
23 11

Article 19.2.8
Journal of Integer Sequences, Vol. 22 (2019),2

3

6

1

47

On the Unimodality of Convolutions of

Sequences of Binomial Coefficients

Tricia Muldoon Brown
Department of Mathematical Sciences

Georgia Southern University
11935 Abercorn Street
Savannah, GA 31419

USA
tmbrown@georgiasouthern.edu

Abstract

We provide necessary and sufficient conditions on the unimodality of a convolution

of two sequences of binomial coefficients preceded by a finite number of ones. These

convolution sequences arise as rank sequences of posets of vertex-induced subtrees for

a particular class of trees. The number of such trees whose poset of vertex-induced

subgraphs containing the root is not rank unimodal is determined for a fixed number

of vertices i.

1 Introduction

Unimodality of a sequence is an often-studied property where we say a sequence {s}i≥0 is
unimodal if for some k ≥ 0, we have

s0 ≤ · · · ≤ sk−1 ≤ sk ≥ sk+1 ≥ sk+2 ≥ · · · .

A classic example of a unimodal sequence is the sequence of binomial coefficients
((

n

i

))

i≥0
.

The question of unimodality of a sequence is a classic combinatorial problem. Stanley [10]
provided a toolbox of techniques for proving unimodality and log-concavity which was up-
dated by Brenti [3]. Further, several researchers have previously studied unimodality of other
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sequences involving binomial coefficients, including Tanny and Zuker [13] who establish the
log-concavity and hence the unimodality of the sequence

((
n−r

r

))

r≥0
. Belbachir, Bencherif,

and Szalay [1] find similar results for the sequence
((

n+k

βk

))

k≥0
for some natural number

β ≥ 2. Their conjecture on unimodality along a ray of Pascal’s triangle is proven by Su and
Wang [12]. Using the reflection principle, Sagan [7] shows the unimodality of a sequence of
products of binomial coefficients

((
n

ℓ−i

)(
n

i

))

0≤i≤ℓ
for any n and ℓ, as well as the sequence of

differences of products
((

n

ℓ−k

)(
n

k

)
−
(

n

ℓ−k−1

)(
n

k−1

))

k≥0
. In particular, here we are interested in

the unimodality of the convolution of two sequences of binomial coefficients preceded by a
finite number of ones. We define two sequences and their convolution as follows:

Definition 1. For integers m,n, p, q ≥ 0, let

(si)i≥1 =



1, 1, . . . , 1
︸ ︷︷ ︸

p

,

(
m

0

)

,

(
m

1

)

, . . . ,

(
m

m

)

, 0, 0, . . .





and

(ti)i≥1 =



1, 1, . . . , 1
︸ ︷︷ ︸

q

,

(
n

0

)

,

(
n

1

)

, . . . ,

(
n

n

)

, 0, 0, . . .



 .

Then define the sequence (ri)i≥1 to be the convolution of (si)i≥1 and (ti)i≥1; that is, for i ≥ 1,

ri =
i∑

j=1

sj · ti−j+1.

The main result provides necessary and sufficient conditions for (ri)i≥1 to be unimodal.

Theorem 2. For integers m ≥ n > 0 and p, q ≥ 0, the sequence (ri)i≥1 unimodal if and only

if at least one of the following conditions hold:

i. m > q,

ii. n > p,

iii. m = n = 2, or

iv. n = 1.

As we shall see, the sequence (ri)i≥1 is motivated by graph theoretical objects, so in
Section 2 we formally define a class of trees composed of two broom graphs and the associated
poset of connected, vertex-induced subgraphs, determining the rank sequence and sequence
of first differences. Section 3 provides some intermediate results on sequences of sums and
differences of binomial coefficients, while Section 4 proves the main result and consequently
an analogous result for a poset of connected, vertex-induced subgraphs of two broom graphs.
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We conclude in Section 5 with a closed formula to count the number of such trees with a
fixed number of vertices whose poset is not rank unimodular. We also note, throughout,
m,n, p and q will be non-negative integers, r will always refer to the root vertex of the tree
in question, and all subtrees will be connected.

2 Rank sequences and operations on rooted trees

Given a finite connected graph G, let C(G) denote the poset of all connected, vertex-induced
subgraphs of G partially ordered by inclusion. This poset has been investigated by Leclerc [6]
and Trotter and Moore [14], respectively, who give the dimension of this poset in the case of
trees and graphs, respectively. These subgraph posets appeared more recently in a problem
solved by Steelman [11] who gave conditions for when C(G) is a lattice. Further work has
been done by Kézdy and Seif [5] on isomorphism conditions, and Vince and Wang [15] for
an infinite set of non-Sperner subgraph posets. Dropping the condition that the subgraphs
must be vertex-induced, Smith and Tomon [9] prove the poset of all connected subgraphs
is Sperner. Here we wish to consider a class of vertex-induced, connected subgraph posets.
Suppose T is a rooted tree. Let C(T, r) be the poset of connected, vertex-induced subtrees
of G containing the root r partially ordered by inclusion. This poset and the more general
poset were studied by Jacobson, Kézdy, and Seif [4] using the poset C(T, r) to show C(G)
need not be Sperner.

Each poset C(T, r) has an associated sequence.

Definition 3. The rank sequence (ri)i≥0 of a poset P is given by the number of elements of
rank i in the poset. These values ri are also called Whitney numbers of the poset. A poset
is rank unimodal if for some 0 ≤ k ≤ n, the rank sequence is unimodal.

In particular, the Whitney number ri of C(T, r) is given by the number of connected,
vertex-induced subtrees of T rooted at the root vertex with exactly i vertices.

Examples of rank unimodal posets are found in many commonly studied posets, such
as the Boolean lattice and its q-analogues, as well as the partition lattice. The goal to
characterize all trees whose poset of connected, vertex-induced subgraphs is unimodal was
proposed by Jacobson, Kézdy, and Seif [4] . They provide the only example of a tree whose
vertex-induced subposet C(T, r) is not unimodal when the number of vertices in the tree is
less than or equal to 11, leading to questions on the prevalence of such non-unimodal posets.
This example, see Figure 1, is the motivating example for this work.

We begin by defining a simple tree which is illustrated in Fig 2.

Definition 4. Given integers m > 0 and k ≥ 0, the broom graph, Bm,k, is a rooted, directed
tree consisting of a path of length k directed into a vertex with m pendant vertices. The
root is the origin of the path and all edges are directed away from the root.

It is not difficult to determine the rank sequence for the poset of connected, vertex-induced
subtrees of a broom graph.
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Figure 1: The rooted tree on 11 vertices whose poset C(T, r) has the non-unimodal rank
sequence (1, 2, 3, 6, 10, 11, 10, 11, 10, 5, 1).

x0

x1

xp−1

xp

xp+1 xp+2 xp+m

Figure 2: The broom graph Bm,p

4



Lemma 5. For m > 0 and p ≥ 0, the poset of connected, vertex-induced subtrees containing

the root of a broom graph, C(Bm,p, r), is rank unimodal.

Proof. A broom without a handle, Bm,0, consists of a root vertex and m pendant vertices.
The rank sequence of C(Bm,0, r) is given by the binomial coefficients, as the rooted subtrees
with i vertices are chosen by selecting i− 1 edges from the set of m pendant edges, that is,
for Bm,0 we have ri =

(
m

i−1

)
. More generally if the broom has a handle of length p and m

pendant vertices, because all subtrees in Bm,p must be rooted, there is exactly one subtree
with i vertices for 1 ≤ i ≤ p. All remaining subtrees in Bm,p with i > p vertices are subtrees
of Bm,0 with i− p vertices and a handle of p vertices. Thus the rank sequence is



1, 1, . . . , 1
︸ ︷︷ ︸

p

,

(
m

0

)

,

(
m

1

)

, . . . ,

(
m

m

)


 .

As mentioned in Section 1, it is well-known that binomial coefficients are unimodal, see
Stanley [10] for example, and hence C(Bm,p, r) is rank unimodal.

As the example provided by Jacobson, Kézdy, and Seif is two broom graphs, B3,2 and
B2,3, whose root vertices have been identified, the question we wish to consider is for a tree
T composed of two broom graphs Bm,p and Bn,q whose root vertices have been identified,
when is the subtree poset C(T, r) rank unimodal?

We will classify a set of rooted trees by the unimodality of their rank sequences, so first
we formalize an operation on rooted trees.

Definition 6. We merge two rooted trees, T1 and T2, respectively, with root vertices, v1 and
v2, respectively, by identifying the roots v1 = v2. We denote the new tree as T1 · T2.

This operation on a pair of trees leads to an analogous operation on the rank sequences
of their posets of vertex-induced subtrees containing the root.

Lemma 7. If (ti)i≥1 is the rank sequence of C(T, rT ) for a rooted tree T and (si)i≥1 is the

rank sequence of C(S, rS) for a rooted tree S, then the rank sequence (ri)i≥1 of C(T · S, r) is
given by the convolution ri =

∑i−1
j=0 tj+1si−j.

Proof. Let T and S be two rooted trees. Choosing a rooted subtree consisting of i vertices
from T · S is equivalent to choosing a rooted subtree of j + 1 vertices from T and a rooted
subtree of i− j vertices from S for all 0 ≤ j ≤ i− 1.

Thus we see the sequence (ri)i≥i defined in Section 1 is precisely the rank sequence of
the poset C(Bm,p ·Bn,q, r). The following proposition provides a more specific description of
(ri)i≥1 in terms of binomial coefficients.
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Proposition 8. For integers m,n > 0 and p, q ≥ 0, let (ri)i≥1 be the rank sequence of

C(Bm,p · Bn,q, r), the poset of vertex-induced subtrees including the root of the merge of two

broom graphs. If p ≤ q, then

ri =







i, for i = 1, 2, . . . , p;

p+
∑i−p−1

j=0

(
m

j

)
, for i = p+ 1, p+ 2, . . . , q;

∑i−q−1
j=0

(
n

j

)
+ (q + p− i) +

∑i−p−1
j=0

(
m

j

)
, for i = q + 1, q + 2, . . . , q + p;

∑p−1
j=0

(
n

i−q−1−j

)
+
(

m+n

i−q−p−1

)

+
∑q−1

j=0

(
m

i−p−1−j

)
, for i = q + p+ 1, . . . , q + p+m+ n+ 1;

0, otherwise.

Proof. By Lemma 7, for 1 ≤ i ≤ p the rank sequence is the convolution of two sequences of
ones, that is,

ri =
i−1∑

j=0

1 · 1 = i.

Now, for p < i ≤ q,

ri =

p−1
∑

j=0

1 · 1 +
i−1∑

j=p

(
m

j − p

)

· 1 = p+

i−p−1
∑

j=0

(
m

j

)

.

In the next case, when q < i ≤ q + p,

ri =

i−q−1
∑

j=0

1 ·

(
n

j

)

+

p−1
∑

j=i−q

1 · 1 +
i−1∑

j=p

(
m

j − p

)

· 1,

=

i−q−1
∑

j=0

(
n

j

)

+ (q + p− i) +

i−p−1
∑

j=0

(
m

j

)

.
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Finally for q + p < i ≤ q + p+m+ n, we have

ri =

p−1
∑

j=0

1 ·

(
n

i− q − 1− j

)

+

i−q−1
∑

j=p

(
m

j − p

)(
n

i− q − 1− j

)

+
i−1∑

j=i−q

(
m

j − p

)

· 1

=

p−1
∑

j=0

(
n

i− q − 1− j

)

+

i−q−p−1
∑

j=0

(
m

j

)(
n

i− q − p− 1− j

)

+

q−1
∑

j=0

(
m

i− p− 1− j

)

=

p−1
∑

j=0

(
n

i− q − 1− j

)

+

(
m+ n

i− q − p− 1

)

+

q−1
∑

j=0

(
m

i− p− 1− j

)

.

Note, in Proposition 8 we assumed that p ≤ q, but should it be the case that q ≤ p, a
similar result may be obtained by replacing p with q and q with p throughout the statement
of the result and the proof. For simplicity throughout the rest of the paper, when referring
to Proposition 8 we will utilize whichever version is appropriate, whether p ≤ q or q ≤ p.
Further results will only be explicitly proven for the case p ≤ q, but it will be understood
that we may apply a switch of variables to prove the result in the case q ≤ p.

First differences of the rank sequence can be useful in determining unimodality, because
if the sequence of first differences of a rank sequence changes sign at most one time, then
the sequence is unimodal. We will compute the first difference of the sequence (ri)i≥0, but
first let us consider a few special cases.

Suppose q = p = 0. Then Bm,0 ·Bn,0 = Bm+n,0 is the tree with root r and exactly m+ n

pendant vertices. Therefore the rank sequence is precisely the sequence of binomial coeffi-
cients and thus is unimodal. Next, suppose q > p = 0. In this case, applying Proposition 8
to the rank sequence of C(Bm,0 ·Bn,q, r) gives the first differences

di = ri − ri−1 =







(
m

i−1

)
, for i = 2, 3, . . . , q;

(
m+n

i−q−1

)
−
(

m+n

i−q−2

)
+
(

m

i−1

)
−
(

m

i−q−1

)
, for i = q + 1, . . . , q +m+ n.

In Section 3, we will apply Proposition 12 to show the unimodality of (ri)i≥1 in this case.
More generally we have the following corollary which follows directly from Proposition 8

by subtraction.

Corollary 9. For integers m,n, p, q > 0, let di = ri − ri−1 be the first difference of the

rank sequence, (ri)i≥1 of C(Bm,p · Bn,q, r), the poset of connected, vertex-induced subtrees

7



containing the root. Without loss of generality assume p ≤ q, then

di =







1, for i = 2, 3, . . . , p;

(
m

i−p−1

)
, for i = p+ 1, p+ 2, . . . , q;

(
n

i−q−1

)
− 1 +

(
m

i−p−1

)
, for i = q + 1, q + 2, . . . , q + p;

(
n

i−q−1

)
−
(

n

i−q−p−1

)
+
(

m+n

i−q−p−1

)

−
(

m+n

i−q−p−2

)
+
(

m

i−p−1

)
−
(

m

i−q−p−1

)
, for i = q + p+ 1, . . . , q + p+m+ n+ 1;

0, otherwise.

Now, for i = 1, . . . , q, because the first differences are non-negative, it is easily seen that
the rank sequence is non-decreasing. Further for i > p + q + 1 + ⌊m+n

2
⌋, the rank sequence

is decreasing. To see this and to simplify notation, we rewrite di for i > p + q using the
substitution i = p+ q + j + 1 to obtain the equation

di = dp+q+j+1 =

(
n

j + p

)

−

(
n

j

)

+

(
m+ n

j

)

−

(
m+ n

j − 1

)

+

(
m

j + q

)

−

(
m

j

)

. (1)

We observe, for j ≥ ⌊m+n
2

⌋+1 the differences
(

n

j+p

)
−
(
n

j

)
,
(
m+n

j

)
−
(
m+n

j−1

)
, and

(
m

j+q

)
−
(
n

j

)
are

all non-positive. In fact, unless j > m + n + 1 these differences cannot all be zero, because
if
(
m+n

j

)
−
(
m+n

j−1

)
= 0, we know m+ n is odd and j = ⌊m+n

2
⌋+ 1. Because m+ n is odd, m

must be strictly greater than n so
(

m

⌊m+n

2
⌋+1+q

)
−
(

m

⌊m+n

2
⌋+1

)
6= 0. Thus the rank sequence is

decreasing.
Therefore the question of the rank unimodality of (ri)i≥1 is reduced to the the question

of the unimodality of the terms rq+1, . . . , rp+q+1+⌊m+n

2
⌋. Let us first consider a set of posets

that are not rank unimodal.

Proposition 10. Given m ≥ n > 0 and p, q > 0, if m ≥ n ≥ 3 or m > n = 2, the rank

sequence (ri)i≥1 of the poset of vertex-induced subtrees containing the root, C(Bm,p ·Bn,q, r),
is not unimodal if q ≥ m and p ≥ n.

Proof. Assume q ≥ m and p ≥ n. In Equation 1, set j = 1. Then

dq+p+2 =

(
n

p+ 1

)

−

(
n

1

)

+

(
m+ n

1

)

−

(
m+ n

0

)

+

(
m

q + 1

)

−

(
m

1

)

=

(
n

p+ 1

)

− n+ n+m− 1−m+

(
m

q + 1

)

=

(
n

p+ 1

)

+

(
m

q + 1

)

− 1 = −1.
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Thus dq+p+2 < 0. However, if j = 2, then

dq+p+3 =

(
n

p+ 2

)

−

(
n

2

)

+

(
m+ n

2

)

−

(
m+ n

1

)

+

(
m

q + 2

)

−

(
m

2

)

= −

(
n

2

)

+

(
m+ n

2

)

− (m+ n)−

(
m

2

)

= −
n(n− 1)

2
+

(m+ n)(m+ n− 1)

2
−

2(m+ n)

2
−

m(m− 1)

2

=
1

2

(
−n2 + n+m2 + 2mn+ n2 −m− n− 2m− 2n−m2 +m

)

=
1

2
(2mn− 2m− 2n) = mn−m− n.

When m ≥ n ≥ 3, it follows that mn − m − n ≥ 3m − m − n = 2m − n ≥ m > 0, and
when m > n = 2 we have mn−m − n = m − 2 > 0. Thus, we see that dq+p+3 > 0. Easily
d2 = 1 > 0, so the sequence of first differences is positive, then negative, and then positive
again. Therefore the sequence is not unimodal.

We wish to show these bounds on m,n, q, and p are tight, but first we need some results
on the unimodality of sums and differences of binomial coefficients.

3 Unimodality of sequences of sums and differences of

binomial coefficients

The sequence of first differences (di)i≥2 of the sequence (ri)i≥1 given in Section 2 is composed
of sums and differences of binomial coefficients, so in this section we investigate some similar
sequences. In particular, the difference we are concerned with here is sequence A080232 in
the OEIS [8], namely, the sequence

((
m

j

)
−
(

m

j−1

))

j≥0
. This sequence has known combinatorial

interpretations enumerating ballot sequences as well as a subset of lattice paths from (0, 0)
to (j,m− j). We are interested in the unimodality of the first half of this sequence.

Lemma 11. Given m ≥ 0, the sequence sm,j =
(
m

j

)
−
(

m

j−1

)
is unimodal with respect to j on

the interval 0 ≤ j ≤ ⌊m
2
⌋.

Proof. We proceed by induction on m. Easily, if m = 0, the sequence s0,0 = 1 is unimodal.
Now for m > 0, suppose the sequence sm−1,0, sm−1,1, . . . , sm−1,⌊m−1

2
⌋ is unimodal with a peak

at sm−1,k, that is

sm−1,0 ≤ sm−1,1 ≤ · · · ≤ sm−1,k ≥ sm−1,k+1 ≥ · · · ≥ sm−1,⌊m−1

2
⌋.
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As the sequence s follows the recursion on the binomial coefficients, sm,j = sm−1,j +sm−1,j−1,
we see

sm−1,k−i ≥ sm−1,k−i−2 =⇒ sm,k−i ≥ sm,k−i−1, for 0 ≤ i ≤ k

sm−1,k+i ≥ sm−1,k+i+2 =⇒ sm,k+i+1 ≥ sm,k+i+2 for 0 ≤ i ≤

⌊
m− 1

2

⌋

− k − 2.

To check the end condition, recall ⌊m−1
2

⌋ = ⌊m
2
⌋− 1 and sm−1,⌊m−1

2
⌋+1 = 0 if m− 1 is odd, so

sm−1,⌊m−1

2
⌋−1 ≥ sm−1,⌊m−1

2
⌋+1 = 0

sm−1,⌊m−1

2
⌋ + sm−1,⌊m−1

2
⌋−1 ≥ sm−1,⌊m−1

2
⌋+1 + sm−1,⌊m−1

2
⌋

sm−1,⌊m

2
⌋−1 + sm−1,⌊m

2
⌋−2 ≥ sm−1,⌊m

2
⌋ + sm−1,⌊m

2
⌋−1

sm,⌊m

2
⌋−1 ≥ sm,⌊m

2
⌋.

If m− 1 is even, ⌊m−1
2

⌋ = ⌊m
2
⌋, so

sm−1,⌊m−1

2
⌋−2 ≥ sm−1,⌊m−1

2
⌋ =⇒ sm,⌊m

2
⌋−1 ≥ sm,⌊m

2
⌋.

Thus the sequence increases from sm,0 to sm,k and decreases from sm,k+1 to sm,⌊m

2
⌋. No matter

the relationship between sm,k and sm,k+1 the sequence is unimodal.

Note the proof techniques in Lemma 11 may be generalized to other sequences found in
a row of a triangular array which satisfies the binomial recurrence. We state such a result.

Proposition 12. For integers m,n ≥ 0 and q ≥ 0, the sequence

cm,n,j =

(
m+ n

j

)

−

(
m+ n

j − 1

)

+

(
m

j + q

)

−

(
m

j

)

is unimodal with respect to j on the interval 0 ≤ j ≤ ⌊m+n
2

⌋.

Proof. Start by fixing m = 0. Then c0,n,j =
(
n

j

)
−
(

n

j−1

)
−
(
0
j

)
+
(

0
j+q

)
. Create a triangular

array for n ≥ j ≥ 0. If q = 0, then c0,n,j = sn,j, the sequence found in Lemma 11, and is
therefore unimodal. If q > 0, then

c0,n,j =

{

sn,j, if j 6= 0;

sn,0 − 1, if j = 0.

is also unimodal.
Now for a fixed n, create a triangular array for cm,n,j where m > 0 and j ≥ 0.

c0,n,0 · · · c0,n,n
c1,n,0 c1,n,1 · · · c1,n,n+1

c2,n,0 c2,n,1 c2,n,2 · · · c2,n,n+2

c3,n,0 c3,n,1 c3,n,2 c3,n,3 · · · c3,n,n+3

· · ·
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The initial row of this array is unimodal as it appears in the array of c0,n,j . Further, the
binomial recurrence, cm,n,j = cm−1,n,j + cm−1,n,j−1 is satisfied, as the terms are sums and
differences of binomial coefficients with respect to m and j. Repeating the proof techniques
of Lemma 11, we see that every row in a triangular array having the binomial recurrence
and an initial unimodular row is also unimodal, and we have proven the claim.

Recall the first difference of the rank sequence of C(Bm,0 · Bn,q, r) given in Section 2.
Because a unimodular sequence whose first term is non-negative may change signs at most
once and because the sequence cm,n,j is non-negative when j = 0, Proposition 12 and the
substitution j = i−q−1, along with the discussion in Section 2, imply the following corollary.

Corollary 13. For m,n, q > 0, the rank sequences (ri)i≥1 of the posets C(Bm,0 ·Bn,0, r) and
C(Bm,0 ·Bn,q, r) are rank unimodal.

This result will be used to prove the necessary and sufficient conditions on the integers
m,n, p, q to determine rank unimodality of the poset C(Bm,p ·Bn,q, r).

4 Proofs

Before proving Theorem 2, we need to prove some intermediate results.

Proposition 14. Given integers m ≥ n > 0, if
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
≤ 0 for some 0 < j ≤

⌊m+n
2

⌋, then j ≥ n.

Proof. Suppose by assumption
(
m

j

)
≥
(
m+n

j

)
−
(
m+n

j−1

)
. This implies

m!

j!(m− j)!
≥

(m+ n)!

j!(m+ n− j)!

(

1−
j

m+ n+ 1− j

)

m!

j!(m− j)!
≥

(m+ n)!

j!(m+ n− j)!

(
m+ n+ 1− 2j

m+ n+ 1− j

)

m+ n+ 1− j

m+ n+ 1− 2j
≥

(m+ n)(m+ n− 1) · · · (m+ 1)

(m+ n− j)(m+ n− 1− j) · · · (m+ 1− j)

1 +
j

m+ n+ 1− 2j
≥

(

1 +
j

m+ n− j

)(

1 +
j

m+ n− 1− j

)

· · ·

(

1 +
j

m+ 1− j

)

As each factor in the product is greater than one, we have

1 +
j

m+ n+ 1− 2j
≥ 1 +

j

m+ 1− j

m+ 1− j ≥ m+ n+ 1− 2j

j ≥ n.

11



Proposition 14 implies the following corollary we will need to prove our main result.

Corollary 15. Given integers m ≥ n > 0 and p, q ≥ 0, if
(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

+

(
m

j + q

)

≤ 0

for some 0 < j ≤ ⌊m+n
2

⌋, then

(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

+

(
m

j + q

)

−

(
n

j

)

+

(
n

j + q

)

≤ 0.

The assumptions in Corollary 15 imply those of Proposition 14, so j ≥ n and thus the
quantity −

(
n

j

)
+
(

n

j+q

)
≤ 0.

Now we consider the case that the sequence
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
is greater than zero.

Proposition 16. Given integers m ≥ n > 0, if
(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

> 0

for some 1 < j ≤ ⌊m+n
2

⌋, then

(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

−

(
n

j

)

≥ 0.

Proof. First, if j > n, then
(
n

j

)
= 0 and the result holds, so assume 1 < j ≤ n; that is,

assume
(
n

j

)
6= 0 and

(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
> 0. We wish to show

(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

−

(
n

j

)

≥ 0.

But dividing by
(
n

j

)
and then adding 1 to both sides, the inequality can be rewritten as

follows:

(m+ n) · · · (n+ 1)

(m+ n− j) · · · (n+ 1− j)

(
m+ n+ 1− 2j

m+ n+ 1− j

)

−
m(m− 1) · · · (n+ 1)

(m− j)(m− 1− j) · · · (n+ 1− j)
≥ 1

(m+ n)

n
· · ·

(m+ n+ 1− j)

(n+ 1− j)

(
m+ n+ 1− 2j

m+ n+ 1− j

)

−
m

n
·
(m− 1)

(n− 1)
· · ·

(m+ 1− j)

(n+ 1− j)
≥ 1

(m+ n)(m+ n− 1) · · · (m+ n+ 2− j)(m+ n+ 1− 2j)−m(m− 1) · · · (m+ 1− j)

n(n− 1) · · · (n+ 1− j)
≥ 1

To show this inequality holds, we induct on j ≥ 2. Suppose j = 2. Then we have the
expression

(m+ n)(m+ n− 3)−m(m− 1)

n(n− 1)
=

2(m+ n)

n
−

n+ 1

n− 1
.

12



Because m+ n ≥ 2n, we have

2(m+ n)

n
−

n+ 1

n− 1
≥ 4−

n+ 1

n− 1
.

Then n+1
n−1

≤ 3 for n ≥ 2, so we have the desired result

(m+ n)(m+ n− 3)−m(m− 1)

n(n− 1)
≥ 1.

Now by induction assume the inequality

(m+ n) · · · (m+ n+ 2− j)(m+ n+ 1− 2j)−m · · · (m+ 2− j)(m+ 1− j)

n(n− 1) · · · (n+ 1− j)
≥ 1 (2)

holds for j ≥ 2. We wish to multiply by a term which preserves the inequality. First, let us
assume the strict inequality n > j; that is, n ≥ j + 1. Then

m+ n ≥ n+ j + 1

m+ n− 1− 2j ≥ n− j.

Clearly m+ n+ 1− j ≥ m+ n+ 1− 2j, so the product

(m+ n+ 1− j)

(m+ n+ 1− 2j)
·
(m+ n− 1− 2j)

(n− j)
≥ 1.

Thus multiplying the left-hand side of inequality (2) by this term maintains the inequality
on the right-hand side. Multiply the denominator by (n− j) to obtain

n(n− 1) · · · (n+ 1− j)(n− j),

as desired. Multiply the numerator by the remaining factor, (m+n+1−j)(m+n−1−2j)
(m+n+1−2j)

, to obtain

(m+ n) · · · (m+ n+ 1− j)(m+ n− 1− 2j)−m · · · (m+ 1− j) (m+n+1−j)(m+n−1−2j)
(m+n+1−2j)

.

The first summand is as desired for the inductive step, so consider the the second term. We
have

0 ≤ n− 1 = 2n2 − n− 1− 2n(n− 1) ≤ (n− 1)(2n+ 1)− 2nj

≤ (n− 1)(m+ n+ 1)− 2nj

= (m+ n+ 1− j)(m+ n− 1− 2j)− (m− j)(m+ n+ 1− 2j).

Thus,

(m− j)(m+ n+ 1− 2j) ≤ (m+ n+ 1− j)(m+ n− 1− 2j)

m− j ≤
(m+ n+ 1− j)(m+ n− 1− 2j)

m+ n+ 1− 2j
,

13



which implies

−m(m− 1) · · · (m+ 1− j) (m+n+1−j)(m+n−1−2j)
(m+n+1−2j)

≤ −m(m− 1) · · · (m+ 1− j)(m− j).

Thus for the inductive step, that is j + 1, the following inequality holds:

(m+ n) · · · (m+ n+ 1− j)(m+ n− 1− 2j)−m · · · (m+ 1− j)(m− j)

n(n− 1) · · · (n+ 1− j)(n− j)
≥ 1.

We have one other case to consider. Suppose j = n. Then by assumption
(
m+ n

n

)

−

(
m+ n

n− 1

)

−

(
m

n

)

> 0,

therefore
(
m+ n

n

)

−

(
m+ n

n− 1

)

−

(
m

n

)

−

(
n

n

)

=

(
m+ n

n

)

−

(
m+ n

n− 1

)

−

(
m

n

)

− 1 ≥ 0.

We may extend Proposition 16 as follows:

Corollary 17. Given integers m ≥ n > 0 and p, q ≥ 0, if
(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

+

(
m

j + q

)

> 0

for some 1 < j ≤ ⌊m+n
2

⌋, then

(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

+

(
m

j + q

)

−

(
n

j

)

+

(
n

j + p

)

≥ 0.

Proof. If
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
+
(

m

j+q

)
> 0, there are two possibilities. In the first case,

suppose
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
> 0. Apply Proposition 16 for the desired result:

(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
+
(

m

j+q

)
−
(
n

j

)
+
(

n

j+p

)
≥
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
−
(
n

j

)
≥ 0.

Otherwise, suppose
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
≤ 0. We apply Proposition 14 to see the quantity

−
(
n

j

)
+
(

n

j+p

)
is either negative one or zero. Applied to the initial assumption,

(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
+
(

m

j+q

)
> 0, we have

(
m+ n

j

)

−

(
m+ n

j − 1

)

−

(
m

j

)

+

(
m

j + q

)

−

(
n

j

)

+

(
n

j + p

)

≥ 0.
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Now, we are ready to prove rank unimodality.

Proposition 18. For integers m,n, p, q > 0, the rank sequence (ri)i≥1 of the poset C(Bm,p ·
Bn,q, r) of connected, vertex-induced subtrees containing the root is unimodal if q < m or

p < n.

Proof. As long as either q < m or p < n, the sequence of first differences (di)i≥2 is non-
negative up to i = p+q. Using the change of variables in Eq. 1, we need to check that the signs
of the first differences dq+p+j+1 are positive and then possibly negative for 0 ≤ j ≤ ⌊m+n

2
⌋,

as we know they are negative for j > ⌊m+n
2

⌋. Without loss of generality, suppose m ≥ n.
Note, because p, q > 0 and either m > q or m ≥ n > p, we have that m ≥ 2.

Further, for j > 1, Corollaries 15 and 17 show
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
+
(

m

j+q

)
−
(
n

j

)
+
(

n

j+p

)
is

non-positive or non-negative, respectively, when
(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
+
(

m

j+q

)
is non-positive

or positive, respectively, so we see their signs are positive and negative or possible neutral on
the same intervals. As the sequence

(
m+n

j

)
−
(
m+n

j−1

)
−
(
m

j

)
+
(

m

j+q

)
is unimodal on the interval

in question by Proposition 12 and for j = 2 the difference dq+p+3 ≥ mn − m − n ≥ 0, the
first difference of the rank sequences changes sign at most once. To complete the proof, we
need to consider when j = 1. As long as either q < m or p < n, we note the first difference
dq+p+2 ≥ 0 as seen in the proof of Proposition 10. Further we check that

dq+p+1 >

(
m

q

)

+

(
n

p

)

− 1 ≥ n− 1 ≥ 0

so the difference in rank sequence is positive for j = 0, 1, 2 as long as q < m or p < n and
m,n ≥ 3 or m > n ≥ 2. Thus the sequence of first differences is positive and then negative
and therefore the rank sequence is unimodal.

As we have already discussed the unimodality of the rank sequence (ri)i≥1 of the poset
C(Bm,p ·Bn,q, r) where p = q = 0 and q > p = 0, we still have two special cases to consider.

Lemma 19. The rank sequences (ri)i≥1 of the posets C(Bm,p · B1,q, r) and C(B2,p · B2,q, r)
are unimodal for any integers m, p, q > 0.

Proof. Consider the poset C(Bm,p · Bn,q, r) where we let n = 1. Because p > 0, we have
p ≥ n, so suppose m > q > 0. In this case, the first difference di is non-negative up through
i = p+ q + 2. If i > p+ q + 2, then

di = dp+q+j+1 =

(
m

j + q

)

−

(
m

j − 2

)

for j > 1. If q < m − 1, the difference dq+p+3 ≥ 0 and hence Proposition 18 implies rank
unimodularity of C(Bm,p · B1,q, r). If q = m − 1, we have dq+p+j+1 ≤ 0 for all j > 1 and
hence the difference changes sign exactly once at j = 2, implying the poset is also rank
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unimodular. Now check in the case q ≥ m. By Corollary 9, the first difference di is positive
for i = 2 up to i = max{p, q}. Then, for max{p, q} < i ≤ q + p, the first difference

di =

(
1

i− q − 1

)

− 1 +

(
m

i− p− 1

)

is non-negative if and only if i ≤ max{q+2,m+p+1}, so thus the sign of the first difference
changes from positive to negative when i = max{q + 2,m + p + 1} + 1. For i > q + p,
equation 1 gives the first difference

di = dp+q+j+1 =

(
1

j + p

)

−

(
1

j

)

+

(
m

j + q

)

−

(
m

j − 2

)

which is always less than or equal to zero for j ≥ 0. Hence the sequence of differences is
positive and then negative so the rank sequence of C(Bm,p ·B1,q, r) is unimodal.

Next, without loss of generality, assume p ≤ q and consider the poset C(B2,p · B2,q, r).
The rank sequence of C(B2,p · B2,q, r) is the convolution of two sequences (ti)i≥1 and (si)i≥1

consisting of exactly one two with the remaining terms being ones. First consider the con-
volution of the sequence of (p + 3) ones with the sequence of (q + 3) ones. At each rank,
either we add one, remain neutral, or subtract one from the value of the previous rank, so
the sequence of differences is

(di)i≥2 = 1, 1, · · · , 1, 0, 0, · · · , 0,−1,−1, · · · ,−1,

where there are (p+2) ones, (q−p) zeros, and (p+2) negative ones. Replacing the (p+2)nd

one in the first sequence with a two, that is setting tp+2 = 2, increases the term dp+2 in
the sequence of differences by one and replacing the (q + 2)nd term in the second sequence
with a two, that is setting sq+2 = 2, increases the difference dq+2 by one. These terms are
either ones or zeros so increasing by one (or possibly two if p = q) does not change the sign
of the difference sequence from positive to negative. Further, the only other change to the
difference sequence is in the last three terms of the sequence which become 0,−2,−3. These
terms do not change the sign on the difference sequence from negative to positive, so the
difference sequence changes sign exactly one and hence the rank sequence is unimodal.

Thus, Propositions 10 and 18 with Corollary 13 and Lemma 19 provide necessary and
sufficient conditions on the integers m,n, p, q to determine the rank unimodality of the sub-
tree poset C(Bm,p · Cn,q, r) and prove Theorem 2. In the final section, we enumerate the
trees that correspond to a poset C(Bm,k ·Bn,p, r) which is not rank unimodal.

5 Enumeration

As we shall see, there exists an explicit formula to count the number of trees Bm,p · Bn,q

whose posets C(Bm,p · Bn,q, r) are not rank unimodal. But first, we will utilize a bijection
between two sets.
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Proposition 20. For an integer i ≥ 1, the set of (2× i) binary matrices with no zero rows

or columns, up to row and column permutation is in bijection with the set of integer pairs

(m,n) such that m ≥ n ≥ 3 or m > n = 2 and m+ n ≤ i+ 4.

Proof. We provide a bijective map from the set Bi of integer pairs (m,n) such thatm ≥ n ≥ 3
or m > n = 2 and m+ n ≤ i+4 into the set Ai of (2× i) binary matrices with no zero rows
or columns, up to row and column permutation. Given an integer i ≥ 1 and a pair (m,n)
from the set Bi, suppose m ≥ n > 2. Set (a, b) = (m− 2, n− 2). Then the image of (m,n)
is the 2× i matrix with b zeros in the first row and a zeros in the second row as follows:





1 · · · 1 0 · · · 0 1 · · · 1
0 · · ·
︸ ︷︷ ︸

a

0 1 · · ·
︸ ︷︷ ︸

b

1 1 · · ·
︸ ︷︷ ︸

i−a−b

1



 .

When n = 2, set (a, b) = (m− 3, 0) and map (m, 2) to the matrix




1 · · · 1 1 · · · 1
0 · · ·
︸ ︷︷ ︸

a

0 1 · · ·
︸ ︷︷ ︸
i−a

1



 .

This map is injective; for each unique integer pair (m,n) the pair (a, b) is also unique and
hence describes a unique matrix up to row and column permutation. Further, given a (2× i)
matrix from the set Bi, the map may be reversed by using row and column permutations
to standardize the matrix so the first row is a sequence of ones followed by a sequence of
zeros followed by a sequence of ones, and the second row is a sequence of zeros followed by
a sequence of ones. Then the pairs (a, b) are easily determined and can be shifted to pairs
(m,n) in Bi.

Set ai = |Ai|. The sequence (ai)i≥0 is a known sequence appearing (with a shift) as
sequence A024206 in the OEIS [8]. One formula is

ai =

⌊
i(i+ 4)

4

⌋

.

Now, for a given number of vertices in the tree, we will enumerate the trees whose subtree
poset C(Bm,p ·Bn,q, r) is not rank unimodal.

Theorem 21. Let T = Bm,p ·Bn,q be a tree which is the merge of two broom graphs for some

integers m,n > 0 and p, q ≥ 0. Let bi be the number of trees T with i vertices such that the

poset C(T, r) is not rank unimodal. We have b1 = b2 = · · · = b9 = 0, and for k ≥ 0

b2k+10 = 2

(
k∑

i=0

⌊
i(i+ 4)

4

⌋)

−

⌊
k2

4

⌋

b2k+11 = 2

(
k∑

i=0

⌊
i(i+ 4)

4

⌋)

+

⌊
(k + 1)(k + 5)

4

⌋

−

⌊
k2

4

⌋

17
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Proof. Every tree with i vertices that is the merge of two brooms may described by an ordered
quadruplet (m,n, p, q) of non-negative integers wherem gives the number of pendant vertices
on the first broom, n gives the number of pendant vertices on the second broom, p describes
the length of the handle of the first broom, and q describes the length of the handle of the
second broom. The sum is m+ n+ p+ q = i− 1. Without loss of generality we will always
assume m ≥ n.

If the rank sequence of the poset C(Bm,p ·Bn,q) is not unimodal, by Theorem 2, we know
m ≥ 3, n ≥ 2, q ≥ m and p ≥ n. First fix the first two terms of the quadruplet (m,n). Under
these restrictions, for each pair m+ n ≤ i−1

2
, the number of trees leading to a non-unimodal

poset is completely determined, that is, we have the following set of quadruplets describing
such trees:

{(m,n,m, i− 2m− n− 1), (m,n,m+ 1, i− 2m− n− 2), . . . , (m,n, i−m− 2n− 1, n)}.

As long as m 6= n each of these trees is unique as a rooted tree up to isomorphism. If m = n,
we have the following unique trees:

{(m,n,m, i− 2m− n− 1), (m,n,m+ 1, i− 2m− n− 2), . . . , (m,n, ⌊ i−m−n−1
2

⌋, ⌈ i−m−n−1
2

⌉)}.

We work recursively. If i is odd, for every tree (m,n, p, q) on i − 1 vertices there is a
corresponding tree on i vertices using the straight-forward injection

(m,n, p, q) −֒→ (m,n, p, q + 1).

Further for each pair (m,n) such that m+n ≤ i−1
2

there is one additional tree to be counted,
that is, the tree with n as the final coordinate, (m,n, i −m − 2n − 1, n) if m 6= n, and the
tree

(
m,m, i−2m−1

2
, i−2m−1

2

)
if m = n. None of these trees are accounted for in the surjection

as their last coordinates are smaller than those given in the map. Thus to count the number
of trees when i is odd, we may count the number of trees on i− 1 vertices plus the number
of pairs (m,n) such that m + n ≤ i−1

2
. Setting i = 2k + 11, recall from Proposition 20 the

number of such pairs are given by the sequence (ak+1). Therefore for k ≥ 0,

b2k+11 = b2k+10 + ak+1.

Now suppose i is even. We still have the injection from the set of trees on i− 1 vertices to
the set of trees on i vertices, however we must be careful when counting additional trees. If
m = n there is no additional tree as the tree (m,m,

⌊
i−2m−1

2

⌋
+1,

⌈
i−2m−1

2

⌉
−1) is isomorphic

to the tree (m,m,
⌊
i−2m−1

2

⌋
,
⌈
i−2m−1

2

⌋
).

Therefore for i even we add the number of trees on i−1 vertices plus the number of pairs
(m,n) where m 6= n. Setting i = 2k + 10, the number of pairs (m,n) where m+ n ≤ i−1

2
is

given by ak, and the number of such pairs where m = n is ⌊k
2
⌋. Now, we have

b2k = b2k−1 + ak −

⌊
k

2

⌋

.
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Now, we repeatedly apply the recursion along with the initial conditions b10 = 0 and b11 = 1
found in by Jacobson, Kézdy, and Seif [4]. So for any k ≥ 0 we have

b2k+11 = b2k+10 + ak+1

= b2k+9 + ak + ak+1 −

⌊
k

2

⌋

= b2k+8 + 2ak + ak+1 −

⌊
k

2

⌋

= b2k+7 + ak−1 + 2ak + ak+1 −

⌊
k

2

⌋

−

⌊
k − 1

2

⌋

...

= 2(a1 + a2 + · · · ak) + ak+1 −

⌊
k

2

⌋

− · · · −

⌊
1

2

⌋

= 2

(
k∑

i=1

⌊
i(i+ 4)

4

⌋)

+

⌊
(k + 1)(k + 5)

4

⌋

−

⌊
k2

4

⌋

.

Note the identity
∑k

i=1

⌊
i
2

⌋
=
⌊
k2

4

⌋

may be found in the entry for sequence A002620 of the

OEIS [8].
This result on the odd indexed terms then implies for k ≥ 0,

b2k+10 = 2

(
k∑

i=1

⌊
i(i+ 4)

4

⌋)

−

⌊
k2

4

⌋

.

Trees leading to a vertex-induced poset that is not unimodal are quite frequent. Let
ti be the total number of non-isomorphic trees Bm,p · Bn,q with i vertices, m,n ≥ 0 and
p, q > 0. The sequence (ti)i≥1 is found in The Online Encyclopedia of Integer Sequences [8]
as sequence A005993. To see how this sequence enumerates non-isomorphic trees, we look
to a comment by C. Zizka who describes the term ti as the number of different patterns on
the 2-color 4-partitions of i (with an offset of 4). Recall that trees Bm,p ·Bn,q with i vertices
may described as ordered 4-tuples where the coordinates sum to i − 1. All trees may be
described by a choice of m,n ≥ 0 and p, q > 0. We partition i+ 1 into four non-zero parts,
a, b, c, and d, and use these values to determine all possible trees, shifting two of the partition
values by −1 to allow for m,n = 0 and to create a sum equal to i − 1. There are several
cases. If a = b = c = d, there is only one way to place the partition values in a distinct
4-tuple, creating a single tree and corresponding to the one pattern on this partition. If
a = b = c 6= d, we may choose d− 1 = m or d = p, setting all other values in the 4-tuple to a

or a−1, therefore creating two different trees and two patterns. All other possibilities create
a tree isomorphic to one of the two trees already generated. If a = b and c = d, we may set
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i 10 11 12 13 14 15 16 17 18 19 20 21 22

bi 0 1 2 5 7 12 16 24 30 41 50 65 77

ti 60 85 110 146 182 231 280 344 408 570 670 770 891

Table 1: Initial values for sequences (bi) and (ti), respectively, which enumerate the number
of non-unimodal, total number respectively, of sequences (ri)i≥0 wherem,n,≥ 0 and p, q > 0.

a−1 = m = n and c = p = q, c−1 = m = n and a = p = q, a−1 = m, a = p, c−1 = n, and
c = q, or a − 1 = m, a = q, c − 1 = n, and c = p for a total of four choices. This argument
continues similarly for the other two forms, namely if a = b and c and d are both distinct
from a and from each other, there are six trees created, and if a, b, c, and d are all distinct
from each other there are 12 non-isomorphic trees. These are exactly the patterns of 2-color
4-partitions described in the encyclopedia entry.

The sequence (bi)i≥1 has also been entered into the OEIS in the entry A320657. Table 1
gives the first values of the sequence (bi) starting with i = 10, that is the number of trees
of a given size whose poset C(Bm,p · Bn,q, r) has a rank sequence which is not unimodal,
determined by Theorem 21, as well as the total number of non-isomorphic trees Bm,p · Bn,q

with i vertices where m,n > 0 and p, q ≥ 0.
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