Journal of Integer Sequences, Vol. 22 (2019), Article 19.7.1

On Engel's Inequality for Bell Numbers

Horst Alzer
Morsbacher Straße 10
51545 Waldbröl
Germany
h.alzer@gmx.de

Abstract

We prove that for all integers $n \geq 2$ the expression $B_{n-1} B_{n+1}-B_{n}^{2}$ can be represented as an infinite series with nonnegative terms. Here B_{k} denotes the k-th Bell number. It follows that the sequence $\left(B_{n}\right)_{n \geq 0}$ is strictly log-convex. This result refines Engel's inequality $B_{n}^{2} \leq B_{n-1} B_{n+1}$.

1 Introduction

A partition of a set S with n elements is a collection of nonempty, pairwise disjoint subsets whose union is equal to S. The Bell number B_{n}, named after the British mathematician Eric T. Bell, is the number of partitions of S. The first few numbers are

$$
B_{0}=1, \quad B_{1}=1, \quad B_{2}=2, \quad B_{3}=5, \quad B_{4}=15, \quad B_{5}=52 .
$$

The Bell numbers are given by the exponential generating function

$$
\exp \left(e^{x}-1\right)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

and they satisfy the recurrence relation

$$
B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k} \quad(n \geq 0)
$$

Moreover, the Bell numbers can be expressed in terms of the Stirling numbers of the second kind,

$$
B_{n}=\sum_{k=1}^{n} S(n, k) \quad(n \geq 1)
$$

The following remarkable series representation is due to Dobiński [6],

$$
\begin{equation*}
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} \quad(n \geq 0) \tag{1}
\end{equation*}
$$

In 1994, Engel [7] proved that the sequence $\left(B_{n}\right)_{n \geq 0}$ is log-convex, that is,

$$
\begin{equation*}
B_{n}^{2} \leq B_{n-1} B_{n+1} \quad(n \geq 1) \tag{2}
\end{equation*}
$$

Canfield [5], Asai, Kubo, and Kuo [1] and Bouroubi [3] published further proofs of (2). For more information and references on Bell numbers we refer to [4] and [8].

Richard E. Bellman (1920-1984), who was one of the leading mathematicians in the field of inequalities, pointed out that "every inequality should come from an equality which makes the inequality obvious" [2, p. 449]. In view of this statement it is natural to ask whether Engel's inequality is a consequence of an equality. It is the aim of this note to give an affirmative answer to this question. In particular, we prove that for all $n \geq 1$ strict inequality holds in (2). We show that an application of Dobiński's formula leads to the following result.

2 The main result

Theorem 1. For all natural numbers $n \geq 2$ we have

$$
\begin{equation*}
B_{n-1} B_{n+1}-B_{n}^{2}=\frac{1}{2 e^{2}} \sum_{k=2}^{\infty} \sum_{j=1}^{k-1} \frac{j^{n-1}(k-j)^{n-1}}{j!(k-j)!}(k-2 j)^{2} . \tag{3}
\end{equation*}
$$

Proof. Applying (1) and the Cauchy product for infinite series we obtain for $n \geq 2$,

$$
\begin{align*}
e^{2}\left(B_{n-1} B_{n+1}-B_{n}^{2}\right) & =\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{j^{n-1}(k-j)^{n+1}}{j!(k-j)!}-\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{j^{n}(k-j)^{n}}{j!(k-j)!} \\
& =\sum_{k=2}^{\infty}\left(L_{n}(k)-R_{n}(k)\right) \tag{4}
\end{align*}
$$

with

$$
L_{n}(k)=\sum_{j=1}^{k-1} \frac{j^{n-1}(k-j)^{n+1}}{j!(k-j)!} \quad \text { and } \quad R_{n}(k)=\sum_{j=1}^{k-1} \frac{j^{n}(k-j)^{n}}{j!(k-j)!}
$$

Since

$$
\sum_{j=1}^{k-1} \frac{j^{n-1}(k-j)^{n+1}}{j!(k-j)!}=\sum_{j=1}^{k-1} \frac{j^{n+1}(k-j)^{n-1}}{j!(k-j)!}
$$

we get

$$
\begin{align*}
L_{n}(k)-R_{n}(k) & =\frac{1}{2} \sum_{j=1}^{k-1} \frac{1}{j!(k-j)!}\left(j^{n-1}(k-j)^{n+1}+j^{n+1}(k-j)^{n-1}-2 j^{n}(k-j)^{n}\right) \\
& =\frac{1}{2} \sum_{j=1}^{k-1} \frac{j^{n-1}(k-j)^{n-1}}{j!(k-j)!}(k-2 j)^{2} . \tag{5}
\end{align*}
$$

From (4) and (5) we conclude that (3) holds.
Remark 2. Using $B_{0} B_{2}-B_{1}^{2}=1$ and (3) reveals that the sequence $\left(B_{n}\right)_{n \geq 0}$ is not only log-convex, but even strictly log-convex,

$$
\begin{equation*}
B_{n}^{2}<B_{n-1} B_{n+1} \quad(n \geq 1) \tag{6}
\end{equation*}
$$

Remark 3. Asai, Kubo, and Kuo [1] used Engel's inequality to prove that

$$
B_{m} B_{n} \leq B_{m+n} \quad(m, n \geq 0)
$$

An application of (6) gives for $m, n \geq 1$,

$$
B_{m}=\prod_{\nu=1}^{m} \frac{B_{\nu}}{B_{\nu-1}}<\prod_{\nu=1}^{m} \frac{B_{n+\nu}}{B_{n+\nu-1}}=\frac{B_{m+n}}{B_{n}} .
$$

Thus,

$$
B_{m} B_{n}<B_{m+n} \quad(m, n \geq 1)
$$

References

[1] N. Asai, I. Kubo, and H.-H. Kuo, Bell numbers, log-concavity, and log-convexity, Acta Appl. Math. 63 (2000), 79-87.
[2] R. Bellman, Why study inequalities?, in E. F. Beckenbach, ed., General Inequalities 2, Int. Ser. Numer. Math. 47, Birkhäuser, 1980, p. 449.
[3] S. Bouroubi, Bell numbers and Engel's conjecture, Rostock. Math. Kolloq. 62 (2007), 61-70.
[4] D. Branson, Stirling numbers and Bell numbers: their role in combinatorics and probability, Math. Scientist 25 (2000), 1-31.
[5] E. R. Canfield, Engel's inequality for Bell numbers, J. Combin. Th. Ser. A 72 (1995), 184-187.
[6] G. Dobiński, Summierung der Reihe $\sum n^{m} / n$! für $m=1,2,3,4,5, \ldots$, Archiv Math. Phys. 61 (1877), 333-336.
[7] K. Engel, On the average rank of an element in a filter of the partition lattice, J. Combin. Th. Ser. A 65 (1994), 67-78.
[8] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, OEIS Foundation, Inc., 2019. Available at https://oeis.org.

2010 Mathematics Subject Classification: Primary 05A19; Secondary 05A20, 11B73, 26A51.
Keywords: Bell number, Engel's inequality, strictly log-convex, identity.
(Concerned with sequence $\underline{\text { A000110.) }}$

Received June 26 2019; revised version received August 25 2019. Published in Journal of Integer Sequences, September 252019.

Return to Journal of Integer Sequences home page.

