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Abstract

When all the elements of the multiset {1, 1, 2, 2, 3, 3, . . . , n, n} are placed randomly
in the cells of an m × k rectangular array (where mk = 2n), what is the probability
Pm,k(p) that exactly p ∈ [0, n] of the pairs are found with their matching partner
directly beside them in a row or column — thus forming a 1× 2 domino? For the case
p = n, this reduces to the domino tiling enumeration problem solved by Kastelyn and
which produces the Fibonacci sequence for the well-known case m = 2. In this paper
we obtain a formula for the first moment of the probability distribution for a completely
general array, and also give an inclusion-exclusion formula for the number of 0-domino
configurations. In the case of a 2 × k rectangular array, we give a bijection between
the (k− 1)-domino configurations and the nodes of the Fibonacci tree of order k, thus
finding that the number of such configurations is equal to the path length of the tree;
secondly we give generating functions for the number of (k − l)-domino configurations
for l ≤ 2 and conjecture results for l ≤ 5. These generating functions are related to
convolutions of Fibonacci numbers.

1 Introduction and statement of the problem in terms

of bipartite perfect matchings

The game of memory consists of the placement of n distinct pairs of cards in a rectangular
array. For example, we might have two red cards, two green cards, and two blue cards. The
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array could then be 2×3 in size; see Figure 1. 1 This paper is concerned with the probability,
and hence enumeration, of a pair being found side-by-side, i.e., adjacent in a column or row
of the rectangular array. We call such nearest-neighbor pairs “dominoes”, since we may
think of them as fused into a 1× 2 tile. We would like to know the distribution of dominoes,
i.e., the probability that in an m × k game of memory, p ∈ [0, n = mk/2] dominoes are
present. We shall denote this quantity Pm,k(p). We begin by noting that the number of

Figure 1: A 2× 3 game of memory showing a 1-domino configuration.

possible configurations of the n-pairs is given2 by (2n)!/2n = n! (2n− 1)!!, but we will drop
the factor of n! so that we do not count relabelling of the pairs as distinct configurations.
We thus define the number of distinct configurations Nm,k(p) as follows:

Pm,k(p) =
Nm,k(p)

(2n− 1)!!
.

We thus see that Nm,k(n) is the number of domino tilings of the m × k rectangular array.
Kastelyn [1] provided the celebrated formula

Nm,k(n) =
m
∏

i=1

k
∏

j=1

(

4 cos2
πi

m+ 1
+ 4 cos2

πj

k + 1

)1/4

,

which gives the special case N2,k(k) = Fk+1, where Fk is the Fibonacci number F0 = 0,
F1 = 1, Fq = Fq−1 + Fq−2.

The problem of computing Nm,k(p) can be stated in terms of the problem of the rooks,
otherwise known as perfect matchings. A d-dimensional hypercubical array (of which a rect-
angular array is a special case) may be colored using a checkerboard pattern and hence the

1Though it is not important to the work of this paper, the reader unfamiliar with the game may be
interested in how it is played. The cards are placed face down in random order and a turn consists of a
player turning over two cards of her choice — should they match they are removed from play and she scores
a point, otherwise they are turned face down again, and the next player takes her turn.

2We recall that the double factorial is given by n!! ≡
∏⌈n

2
⌉−1

k=0
(n− 2k), and we define 0!! = (−1)!! = 1.

2



cells form two sets: B consisting of the black cells and W consisting of the white cells. The
cells may be considered as vertices in a bipartite grid-graph G which contains an edge be-
tween any two vertices which connect adjacent cells and no other edges. We also consider the
complement of this graph, which we denote Ḡ, which is the complete graph minus the edges
of G. Let A = B ∪W be the set of all cells in the array; then the algorithm for computing

Figure 2: The graphs G, Ḡ and ḠB for the 2× 3 rectangular array.

Nm,k(p) proceeds as follows:

For every distinct subset Bn−p containing n− p elements from B
For every distinct subset Wn−p containing n− p elements from W

Cumulatively sum: the number of perfect matchings of G(A \ (Bn−p ∪Wn−p))
multiplied by the number of perfect matchings of Ḡ(Bn−p ∪Wn−p),

where the number of perfect matchings of G(∅) ≡ 1, and similarly for Ḡ(∅).
The graph Ḡ is not bipartite as it contains the complete graphs K(B) and K(W ), but it

will be useful to define its bipartite subgraph ḠB = Ḡ −K(B) −K(W ), which joins every
member of B with every member of W which is not adjacent to it; see Figure 2. Counting the
number of perfect matchings of Ḡ can then be made more efficient by counting the number
of selections of an even (respectively odd) number k of edges from ḠB, where the sizes of B
and W are even (respectively odd). This number of selections rk (which is equivalent to the
number of k-edge matchings of ḠB, or equivalently its rook number) is then just multiplied
by the number of perfect matchings of K(B \EB) times the number of perfect matchings of
K(W \ EW ), where EB and EW are the vertices at the end points of the selected edges in
ḠB. We thus have that the number of perfect matchings nPM(Ḡ) on Ḡ is given by

nPM(Ḡ) =

{

∑m/2
j=0 r2j ((m− 2j − 1)!!)2 , m even;

∑(m−1)/2
j=0 r2j+1 ((m− 2j − 2)!!)2 , otherwise,

where m is the size of the set B or W .
Computing the rook numbers of a bipartite graph is usually achieved by considering the

associated board. The board is defined by the elements of B making-up the columns and
those of W the rows. A black square indicates the existence of an edge joining the associated
black and white vertices. In this light, we give in Figure 3 the boards for the 1 × k, 2 × k,
etc. grid graphs G (which are the complements of the boards for ḠB).
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Figure 3: The boards for the grid graphs G associated with a m× k array for m = 1, . . . , 10.
Note that k is chosen differently in each case. Upon close inspection, the pattern of repetition
becomes obvious.

We note that since we have recast the problem of counting the number of perfect match-
ings of Ḡ in terms of those of ḠB, we need only have a match-counting algorithm for dealing
with bipartite graphs (since G is also bipartite), for which the permanent of the matrix with
0, 1 entries associated with the board corresponding to G or ḠB may be used. In Appendix
A we give some results for rectangular arrays computed in this way.

2 First moment of the distribution

In order to compute the first moment of the distribution, we can relax the constraint that
the array A be hypercubical3. The graph G can be taken as a general graph whose edges
join the cells of A which are adjacent. It is clear that G has 2n vertices; let it also have q
edges.

Theorem 1. The mean number of dominoes p̄ for a game of memory played on the array
A is given by

p̄ =
q

2n− 1
.

Proof. The proof proceeds through the linearity of expectation. Let the random variable Xj

take the value 1 when the jth edge in G is occupied by a domino and 0 otherwise. Once
a domino is placed on edge j, there are (2n − 3)!! ways of placing the remaining cards on
the 2n − 2 remaining vertices of G. Thus E(Xj) = (2n − 3)!!/(2n − 1)!! = 1/(2n − 1). We
therefore have that E(

∑q
j=1 Xj) =

∑q
j=1E(Xj) = q/(2n− 1).

3We thank the anonymous referee for suggesting this generalization and the method of proof which follows.
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Corollary 2. The mean number of dominoes p̄ for a game of memory played on an array
A consisting of a 2n-cell subset of a d-dimensional hypercubical lattice is given by

p̄ =
2dn− ∂A/2

2n− 1
,

where ∂A indicates the number of (d− 1)-dimensional outer faces defining the perimeter of
the array A. For arrays with multiple disconnected parts, these perimeters are added.

Proof. This corollary is easily verified by noting that the graph G in this instance has q =
2dn− ∂A/2 edges.

Figure 4: An example of a three-dimensional array with 6 cubes and 28 faces. A game of
memory played on this array has p̄ = 4/5.

It is interesting to note that for an infinite hypercubical array, the mean is equal to
the dimension. We expect that in the limit of large arrays, there should be approximate
independence among the dominoes. We then expect

Conjecture 3. The probability distribution PA(p), giving the probability of a p-domino con-
figuration in a game of memory played on an array A, should approach a Poisson distribution
with mean given by Theorem 1, when the size of A is taken to infinity.

3 Inclusion-exclusion formula for the 0-domino config-

urations

If we are only interested in enumerating the 0-domino configurations, we can restrict our
attention to the matching numbers corresponding to the graph G defining the adjacent cells
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in the generalized array4 A, as defined in Theorem 1. Let these numbers be given by ρj, i.e.,
ρj counts the number of j-edge matchings of G. Then

Theorem 4. The number of 0-domino configurations for a game of memory played on the
array A is given by

NA(0) =
n
∑

j=0

(−1)j(2n− 2j − 1)!! ρj.

Proof. We note that for each of the ρj choices of j edges on which to place j dominoes,
there remains (2n− 2j− 1)!! configurations of the remaining n− j pairs. There will be some
number of q-domino configurations among these (2n − 2j − 1)!!. Then (2n − 2j − 1)!! ρj
counts the (q + j)-domino configurations

(

q+j
j

)

times. We thus have

n
∑

j=0

(−1)j(2n− 2j − 1)!! ρj =
n
∑

j=0

(−1)j
n−j
∑

q=0

(

q + j

j

)

NA(q + j)

= NA(0) +
n
∑

q+j=1

NA(q + j)

q+j
∑

j=0

(−1)j
(

q + j

j

)

,

and so all but the 0-domino configurations cancel.

One could indeed extend this technique to computing the number of p-domino configu-
rations, by replacing ρj with the sum of the matching numbers of the graphs obtained by
removing p edges from G in all possible ways. We will use this technique in the next section
to compute N2,k(1).

4 2× k arrays: specific results

Kreweras and Poupard [2] explicitly solved the 1× k problem; see A079267. The expression
for N1,k(p) is (k must of course be even)

N1,k(p) =
1

p!

k/2
∑

j=p

(−1)j−p (k − j)!

2k/2−j(k/2− j)!(j − p)!
.

The case of 2 × k is considerably more involved. Riordan [3, 4, p. 230] (McQuistan and
Lichtman [5] give connections to dimer models in Physics) provided the rook polynomial for
the grid graph G associated with the 2× k board; see Figure 5. The generating function

T (x, y) =
1− xy

1− y − 2xy − xy2 + x3y3
=

∞
∑

k=0

Tk(x)y
k (1)

4Hosoya and Motoyama [6] provide a method for generating the rook polynomials for general rectangular
arrays.
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Figure 5: The board for the grid graph G associated with a 2× 10 array.

gives the rook polynomials Tk(x)

Tk(x) =
k
∑

j=0

ρj(k) x
j,

where ρj(k) are the rook numbers which count the number of j-edge matchings of G; see
A046741. We may compute the rook numbers rj(k) for ḠB (i.e., for the complement board)
using

rj(k) =

j
∑

i=0

(−1)i(j − i)!

(

k − i

j − i

)2

ρi(k).

Application of Theorem 4 to Eqn. (1) gives the sequence of the number of 0-domino
configurations for the 2× k arrays readily. We find sequence A265167:

N2,k(0) = 0, 1, 2, 21, 186, 2113, 27856, 422481, 7241480, 138478561, . . . ,

for k starting from 1.
We remarked beneath Theorem 4 that the 1-domino configurations can be calculated

using this theorem with the ρj replaced by the sum of the rook numbers of the graphs
produced by removing an edge (i.e., deleting the corresponding row and column) from the
board in Figure 5 in all possible ways. The rules of rook polynomials may be used to calculate
the generating function for this sum of rook numbers. When the removed edge is on the
main diagonal, the resulting rook polynomial factorizes producing

contribution from diagonal =
k−1
∑

m=0

Tm(x)Tk−m−1(x). (2)

A board’s rook polynomial is equal to that of itself with a given cell removed (i.e., flipped
from black to white) plus x multiplied by the rook polynomial corresponding to the board
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n+ 2

Figure 6: The board corresponding to the rook polynomial sn(x). For convenience we have
indicated the black cells in outline.

with the row and column containing that cell removed. This rule can be used to compute
the contribution from removing edges on the next-to-diagonals. We find

contribution from next-to-diagonals =

2
k−2
∑

m=0

(

xTm(x)Tk−m−2(x)

+
(

sm(x)− x sm−1(x)
)(

sk−m−2(x)− x sk−m−3(x)
)

)

, (3)

where sn(x) corresponds to the rook polynomial of the board pictured in Figure 6, with
s−1(x) ≡ 0. It is given by [3, 4, p. 230]

s(x, y) =
∞
∑

j=0

sj(x) y
j =

T (x, y)

(1− xy)2
.

We can easily convert Eqns. (2) and (3) into generating functions similar to Eqn. (1); sum-
ming the contributions we find

T̃ (x, y) =

(

1 + 2xy +
2y

(1− xy)2

)

T 2(x, y).

Thus the corresponding rook numbers ρ̃j(k) (given in A318243) produced by the expansion

T̃ (x, y) =
∞
∑

k=0

T̃k(x) y
k =

∞
∑

k=0

yk
k
∑

j=0

ρ̃j(k) x
j

may be used in Theorem 4 in place of the ρj to compute the number of 1-domino configura-
tions for the (2× k) array. We find A318244

N2,k(1) = 1, 0, 8, 34, 347, 3666, 47484, 707480, 11971341, 226599568, . . .

We now turn our attention to the case of many dominoes. The result for the maximal
number n = k is given by the Fibonacci number N2,k(k) = Fk+1 as is very well known. The
case of (k − 1) dominoes will be dealt with in the next section.
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4.1 The (k − 1)-domino configurations and the Fibonacci tree

The Fibonacci tree is defined as follows. The trees of order 1 and 2 consist of single nodes
labeled by F0 = 0 and F1 = 1. To build the tree of order k, we use the tree of order k− 1 as
the left subtree and that of order k− 2 as the right subtree. In Figure 8 we have reproduced
the trees of order 3, 4, and 5. The level of the nodes is defined as usual, with the root node
being assigned the level 0. The path length of the tree is then defined as the sum of the level
numbers of all nodes.

Theorem 5. The number of (k−1)-domino configurations for a game of memory played on
the 2 × k rectangular array is given by the path length of the Fibonacci tree of order k (see
A178523).

Proof. We count N2,k(k− 1) by considering the insertion of a block containing the two cells
(i.e., 1 × 1 squares) which do not form a domino5; see Figure 7. The number of domino
tilings of the blocks on either side are given by the Fibonacci numbers Fk−m+1 and Fm−p+1.
Accounting for the two possible orientations of the central block, we have

N2,k(k − 1) = 2
k
∑

p=3

k
∑

m=p

Fk−m+1Fm−p+1.

Translating this into a generating function one finds

∞
∑

k=1

xk N2,k(k − 1) =
2x3

(1− x)(1− x− x2)2
,

which is the desired result.

k −m m− pb b b

p

Figure 7: The 2×k array is broken into three blocks. The position of the central unbreakable
block is parametrized by m while its length is given by p ≥ 3.

A bijection between the nodes of the Fibonacci tree of order k and the (k − 1)-domino
configurations is achieved as follows. We associate the number of places where a configuration

5For odd p one of these squares will be on the top row and one on the bottom, whereas for even p they
will be located on the same row.
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can be broken6 with one less than the level of the tree. At level 1 of the tree, we therefore
have the unique two configurations which cannot be broken, i.e., the central blocks from
Figure 7. At each node of the tree at level q, we will place q configurations which are the
cyclic permutations of the q blocks which the configuration can be broken into. In this way
the level number serves as an overall multiplicity for the configurations on the nodes of a
given level, and we will label each node with only one representative; see Figure 8. At the
bottom two nodes of any tree, the unique configurations correspond to the two shortest
blocks containing the two squares, supplemented by a number of vertical dominoes; these
are the configurations which can be broken in the maximum number of places.

Figure 8: The bijection between the Fibonacci tree of order k and the (k − 1)-domino
configurations. The configuration at each node represents all cyclic permutations of the
blocks which that configuration can be broken into.

The number of nodes Tk,q at level q of the tree of order k obeys the recursion relation
Tk,q = Tk−1,q−1 + Tk−2,q−1. To this recursion relation, we wish to associate a rule which
generates the (k − 1)-domino configurations (for a 2× k array) at level q (i.e., breakable in
q − 1 places) from those corresponding to a 2× (k − 1) and 2× (k − 2) array at level q − 1.

6We define breakability by the existence of a continuous vertical line consisting of edges of dominoes or
squares. Any configuration can be broken into some number of unbreakable blocks.
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This rule proceeds as follows, working from left to right across the (q− 1)th level of the trees
of order k − 1 and k − 2

1. Add a single vertical domino to the end of each representative configuration found at
the nodes of level q − 1 in the tree of order k − 1. Place these new configurations on
the nodes of level q of the tree of order k, working left to right.

2. Add a square consisting of two horizontal dominoes to the end of each representative
configuration found at the nodes of level q − 1 in the tree of order k − 2. Fill the
remaining nodes of level q of the tree of order k with these configurations, working left
to right.

There have been several papers relating to the tiling of 2× k arrays with 1× 2 dominoes
and 1×1 squares. Examples include Katz and Stenson [7] and more recently Kahkeshani [8].
It should be noted that the enumeration problem considered here is of a different character,
due to the restricted positions of our 1× 1 squares.

4.2 Generating functions for the number of (k− l)-domino config-

urations

We conclude with some empirical observations on the generating functions for N2,k(k − l).
The cases of l = 0 and l = 1 are as follows:

F0 ≡
∞
∑

k=0

xk N2,k(k) =
1

1− x− x2
,

F1 ≡
∞
∑

k=1

xk N2,k(k − 1) =
2x3

(1− x)(1− x− x2)2
,

where we have quoted the generating functions for the Fibonacci numbers and the path
length of the Fibonacci tree of order k. We have computed the case of l = 2 explicitly using
the calculus of the rook polynomial. This computation is tedious and too lengthy to be
included in this paper. The result is

F2 ≡
∞
∑

k=2

xk N2,k(k − 2) =
x2 (1 + 3x+ 6x2 + x3 + 3x4)

(1− x)2(1− x− x2)3
.

These results are suggestive of a pattern and lead us to

Conjecture 6. The generating function for the number N2,k(k − l) of (k − l)-domino con-
figurations in the 2× k rectangular array is given by

Fl(x) ≡
∞
∑

k=l

xk N2,k(k − l) =
x2Ql(x)

(1− x)l(1− x− x2)l+1
,
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where
Ql(x) = (l + 1) x3l−2 + cl,1 x

3l−3 + cl,2 x
3l−4 + . . .+ cl,2l x

l−2,

and the cl,j are zero for l ≤ 1.

Using the data in Appendix A, we have been able to fix these coefficients for the cases
l = 3, 4, 5 and to verify that several subsequent terms are correctly reproduced. We find

Q1(x) = 2x,

Q2(x) = 1 + 3x+ 6x2 + x3 + 3x4,

Q3(x) = 2x+ 20x2 + 46x3 + 40x4 + 30x5 + 4x6 + 4x7,

Q4(x) = 21x2 + 158x3 + 447x4 + 612x5 + 502x6 + 230x7 + 93x8 + 10x9 + 5x10,

Q5(x) = 186x3 + 1620x4 + 5502x5 + 9636x6 + 10020x7 + 6612x8 + 3012x9

+ 888x10 + 228x11 + 20x12 + 6x13.

We remark that the denominators of the generating functions contain the term (1−x−x2)l+1

which corresponds to a convolution of l + 1 Fibonacci sequences. One recognizes of course
that cl,2l = N2,l(0). The sequences N2,k(k− l) for l = 2, . . . , 5 appear as A318267 to A318270
respectively.
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A A selection of Nm,k(p) for rectangular two-dimensional

arrays

Some results for various rectangular two-dimensional arrays, given as

Nm,k(0), Nm,k(1), . . . , Nm,k(mk/2)

follow below.
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N2,1(p) = 0, 1

N2,2(p) = 1, 0, 2

N2,3(p) = 2, 8, 2, 3

N2,4(p) = 21, 34, 39, 6, 5

N2,5(p) = 186, 347, 250, 138, 16, 8

N2,6(p) = 2113, 3666, 2919, 1234, 414, 36, 13

N2,7(p) = 27856, 47484, 36714, 17050, 4830, 1104, 76, 21

N2,8(p) = 422481, 707480, 545788, 253386, 78815, 16174, 2715, 152, 34

N2,9(p) = 7241480, 11971341, 9195198, 4317996, 1369260, 309075, 48444, 6282, 294, 55

N2,10(p) = 138478561, 226599568, 173545854, 82061730, 26613111, 6209700, 1072617,

133416, 13875, 554, 89

N3,4(p) = 1829, 3585, 3066, 1391, 456, 57, 11

N3,6(p) = 6228153, 11485628, 9687119, 4919411, 1668149, 396032, 66332, 8021, 539, 41

N4,4(p) = 353064, 675936, 580296, 294024, 98115, 21696, 3594, 264, 36

N4,5(p) = 113819277, 213825535, 184772883, 97119606, 34570179, 8761683, 1620885,

215952, 21819, 1161, 95
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