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Abstract

We prove that for all integers n ≥ 2 the expression Bn−1Bn+1 − B
2
n can be rep-

resented as an infinite series with nonnegative terms. Here Bk denotes the k-th Bell
number. It follows that the sequence (Bn)n≥0 is strictly log-convex. This result refines
Engel’s inequality B

2
n ≤ Bn−1Bn+1.

1 Introduction

A partition of a set S with n elements is a collection of nonempty, pairwise disjoint subsets
whose union is equal to S. The Bell number Bn, named after the British mathematician
Eric T. Bell, is the number of partitions of S. The first few numbers are

B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52.

The Bell numbers are given by the exponential generating function

exp(ex − 1) =
∞
∑

n=0

Bn

n!
xn

and they satisfy the recurrence relation

Bn+1 =
n

∑

k=0

(

n

k

)

Bk (n ≥ 0).
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Moreover, the Bell numbers can be expressed in terms of the Stirling numbers of the second
kind,

Bn =
n

∑

k=1

S(n, k) (n ≥ 1).

The following remarkable series representation is due to Dobiński [6],

Bn =
1

e

∞
∑

k=0

kn

k!
(n ≥ 0). (1)

In 1994, Engel [7] proved that the sequence (Bn)n≥0 is log-convex, that is,

B2

n ≤ Bn−1Bn+1 (n ≥ 1). (2)

Canfield [5], Asai, Kubo, and Kuo [1] and Bouroubi [3] published further proofs of (2). For
more information and references on Bell numbers we refer to [4] and [8].

Richard E. Bellman (1920–1984), who was one of the leading mathematicians in the
field of inequalities, pointed out that “every inequality should come from an equality which
makes the inequality obvious” [2, p. 449]. In view of this statement it is natural to ask
whether Engel’s inequality is a consequence of an equality. It is the aim of this note to
give an affirmative answer to this question. In particular, we prove that for all n ≥ 1 strict
inequality holds in (2). We show that an application of Dobiński’s formula leads to the
following result.

2 The main result

Theorem 1. For all natural numbers n ≥ 2 we have

Bn−1Bn+1 − B2

n =
1

2e2

∞
∑

k=2

k−1
∑

j=1

jn−1(k − j)n−1

j!(k − j)!
(k − 2j)2. (3)

Proof. Applying (1) and the Cauchy product for infinite series we obtain for n ≥ 2,

e2
(

Bn−1Bn+1 −B2

n

)

=
∞
∑

k=0

k
∑

j=0

jn−1(k − j)n+1

j!(k − j)!
−

∞
∑

k=0

k
∑

j=0

jn(k − j)n

j!(k − j)!

=
∞
∑

k=2

(

Ln(k)−Rn(k)
)

(4)

with

Ln(k) =
k−1
∑

j=1

jn−1(k − j)n+1

j!(k − j)!
and Rn(k) =

k−1
∑

j=1

jn(k − j)n

j!(k − j)!
.
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Since
k−1
∑

j=1

jn−1(k − j)n+1

j!(k − j)!
=

k−1
∑

j=1

jn+1(k − j)n−1

j!(k − j)!
,

we get

Ln(k)−Rn(k) =
1

2

k−1
∑

j=1

1

j!(k − j)!

(

jn−1(k − j)n+1 + jn+1(k − j)n−1
− 2jn(k − j)n

)

=
1

2

k−1
∑

j=1

jn−1(k − j)n−1

j!(k − j)!
(k − 2j)2. (5)

From (4) and (5) we conclude that (3) holds.

Remark 2. Using B0B2 − B2
1 = 1 and (3) reveals that the sequence (Bn)n≥0 is not only

log-convex, but even strictly log-convex,

B2

n < Bn−1Bn+1 (n ≥ 1). (6)

Remark 3. Asai, Kubo, and Kuo [1] used Engel’s inequality to prove that

BmBn ≤ Bm+n (m,n ≥ 0).

An application of (6) gives for m,n ≥ 1,

Bm =
m
∏

ν=1

Bν

Bν−1

<
m
∏

ν=1

Bn+ν

Bn+ν−1

=
Bm+n

Bn

.

Thus,
BmBn < Bm+n (m,n ≥ 1).
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