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Abstract

We extend and generalize an identity of Apostol, involving Bernoulli numbers, to

every sequence of complex numbers. Moreover, our result allows us to obtain other

relations involving Appell polynomial sequences and second-order linear recurrence

sequences.
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1 Introduction and statement of results

With each complex sequence u we associate the sequence T (u) = u∗ defined as follows:

u∗
m =

m
∑

k=0

(−1)k
(

m

k

)

uk, (m ≥ 0). (1)

The mapping T is called a binomial transformation [4], and the sequence u∗ is called the
dual sequence of u. It is easy to prove that (u∗)∗ = u, and if u is linearly recurrent over C,
then u∗ is also linearly recurrent over C. Moreover, if C(x) is a characteristic polynomial
of u, then C(1− x) is a characteristic polynomial of u∗. The sequence u is called invariant
(resp., inverse invariant) under the binomial transformation if u∗ = u (resp., if u∗ = −u).

Let (r)j be the real sequence defined by (r)j = j!
(

r

j

)

, where r and j are positive integers,
and Bm is the m’th Bernoulli number defined by:

z

ez − 1
=

+∞
∑

m=0

Bm

zm

m!
. (2)

In 2008, Apostol [1] proved the following identity:

n
∑

k=0

(

n

k

)

Bk

n+ 2− k
=

Bn+1

n+ 1
, n ≥ 1. (3)

The main result of this paper is the following theorem, which gives a simplified expression
for the sum

n
∑

k=0

(−1)k
(

n

k

)

uk

n+ r + 1− k
,

and allows us to generalize relation (3).

Theorem 1. For every sequence u of complex numbers, and all non-negative integers r and
n, the following holds:

n
∑

k=0

(−1)k
(

n

k

)

uk

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)j
u∗
n+j+1

(n+ j + 1)j+1

+ (−1)nr!
un+r+1

(n+ r + 1)r+1

. (4)

We can easily prove, from relation (2) and the equality −z
e−z−1

= z
ez−1

ez, that ((−1)nBn)n≥0

is invariant under the binomial transformation. Thus, we deduce, from Theorem 1, the
following relation for integers r ≥ 0 and n ≥ 1.

n
∑

k=0

(

n

k

)

Bk

n+ r + 1− k
=

r−1
∑

j=0

(−1)n+1(r)j
Bn+j+1

(n+ j + 1)j+1

. (5)
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It is clear that the relation (5) is a generalization of identity (3).
Theorem 1 can also be applied to the sequence of Bell numbers. Recall that for n ≥ 1,

the nth Bell number bn is the number of distinct partitions of a set of n elements (sequence
A000110 in the OEIS [3]). By convention, we set b0 = 1. If un = (−1)nbn for n ≥ 0, the
well-known relation

∑n

k=0

(

n

k

)

bk = bn+1 for n ≥ 0 yields u∗
n = bn+1 for n ≥ 0. By applying

Theorem 1 for r = 1 to the sequence u, we obtain an identity similar to relation (3) for the
Bell numbers.

n
∑

k=0

(

n

k

)

bk

n+ 2− k
=

(n+ 3)bn+2 − bn+3

(n+ 2)(n+ 1)
.

Theorem 1 enables us to obtain some identities such as the following:

n
∑

k=0

(−1)k
(

n

k

)

1

2k(n+ k + 1)
=

2n

2n+ 1

(

2n

n

)−1

, (6)

due to Sun [5, Relation (1.13)]. To do this, it is enough to apply Theorem 1 for r = n to the
sequence u = (2m)m≥0 for which we have u∗ = ((−1)m)m≥0. One gets the following:

2n
n
∑

k=0

(−1)k
(

n

k

)

1

2k(n+ k + 1)
= −

n!n!

(2n+ 1)!

n
∑

j=0

(

2n+ 1

j

)

+
n!n!

(2n+ 1)!
22n+1.

From this we can deduce relation (6) by using the well-known identity
∑n

j=0

(

2n+1
j

)

= 22n.
The following corollary gives us some identities when u is a second-order linear recurrent

complex sequence such as the Fibonacci numbers A000045, the Lucas numbers A000032,
the Pell numbers A000129, the companion Pell numbers A002203, the Jacobsthal numbers
A001045, and the Jacobsthal-Lucas numbers A014551.

Corollary 2. If u is a second-order linear recurrent sequence of complex numbers with
x2 − ax − b as characteristic polynomial, then the following relations are satisfied for all
non-negative integers r and n:

n
∑

k=0

(

n

k

)

akbn+r+1−kuk

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)j
br−ju2n+2j+2

(n+ j + 1)j+1

+ (−1)r+1 r!a
n+r+1un+r+1

(n+ r + 1)r+1

. (7)

n
∑

k=0

(−1)k
(

n

k

)

bn+r+1−ku2k

n+ r + 1− k
=

r
∑

j=0

(−1)n+1(r)j
an+j+1br−jun+j+1

(n+ j + 1)j+1

+(−1)n
r!u2n+2r+2

(n+ r + 1)r+1

. (8)

If u0 = 0, then

n
∑

k=0

(−1)k
(

n

k

)

an+r−k+1uk

n+ r + 1− k
=

r
∑

j=0

(−1)j+1(r)j
ar−jun+j+1

(n+ j + 1)j+1

+ (−1)n
r!un+r+1

(n+ r + 1)r+1

. (9)
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If (u0, u1) = (2, a), then

n
∑

k=0

(−1)k
(

n

k

)

an+r+1−kuk

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)j
ar−jun+j+1

(n+ j + 1)j+1

+ (−1)n
r!un+r+1

(n+ r + 1)r+1

. (10)

Theorem 1 enables us also to get an identity for Appell polynomial sequences. Recall
that an Appell polynomial sequence [2] associated with a formal series S(z) ∈ C[[z]] is the
polynomial sequence (An(x))n≥0 of C[x] given by the generating relation

∑∞

n=0 An(x)
zn

n!
=

S(z)exz.

Corollary 3. If (Am(x))m≥0 is an Appell polynomial sequence, then for all complex numbers
λ and all non-negative integers r, n, the following holds:

n
∑

k=0

(

n

k

)

λn+r+1−kAk(x)

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)jλ
r−jAn+j+1(x+ λ)

(n+ j + 1)j+1

+ (−1)r+1 r! An+r+1(x)

(n+ r + 1)r+1

. (11)

We now consider some examples. Let α be a complex number. We let B
(α)
n (x), E

(α)
n (x),

Hn(x), and L
(α)
n (x) denote, respectively, the generalized Bernoulli polynomial, the general-

ized Euler polynomial, the Hermite polynomial, and the generalized Laguerre polynomial of
degree n defined as follows:

(

z

ez − 1

)α

ezx =
+∞
∑

n=0

B(α)
n (x)

zn

n!
,

(

2

ez + 1

)α

ezx =
+∞
∑

n=0

E(α)
n (x)

zn

n!
,

e2xz−z2 =
+∞
∑

n=0

Hn(x)
zn

n!
,

L(α)
n (x) =

n
∑

j=0

(

α + n

n− j

)

(−1)j
xj

j!
.

Define, for non-negative integers n, K
(α)
n (x) = n!

(α+n)n
xnL

(α)
n

(

−1
x

)

. It is not difficult to see that

the polynomial sequences
(

B
(α)
n (x)

)

n≥0
,
(

E
(α)
n (x)

)

n≥0
,
(

1
2n
Hn(x)

)

n≥0
, and

(

K
(α)
n (x)

)

n≥0
are

the Appell polynomial sequences associated, respectively, with the formal series
(

z
ez−1

)α
,

(

2
ez+1

)α
, e

−z
2

4 , and
∑+∞

n=0
1

(α+n)n
zn

n!
. Applying Corollary 3, we get, for all complex numbers α
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and λ and all non-negative integers r and n the following identities:

n
∑

k=0

(

n

k

)

λn+r+1−kB
(α)
k (x)

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)jλ
r−j

B
(α)
n+j+1(x+ λ)

(n+ j + 1)j+1

+ (−1)r+1 r! B
(α)
n+r+1(x)

(n+ r + 1)r+1

,

n
∑

k=0

(

n

k

)

λn+r+1−kE
(α)
k (x)

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)jλ
r−j

E
(α)
n+j+1(x+ λ)

(n+ j + 1)j+1

+ (−1)r+1 r!E
(α)
n+r+1(x)

(n+ r + 1)r+1

,

n
∑

k=0

(

n

k

)

(2λ)n+r+1−kHk(x)

(n+ r + 1− k)
=

r
∑

j=0

(−1)j(r)j(2λ)
r−jHn+j+1(x+ λ)

(n+ j + 1)j+1

+ (−1)r+1 r! Hn+r+1(x)

(n+ r + 1)r+1

.

n
∑

k=0

(

n

k

)(

α + k

k

)−1
(λx)n+r+1−kL

(α)
k (x)

n!(n+ r + 1− k)

=
r
∑

j=0

(−1)j
(r)j(λx)

r−j(1 + xλ)n+j+1L
(α)
n+j+1

(

x
1+xλ

)

(α + n+ j + 1)n+j+1

+ (−1)r+1r!
L
(α)
n+r+1(x)

(α + n+ r + 1)n+r+1

.

2 Proofs

The proof of Theorem 1 is mainly based on the following lemma.

Lemma 4. For all non-negative integers n, r, we have

n
∑

k=0

(−1)k
(

n

k

)

xk

n+ r + 1− k
=

r
∑

j=0

(−1)j(r)j
(1− x)n+j+1

(n+ j + 1)j+1

+ (−1)nr!
xn+r+1

(n+ r + 1)r+1

. (12)

Proof. Let r, n be non-negative integers, P (x) = xr, Q(x) = (1+x)n+r

(n+r)r
, and

I(x) =

∫ x

0

P (t)Q(r)(t)dt.

By a direct computation, we get

I(x) =

∫ x

0

tr(1 + t)ndt =
n
∑

k=0

(

n

k

)

xn+r+1−k

n+ r + 1− k
. (13)

Using generalized integration by parts, we have

I(x) =

[

r−1
∑

j=0

(−1)jP (j)(t)Q(r−j−1)(t)

]x

0

+ (−1)r
∫ x

0

P (r)(t)Q(t)dt

=
r−1
∑

j=0

(−1)j(r)jx
r−j (1 + x)n+j+1

(n+ j + 1)j+1

+ (−1)rr!
(1 + x)n+r+1

(n+ r + 1)r+1

+
(−1)r+1r!

(n+ r + 1)r+1

.

5



Hence

I(x) =
r
∑

j=0

(−1)j(r)j
xr−j(1 + x)n+j+1

(n+ j + 1)j+1

+
(−1)r+1r!

(n+ r + 1)r+1

. (14)

According to relation (13), it is obvious that I(x) is a polynomial of degree n+ r+1. We let
J(x) denote the reciprocal polynomial of I(x). We have J(x) = xn+r+1I

(

1
x

)

. Using the two
expressions for I(x) obtained in relations (13) and (14), we get two expressions for J(−x).
By equating both expressions of J(−x), we obtain relation (12).

Proof of Theorem 1. Let u be a complex sequence. Consider the linear function Lu from
C[x] to C

N defined for all n ≥ 0 by Lu(x
n) = un. Note that for all n ≥ 0, we have

Lu ((1− x)n) = u∗
n. Applying Lu to both sides of relation (12), we get relation (4). The

proof of Theorem 1 is then complete.

Proof of Corollary 2. It can be clearly seen that relations (7) and (8) are satisfied in the
case where b = 0. We can assume that b 6= 0. We note that for n ≥ 0, x2 − (ax + b)
divides x2n − (ax + b)n. Then x2n − (ax + b)n is a characteristic polynomial of u. Hence
Lu (x

2n − (ax+ b)n) = 0. We conclude that

u2n =
n
∑

k=0

(

n

k

)

bn−kakuk.

Thus
((

−a
b

)n
un

)∗
= u2n

bn
and

(

u2n

bn

)∗
=
(

−a
b

)n
un. By applying Theorem 1 to the sequences

((

−a
b

)n
un

)

n≥0
and

(

u2n

bn

)

n≥0
we obtain relations (7) and (8). To prove relations (9) and (10),

consider the two sequences v and w defined by vn = un

an−1 and wn = un

an
(n ≥ 0). We have

(v∗0, v
∗
1) = (−v0,−v1) and (w∗

0, w
∗
1) = (w0, w1). Moreover, the sequences v, v∗, w, and w∗

have the same characteristic polynomial, i.e., x2 − x− b
a2
. Then v is inverse invariant under

the binomial transformation and w is invariant under the binomial transformation. Finally,
by applying Theorem 1 to the sequences v and w we get relations (9) and (10).

Proof of Corollary 3. Let (An(x))n be an Appell polynomial sequence defined by

∞
∑

n=0

An(x)
zn

n!
= S(z)exz

and λ a complex number. Obviously, for λ = 0, the relation (11) is satisfied. Suppose
now that λ 6= 0, we consider the sequence u defined for a fixed complex number x by
un = (−1)nAn(x)

λn
. We have

∞
∑

n=0

λnu∗
n

zn

n!
=

(

∞
∑

n=0

λn z
n

n!

)(

∞
∑

n=0

An(x)
zn

n!

)

=S(z)e(λ+x)z =
∞
∑

n=0

An(x+ λ)
zn

n!
.

6



It follows that u∗
n = An(x+λ)

λn
. By application of Theorem 1 to the sequence u, we get

relation (11).
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