ 1 ≤ 0 and a1 + a2 +K −m+ 1 > 0)

Sm({a1, a2, a3}, K) = m− a1 − a2 ≤
⌊m

3

⌋

,

because a1 + a2 ≥
⌊

2m
3

⌋

.

Case B1.4: (a1 + a2 +K −m+ 1 ≤ 0) This case cannot happen because a1 + a2 + a3 ≥ m
gives that a1 + a2 ≥

⌊

2m
3

⌋

which means a1 + a2 +K + 1 ≥ m, contradicting the condition.
We summarize these four subcases in Table 4.

Subcase a1 + a2 +K −m+ 1 a1 + a3 +K −m+ 1 a1 +K −m+ 1 Sm

1 > 0 > 0 > 0 ≤ 0

2 > 0 > 0 ≤ 0 ≤
⌊

m
3

⌋

3 > 0 ≤ 0 ≤ 0 ≤
⌊

m

3

⌋

4 ≤ 0 ≤ 0 ≤ 0 N/A

Table 4: Subcases for B1

Case B2: m ≤ a2 + a3 < 2m.
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Conditions (1a) and (1b) simplify to

a1 + a2 + a3 ≥ 2m AND a2 + a3 +K − 2m+ 1 ≤ 0,

which therefore satisfies (2a) and (3a), implying that it also satisfies ∼ (2b) and ∼ (3b) by
the XOR condition. Thus, we get

a1 + a2 ≥ m AND a2 +K −m+ 1 > 0,

a1 + a3 ≥ m AND a3 +K −m+ 1 > 0.

Applying these conditions to Proposition 11 results in the following formula:

Sm({a1, a2, a3}, K) = −(K + 1)−max(0, a1 + a2 +K − 2m+ 1)

−max(0, a1 + a3 +K − 2m+ 1) + (a1 +K −m+ 1)

+ (a2 +K −m+ 1) + (a3 +K −m+ 1),

which can be broken down into the following three subcases.

B2.1: (a1 + a2 +K − 2m+ 1 > 0 and a1 + a3 +K − 2m+ 1 > 0)

Sm({a1, a2, a3}, K) = −(a1 + a2 +K − 2m+ 1)− (a1 + a3 +K − 2m+ 1)

+ (a1 + a2 +K − 2m+ 1) + (a3 +K −m+ 1)

= m− a1

≤
⌊m

3

⌋

,

because a1 + a2 + a3 ≥ m and a1 ≥ a2 ≥ a3 gives a1 ≥
⌊

2m
3

⌋

.

B2.2: (a1 + a2 +K − 2m+ 1 > 0 and a1 + a3 +K − 2m+ 1 ≤ 0)

Sm({a1, a2, a3}, K) = (m− a1) + (a1 + a3 +K − 2m+ 1)

≤ m− a1

≤
⌊m

3

⌋

.

B2.3: (a1 + a2 +K − 2m+ 1 ≤ 0)

Sm({a1, a2, a3}, K) = (m− a1) + (a1 + a2 +K − 2m+ 1)

+ (a1 + a3 +K − 2m+ 1)

≤ (m− a1)

≤
⌊m

3

⌋

.

We summarize the three cases in Table 5.
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Subcase a1 + a2 +K − 2m+ 1 a1 + a3 +K − 2m+ 1 Sm

1 > 0 > 0 ≤
⌊

m
3

⌋

2 > 0 ≤ 0 ≤
⌊

m
3

⌋

3 ≤ 0 ≤ 0 ≤
⌊

m
3

⌋

Table 5: Subcases for B2

The results from Tables 4 and 5 complete the proof of Case B. Hence, we have proven
the theorem.

Lemma 12 and Theorem 13 give the main result, which we state as a corollary.

Corollary 14. For 0 ≤ a1, a2, a3, K ≤ m− 1,

Sm({a1, a2, a3}, K) ≤
⌊m

3

⌋

.

Proof. For 0 ≤ K ≤
⌊

m
2

⌋

− 1, Theorem 13 gives us our result. For
⌊

m
2

⌋

≤ K ≤ m − 2,
Sm({a1, a2, a3}, K) = Sm({m−a1,m−a2,m−a3},m−2−K) by Lemma 12. From there, we
apply Theorem 13 to the right hand side and get the result. Finally, Sm({a1, a2, a3},m−1) =
0. This completes the proof.

4 (Not so sharp) lower bound for n = 4

Given that 0 ≤ a1, a2, a3, a4, K ≤ m− 1, the pattern of the maximum and minimum values
of Sm({a1, a2, a3, a4}, K) is less clear, as evidenced by some results of the computer program:

Maximum Values of Sums

(S1, S2, . . .) = (0, 4, 3, 8, 7, 12, 11, 16, 15, 20, 19, 24

23, 28, 27, 32, 31, 36, 35, 40, 39, 44, . . .).

Minimum Values of Sums

(S1, S2, . . .) = (0, 0,−3,−2,−3,−6,−5,−6,−9,

− 8,−9,−12,−11,−12,−15,−14,

− 15,−18,−17,−18,−21,−20, . . .).

Onphaeng and Pongsriiam [4] showed the upper bound

Sm({a1, a2, a3, a4}, K) ≤ 4
⌊m

2

⌋

.
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We conjecture the lower bound

−3
⌊m

3

⌋

≤ Sm({a1, a2, a3, a4}, K).

In an attempt to prove this lower bound, we found that writing a difference of sums (like
∆m or✷m) is not an efficient way to approach the problem. Accordingly, we use another
method to obtain the following partial result.

Theorem 15. For 0 ≤ a1, a2, a3, a4, K ≤ m− 1,

−2
⌊m

2

⌋

−
⌊m

3

⌋

≤ Sm({a1, a2, a3, a4}, K).

Proof. We can combine the following bounds from n = 2, 3, namely,

0 ≤ Sm({a1 + a2 + a3, a4}, K),

−
⌊m

2

⌋

≤ −Sm({a1 + a2, a4}, K),

−
⌊m

2

⌋

≤ −Sm({a1 + a3, a4}, K),

−
⌊m

3

⌋

≤ −Sm({a2, a3, a4}, K),

0 ≤ Sm({a1, a4}, K),

along with the identity

Sm({a1, a2, a3, a4}, K) = Sm({a1 + a2 + a3, a4}, K)− Sm({a1 + a2, a4}, K)

− Sm({a1 + a3, a4}, K)− Sm({a2, a3, a4}, K) + Sm({a1, a4}, K),

to obtain the claimed result.

5 Conjectures

In order to complete the analysis on this type of floor function problem, we want to show
all the upper bounds and lower bounds for any number of variables, n. Onphaeng and
Pongsriiam [4] were able to show the upper bound when n is even and the lower bound when
n is odd.

Theorem 16 (Onphaeng, Pongsriiam). When n is even and m is even,

Sm ≤ 2n−2
⌊m

2

⌋

.

When n is odd and m is even,

−2n−2
⌊m

2

⌋

≤ Sm.

The bounds on both cases are obtained exactly at

A = {m/2,m/2, . . . ,m/2}, K = m/2− 1.

15



We conjecture the missing bounds, namely, the lower bounds when n is even and the
upper bounds when n is odd. To make these conjectures, we wrote a Maple program to
calculate the values of Sm(A,K) for specific m,A, and K. For each n, the sets A and K that
give extreme values of Sm form interesting patterns, which depend on m. Once we determine
such values in A and K, we can quickly compute the extreme values of Sm(A,K) for each
n and then use the resulting data to form a holonomic ansatz. The resulting recurrence
becomes a ninth order recurrence with polynomial coefficients of degree at most 2. We
summarize our findings in the following conjecture. For interested readers, this Maple code
can be found on Thanatipanonda’s website (www.thotsaporn.com).

Conjecture 17. Let A := {a1, a2, . . . , an} and define max/min Sm(A,K) to be the maxi-
mum/minimum over all choices of ai and K with 0 ≤ a1, a2, . . . , an, K ≤ m− 1 and m fixed.
Furthermore, we let the function Sm be as defined in the first section. Suppose now

M(n) :=

{

max Sm(A,K), n odd;

min Sm(A,K), n even.

Then for n ≥ 4, we conjecture the following result in two parts.

1. n = 4k − 1, 4k or 4k + 1, where k ∈ Z
+: Under the condition that m is a multiple of

2k + 1, the values of M(n) occur exactly at

A =

{

km

2k + 1
,

km

2k + 1
, . . . ,

km

2k + 1

}

, K =
km

2k + 1
− 1,

or A =

{

(k + 1)m

2k + 1
,
(k + 1)m

2k + 1
, . . . ,

(k + 1)m

2k + 1

}

, K =
(k + 1)m

2k + 1
− 1.

2. n = 4k + 2, where k ∈ Z
+: Under the condition that m is a multiple of 2k + 1 and

2k + 3, the values of M(n) occur at (among other places)

A =

{

km

2k + 1
,

km

2k + 1
, . . . ,

km

2k + 1

}

, K =
km

2k + 1
− 1,

or A =

{

(k + 1)m

2k + 1
,
(k + 1)m

2k + 1
, . . . ,

(k + 1)m

2k + 1

}

, K =
(k + 1)m

2k + 1
− 1,

or A =

{

(k + 1)m

2k + 3
,
(k + 1)m

2k + 3
, . . . ,

(k + 1)m

2k + 3

}

, K =
(k + 1)m

2k + 3
− 1,

or A =

{

(k + 2)m

2k + 3
,
(k + 2)m

2k + 3
, . . . ,

(k + 2)m

2k + 3

}

, K =
(k + 2)m

2k + 3
− 1.

Moreover, M(n) can be calculated directly from a formula similar to the equations
from Propositions 5 and 11, or by

M(n) = m · f(n),
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where f(n) satisfies the recurrence relation

−5(n+ 3)(n− 2)f(n) = 10(n2 + n− 8)f(n− 1)− 4(2n2 − 10n+ 3)f(n− 2)

− 24(2n− 11)f(n− 3)− 32(2n2 − 10n− 1)f(n− 4)

− 192(n− 1)(n− 5)f(n− 5) + 64(2n2 − 22n+ 51)f(n− 6)

+ 384(2n− 13)f(n− 7)− 256(n− 3)(n− 8)f(n− 8)

+ 512(n− 9)(n− 8)f(n− 9)

for n ≥ 11, with the initial conditions

f(2) = 0, f(3) = 1/3, f(4) = −1, f(5) = 2, f(6) = −3, f(7) = 8, f(8) = −18,

f(9) = 36, and f(10) = −65.

For convenience, we give examples of some of the bounds (and the set A for which the
values of those bounds occur) produced from the conjectures above.

• Suppose n = 4, 5 and m is a multiple of 3.

Case n = 4:
−3 ·

⌊m

3

⌋

≤ Sm.

Case n = 5:
Sm ≤ 6 ·

⌊m

3

⌋

.

For these cases, M(n) occurs at

A = {m/3,m/3, . . . ,m/3}, K = m/3− 1

or A = {2m/3, 2m/3, . . . , 2m/3}, K = 2m/3− 1.

• Suppose n = 6.

• If m is a multiple of 3, then

−9 ·
⌊m

3

⌋

≤ Sm,

with the minimum at (among other places)

A = {m/3,m/3, . . . ,m/3}, K = m/3− 1

or A = {2m/3, 2m/3, . . . , 2m/3}, K = 2m/3− 1.
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• If m is a multiple of 5, then

−15 ·
⌊m

5

⌋

≤ Sm,

with the minimum at (among other places)

A = {2m/5, 2m/5, . . . , 2m/5}, K = 2m/5− 1

or A = {3m/5, 3m/5, . . . , 3m/5}, K = 3m/5− 1.

• Suppose n = 7, 8, 9 and m is a multiple of 5.

Case n = 7:
Sm ≤ 40 ·

⌊m

5

⌋

.

Case n = 8:
−90 ·

⌊m

5

⌋

≤ Sm.

Case n = 9:
Sm ≤ 180 ·

⌊m

5

⌋

.

For these cases, M(n) occurs at

A = {2m/5, 2m/5, . . . , 2m/5}, K = 2m/5− 1

or A = {3m/5, 3m/5, . . . , 3m/5}, K = 3m/5− 1.
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