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Abstract

In this paper we consider a question raised by Mullen regarding Nonogram puzzles.

An instance of the puzzle consists of a p × n grid, whose cells are to be colored black

or white, according to some hints. These hints specify the lengths of the blocks of

consecutive black cells in each row and column.

Mullen studied the asymptotic probability that a random hint sequence of a single

row uniquely determines the color of at least one cell in that row, and gave lower and

upper bounds on this probability. In this paper we tighten his bounds.
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1 Introduction

A Nonogram is a classic logic puzzle, in which cells in a grid must be colored black or left
uncolored (or, equivalently, colored white) according to numbers at the side of the grid.
(Wikipedia [9] lists dozens of other names by which the puzzle is known.) In this puzzle,
a rectangular grid is given with a finite sequence of numbers alongside each row and above
each column. These numbers indicate the lengths of the blocks of consecutive black cells in
the rows and columns, respectively. For example, the sequence 3, 2 signifies that in this row
(or column) there are three adjacent black cells, a gap of at least one uncolored cell, and
then two adjacent black cells. Note that there may be any number of uncolored cells before
the first block of black cells and/or any number of uncolored cells after the last block. Thus,
if the given sequence is of length k, then in addition to the blocks of black cells, there must
be k− 1 uncolored blocks in between, and perhaps one or two uncolored blocks on the sides.

Table 1 provides an example of a small solved puzzle. Initially, we note that the second
row needs to contain 5 black cells, and has only 5 places. Therefore, all cells in this row need
to be colored black. This completes filling the second and fourth columns, which should
contain only one black cell each. Similarly, the third column should contain three black cells
and has only three places. Therefore, all cells of the third column are colored black. This
completes filling the third row. The first row should contain three black cells, with at least
one uncolored cell between each two. Thus there is only one way to color the first row, and
we are done.

2 1 3 1 2
1, 1, 1 x x x
5 x x x x x
1 x

Table 1: Example of a small puzzle

Assume, for example, that the given sequence for some row is 2, 1, 4. In this case, if the
length of the corresponding row is 9, then we know exactly how the cells are to be colored. If
n = 10, then there are four possible configurations, corresponding to the possible locations
of the “extra” uncolored cell. However, in all these configurations, the cells in places 2, 7, 8, 9
of the row are colored black. In order to color the remaining cells, we need to use data
regarding the rows and the other columns. If n ≥ 13, then we cannot deduce the color of
any cell without using data from the rest of the puzzle.

The puzzle was studied from several points of view. The decision problem of unique
solvability of a puzzle is NP-complete [8]. Batenburg and Kosters [2] showed that one can
find all cells of a partially colored row that must be colored in some way (black or white),
according to the hints regarding that row, in polynomial time. Berend, Pomeranz, Rabani,
and Raziel [4] showed that, for a large randomly colored puzzle, the probability that even the
color of a single cell is uniquely determined, by the hints relating to the corresponding row
or column only, is very small. (However, when we do consider all hints simultaneously, the
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probability of having some cells with a uniquely determined color is bounded away from 0.)
It was also proved that such a puzzle usually admits a huge number of solutions. Benton,
Snow, and Wallach [3] studied the number of possible puzzles if, instead of recording the
length of all blocks of black cells in all rows and columns, one records only the total number
of black cells in each row and column.

When solving a nonogram puzzle, it is natural to start by looking for rows (and columns)
whose hint sequences determine uniquely the color of some of the cells along the row, without
resort to data from the rest of the puzzle. Thus, it is natural to study the number of hint
sequences, for rows of any length n, that provide immediate information on at least some of
the cells. It follows from Mullen [7] that most hint sequences satisfy this property. Hence it is
more convenient to study the complement, namely the number of sequences that give no such
information — useless sequences (forceless sequences in Mullen’s terminology). Mullen [7]
studied the asymptotics of the number of useless sequences as a function of the row length.
More precisely, he first observed that the total number of hint sequences, for a length-n row,
is Fn+2, where (Fn)

∞
n=1 is the Fibonacci sequence, defined as follows:

F1 = F2 = 1,
Fn = Fn−1 + Fn−2, n ≥ 3.

Note that there are obviously 2n ways to color a length-n row, but we care only about hint
sequences. As many distinctly colored rows give rise to the same hint sequence, the total
number of hint sequences is much smaller than 2n. Recall that Fn behaves asymptotically as
φn/

√
5, where φ =

(

1 +
√
5
)

/2 is the golden ratio. Letting Gn denote the number of useless
sequences for rows of length n, Mullen [7] proved

Theorem 1. For appropriate constants c1, c2 > 0,

Gn ≥ c1 ·
φn

n
(1)

and

Gn ≤ c2 ·
φn lnn

n
, (2)

for all n ≥ 2.

The sequence (Gn) is sequence A304179 in theOn-Line Encyclopedia of Integer Sequences.
In this paper we show that the right-hand side of (1) provides the correct order of

magnitude of Gn. In Section 2 we state this result formally, and in Section 3, we prove it.
Section 4 presents a heuristic discussion that tries to explain even better the asymptotic
behavior of Gn, and in particular that this behavior is somewhat irregular.

An abridged version of this paper was presented at the 28th Canadian Conference on
Computational Geometry [5]. We express our gratitude to the editor and to the referee for
their helpful comments on the initial version of the paper.

3

http://oeis.org/A304179


2 The main result

Our main result, employing the notations in the preceding section, is

Theorem 2. There exist two constants C1, C2 > 0 such that

C1 ·
φn

n
≤ Gn ≤ C2 ·

φn

n
, n ≥ 1.

Theorem 2 can be interpreted as giving an asymptotic estimate of the probability of a
random hint sequence being useless. In fact, as the total number of hint sequences is Fn+2,
the probability of a random hint sequence being useless is Gn/Fn+2. Since Fn+2 ≈ φn+2/

√
5,

the probability in question is approximately Gn

√
5

φn+2 , which by the theorem is Θ( 1
n
).

Note, however, the difference between this result, and the previously mentioned result
of Berend et al. [4], according to which a random coloring usually gives rise to a useless
hint sequence. In the model of Berend et al. [4], one selects randomly a coloring of the
row out of all 2n colorings, and considers the corresponding hint sequence. Here, as in
Mullen’s results [7], we pick randomly one of all Fn+2 hint sequences and consider it. The
two probability spaces are very different, and thus the difference in the outcome is not
contradictory.

In Table 2 we provide the value of Gn/Fn+2, normalized by multiplying it by n, for
several n’s up to 6000. (The computations were carried out using Formulas (3) and (4)
below.) According to Theorem A, these values are bounded. A quick glance at Table 2 may
lead one to believe that nGn/Fn+2 increases to some limit as n → ∞. In Section 4 we will
argue heuristically that, in fact, the sequence oscillates between two very close values, but
does not actually converge.

n Gn nGn/Fn+2

10 33 2.2917
20 2258 2.5498
50 1.8 · 109 2.7331
100 2.6 · 1019 2.8007
200 1.0 · 1040 2.8358
500 2.1 · 10102 2.8573
1000 3.3 · 10202 2.8646
2000 1.6 · 10415 2.8682
3000 1.0 · 10624 2.8694
4000 7.5 · 10832 2.8700
5000 5.8 · 101041 2.8704
6000 4.7 · 101250 2.8706

Table 2: The probability of being useless for some small n
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3 Proof of Theorem 2

Following Mullen’s paper [7], let the norm of a hint sequence be the maximal term in that
sequence, i.e., the maximal length of a block of cells to be colored black in a row. The length
of a hint sequence is the least number of columns needed for that sequence to fit in a puzzle.
(For example, the norm of the hint sequence 3, 10, 5, 10, 2 is 10 and its length is 34.) Let
Am,k denote the number of hint sequences of length m with norm at most k.

By Mullen [7, p. 6],

Am,k =

{

Fm, m ≤ k;
∑m−2

j=m−k−1Aj,k, m > k.
(3)

To count all useless sequences, we need only sum Am,n−m over all possible lengths [7], that
is

Gn =
n−1
∑

m=0

Am,n−m. (4)

For a fixed k, let φk be the largest zero of the characteristic polynomial of (Am,k)
∞
m=1,

namely xk+1 − xk−1 − xk−2 − · · · − 1. Mullen [7] noted that this is in fact the only positive
zero larger than 1.

We will first establish an upper bound on Am,k.

Proposition 3. Am,k ≤ 2φm
k for every m, k ≥ 1.

Proof. For m ≤ k, by (3) and the definition of φ, we know that Am,k = Fm ≤ φm. Now, [7,
Prop. 5.3] gives

φ ≤ φk

(

1 +
1√

5φk+1 − (k + 2)

)

,

which implies

φ ≤ φk

(

1 +
1

2φk+1

)

, k ≥ 8.

Thus,

φm ≤ φm
k

(

1 +
1

2φk+1

)m

≤ φm
k

(

1 +
1

2k

)k

≤ φm
k ·

√
e ≤ 2φm

k , m ≤ k.

For m > k we proceed by induction. If m = k + 1 then

Am,k =
k+1−2
∑

j=k+1−k−1

Aj,k =
k−1
∑

j=0

Aj,k ≤ 2
k−1
∑

j=0

φj
k.

Since φk is a zero of the polynomial xk+1 − xk−1 − xk−2 − · · · − 1, we have
∑k−1

j=0 φ
j
k = φk+1

k

and therefore
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Am,k ≤ 2φk+1
k = 2φm

k ,

as required.
Now suppose that the inequality holds for each m′ such that m′ < m. By the induction

hypothesis, we have

Am,k =
∑m−2

j=m−k−1Aj,k ≤
∑m−2

j=m−k−1 2φ
j
k

= 2φm−k−1
k ·∑k−1

j=0 φ
j
k = 2φm−k−1

k · φk+1
k = 2φm

k .

(5)

This proves the proposition.

Lemma 4. For each k ≥ 1

φk ≤ φ− 1√
5φk

. (6)

Proof. Multiplying the characteristic polynomial of Am,k (for a fixed k) by x− 1, we obtain
the polynomial Pk = xk+2 − xk+1 − xk + 1, of which φk is also a zero. Note that φk is the
only real zero greater than 1 of Pk.

If we calculate Pk at the point φ− L
φk instead of φk, where L > 0, and recall that φ2 = φ+1,

we obtain
Pk

(

φ− L
φk

)

= (φ− L
φk )

k+2 − (φ− L
φk )

k+1 − (φ− L
φk )

k + 1

= (φ− L
φk )

k · [(φ− L
φk )

2 − (φ− L
φk )− 1] + 1

= (φ− L
φk )

k · [φ2 − φ− 1 + L
φk − 2L

φk−1 +
L2

φ2k ] + 1

= (1− L
φk+1 )

k · L(1− 2φ+ L
φk ) + 1

= 1− L(2φ− 1− L
φk )(1− L

φk+1 )
k

= 1− L(
√
5− L

φk )(1− L
φk+1 )

k,

(7)

which is positive for L = 1√
5
. Since φk is a zero of Pk, this completes the proof of the

lemma.

3.1 Conclusion of the proof of Theorem 2

By Proposition 3 and Lemma 4:

Am,k ≤ 2φm
k ≤ 2(φ− 1√

5φk
)m, m, k ≥ 1.

In particular,

Am,n−m ≤ 2(φ− 1√
5φn−m

)m = 2φm(1− 1√
5φn−m+1

)m, 1 ≤ m ≤ n.

As will become evident in the sequel, for a fixed large n, the significant terms Am,n−m

on the right-hand side of (4) are those with m close to n− logφ n, while the other terms are
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relatively negligible. Hence we will write m in the form m = n− logφ n + d, where d varies
between approximately −n+ logφ n and logφ n. (Note that d is non-integer.) We have

φm(1− 1√
5φn−m+1 )

m = φn−logφ n+d ·
(

1− 1√
5φlogφ n−d+1

)m

=
φn

φlogφ n
· φd ·

(

1− 1√
5n/φd−1

)m

=
φn

n
· φd ·

(

1− 1√
5n/φd−1

)

√
5n

φd−1 ·
φd−1
√
5n

·m
.

(8)

For d ≥ 0 (and n sufficiently large) this gives

φm

(

1− 1√
5φn−m+1

)m

≤ φn

n
· φd

eφd−1/3
.

Hence
∑

m≥n−logφ n

Am,n−m ≤ φn

n
· 2

∞
∑

d=0

φd+1

eφd−1/3
.

As the series on the right-hand side converges, this means

∑

m≥n−logφ n

Am,n−m = O

(

φn

n

)

. (9)

For d < 0 we obtain by (8)

φm

(

1− 1√
5φn−m+1

)

≤ φn

n
· φd,

so that

∑

m<n−logφ n

Am,n−m ≤ φn

n
·

0
∑

d=−∞
φd = O

(

φn

n

)

. (10)

According to (4), (9) and (10), we have

Gn = O

(

φn

n

)

.

Together with Theorem A, this completes the proof.
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4 Does the sequence nGn/Fn+2 converge?

As mentioned in Section 2, a plausible conjecture is that the sequence (Gn)
∞
n=1 behaves

“regularly”, so that nGn/Fn+2 −→
n→∞

C for some constant C. This conjecture seems to be

supported by the data in Table 2. In this section we explain why we believe this conjecture
is false.

We start by looking more carefully at the statistics of hint sequences of length at most n.
Recall that the total number of such sequences is Fn+2. Since, by the same token, Fn+1 of
these are of length at most n− 1, the number of hint sequences of length n is Fn+2−Fn+1 =
Fn ≈ φn/

√
5. Thus, the probability that a random hint sequence for a row of length n

does not correspond to strictly shorter rows is asymptotically 1/φ2. In other words, the
probability, that a random hint sequence of length at most n, is actually of length n, is
about 1/φ2. Similarly, the probability that the length of such a random hint sequence
is n− 1 is about 1/φ3. In general, if h is any non-negative integer, then the probability that
the length of a random hint sequence is n−h is approximately 1/φh+2 for large n. (Note that
∑∞

h=0 1/φ
h+2 = 1.) Equivalently, letting H be the random variable measuring the “loss” of

a random hint sequence, i.e., such that its length is n−H, we have

P (H = h) ≈ 1/φh+2, h = 0, 1, 2, . . . .

Thus, H + 1 is asymptotically G (1/φ2)-distributed, that is geometric with parameter 1/φ2.
In particular, P (H ≥ h) becomes arbitrarily small as h grows.

Also, when deleting from a hint sequence, corresponding to a row of length n, its first
term, and assuming this term is π, we obtain a hint sequence corresponding to a row of
length n− π − 1. The statistics of hint sequences, as discussed above, implies that the first
term of a random hint sequence is also asymptotically G (1/φ2)-distributed. Of course, the
same holds for all terms of the hint sequence. Since, as noted above, the loss of a random
hint sequence is o(n) with high probability, and after each block of black cells corresponding
to a term in the hint sequence there is a white block, the number of blocks in a random
hint sequence behaves as n

1+φ2 = n
φ
√
5
up to a 1 + o(1) factor. Letting N denote the norm

of a random hint sequence, it follows that N is distributed approximately as the maximum
of n

φ
√
5
random variables, each G (1/φ2)-distributed. Moreover, it is natural to assume that

these variables are nearly independent.
By Mullen [7, p. 5], a hint sequence is useless if and only if its norm and its length

sum up to at most n. In terms of the variables H and N , this is the case if and only if
N + (n − H) ≤ n, or, equivalently N ≤ H. To calculate the probability of this event, we
first note that we must have H ≥ 1 for the event to occur. Thus

P (N ≤ H) = P (H ≥ 1) · P (N ≤ H|H ≥ 1) ≈ 1

φ
· P (N ≤ H|H ≥ 1).

One readily verifies that, in general, if X + 1 ∼ G(p), then (X|X ≥ 1) ∼ G(p). Hence
P (N ≤ H) ≈ 1

φ
P (N ≤ H ′), where H ′ ∼ G (1/φ2) . Now, as N is the maximum of about n

φ
√
5
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approximately G (1/φ2)-distributed random variables, and H ′ is also G (1/φ2)-distributed,

P (N ≤ H ′) should be about 1
n

φ
√
5
+1

≈ φ
√
5

n
. In fact, if all variables here were continuous,

this would be correct, as all the variables in the maximum defining N , as well as H ′, are
identically distributed. However, as these variables are discrete, we need to multiply the
φ
√
5

n
term by the expected number of variables assuming the maximal value. By Brands,

Steutel, and Wilms [6, Remark 1], letting Kn denote the number of maxima in a sample of n
independent identically distributed G(p)-distributed random variables, we have

EKn =
p

1− p

∞
∑

ℓ=−∞
e− ln(1−p)(ℓ−{log1−p n})e−eln(1−p)(ℓ−{− log1−p n})

+O

(

1

n

)

, (11)

(where we let {t} denote the fractional part of a real number t). Letting µn denote the
right-hand side of (11) in our case, with p replaced by 1/φ2 and n by n/φ

√
5, we obtain

µn =
1

φ

∞
∑

ℓ=−∞

(

1

φ

)ℓ−{logφ n/φ
√
5}
e−(1/φ)

ℓ−{− logφ n/φ
√

5}
+O

(

1

n

)

. (12)

Finally,

P (N ≤ H) ≈ 1

φ
· µn

n
φ
√
5

=
µn ·

√
5

n
.

Now the sequence
(

{logφ n/φ
√
5}
)∞
n=1

is dense in the interval [0, 1]. Consequently, as n

varies, µn oscillates (when ignoring the O
(

1
n

)

term in (12)) between the minimum and the
maximum of the function f : [0, 1] → R, given by

f(t) =
1

φ

∞
∑

ℓ=−∞

(

1

φ

)ℓ−t

e−(1/φ)ℓ−t

, 0 ≤ t ≤ 1.

Note that the oscillations are not periodic. Rather, starting with a large n, we need to
go to about φn to complete “a whole cycle”. For a similar phenomenon, for a very different
problem, we refer for example, to Barbolosi and Grabner [1].

Why does Table 2 not reflect these oscillations? It turns out that the amplitude of f is
very small. A numerical calculation of the values of f at the points j/100 for 0 ≤ j ≤ 100
shows that maxt∈[0,1] f(t) −mint∈[0,1] f(t) is about 6 · 10−8. (Compare with [6, Remark 2].)
Thus, we believe that, if one could calculate nGn/Fn+2 for values of n much larger than the
values in Table 2, it would be possible to observe that the sequence is oscillating rather than
convergent.

In any case, as the values of f , rounded to 6 places after the decimal point, are all
1.284328, the value of nGn/Fn+2 for large n, rounded similarly, should be about 1.284328 ·√
5 = 2.871844. We do not know whether the deviation from the value of 2.8706, calculated

in Table 2 for n = 6000, should be attributed to the O(1/n) term in (12), and would
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disappear if we could continue the table for much larger n, or something is still missing in
the heuristics.

Finally, we note that the bounds in the proof of Theorem 2 are very similar to the main
term on the right-hand side of (12). More careful estimates of φk than those of Section 3
could perhaps prove rigorously the heuristics indicated in this section.
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