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Abstract

Let (Tn)n≥0 be the sequence of tribonacci numbers defined by T0 = 0, T1 = T2 = 1,
and Tn+3 = Tn+2+Tn+1+Tn for all n ≥ 0. In this note, we find all integers c admitting
at least two representations as a difference between a tribonacci number and a power
of 3.

1 Introduction

We consider the sequence (Tn)n≥0 of tribonacci numbers defined by

T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0.

The tribonacci sequence is sequence A000073 on the Online Encyclopedia of Integer Se-
quences (OEIS) [18]. The first few terms of the tribonacci sequence are

(Tn)n≥0 = 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . . .

In this paper, we study the Diophantine equation

Tn − 3m = c, (1)
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for a fixed integer c and variable integers n and m. In particular, we are interested in finding
those integers c admitting at least two representations as a difference between a tribonacci
number and a power of 3. This equation is a variation of the Pillai equation

ax − by = c, (2)

where x, y are non-negative integers and a, b, c are fixed positive integers.
In the 1930’s, Pillai [19, 20] conjectured that for any given integer c ≥ 1, the number

of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2 to the equation (2) is finite.
This conjecture is still open for all c 6= 1. The case c = 1 is the conjecture of Catalan
which was proved by Mihăilescu [17]. The work of Pillai work was an extension of the
work of Herschfeld [14, 15], who had already studied a particular case of the problem with
(a, b) = (2, 3). Since then, different variations of the Pillai equation have been studied.
Several recent results for the different variations of the Pillai problem involving Fibonacci
numbers, tribonacci numbers, Pell numbers, k-generalized Fibonacci numbers, and other
linearly recurrent sequences, with powers of 2, have been completely studied. For example,
see [3, 4, 5, 6, 7, 8, 10, 11].

We discard the situation when n = 1 and just count the solutions for n = 2 since
T1 = T2 = 1. The reason for the above convention is to avoid trivial parametric families such
as 1− 3m = T1 − 3m = T2 − 3m. Thus, we always assume that n ≥ 2. The main aim of this
paper is to prove the following result.

Theorem 1. The only integers c having at least two representations of the form Tn − 3m

with n ≥ 2 and m ≥ 0, are c ∈ {−2, 0, 1, 4}. Furthermore, all the representations of the
above integers as Tn − 3m with integers n ≥ 2 and m ≥ 0 are given by

−2 = T5 − 32 = T2 − 31,

0 = T9 − 34 = T2 − 30, (3)

1 = T4 − 31 = T3 − 30,

4 = F6 − 32 = T5 − 31.

2 Preliminary results

2.1 The tribonacci sequence

The characteristic polynomial of the tribonacci sequence (Tn)n≥0 is given by

Ψ(x) := x3 − x2 − x− 1.

Ψ(x) is irreducible in Q[x], and has a positive real zero

α =
1

3

(

1 + (19 + 3
√
33)1/3 + (19− 3

√
33)1/3

)

,
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lying strictly outside the unit circle and two complex conjugate zeros β and γ lying strictly
inside the unit circle. Furthermore, |β| = |γ| = α−1/2. According to Dresden and Zu [9], a
Binet-like formula for the k-generalized Fibonacci sequences is established. For the tribonacci
sequence, it states that

Tn = Cαα
n−1 + Cββ

n−1 + Cγγ
n−1 for all n ≥ 1, (4)

where CX = (X−1)/(4X−6). Dresden and Zu [9], also showed that the contribution of the
complex conjugate zeros β and γ to the right-hand side of (4) is very small. More precisely,

∣

∣Tn − Cαα
n−1
∣

∣ <
1

2
for all n ≥ 1. (5)

The minimal polynomial of Cα over the integers is given by

44X3 − 44X2 + 12X − 1,

has zeros Cα, Cβ, Cγ with |Cα|, |Cβ|, |Cγ| < 1. Numerically,

1.83 < α < 1.84,

0.73 < |β| = |γ| = α−1/2 < 0.74,

0.61 < |Cα| < 0.62,

0.19 < |Cβ| = |Cγ| < 0.20.

It is also a well known fact (see [3, 8]) that

αn−2 ≤ Tn ≤ αn−1 holds for all n ≥ 1. (6)

Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then, [K,Q] = 6.
Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by

G := Gal(K/Q) ∼= {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Thus, we identify the automorphisms of G with the permutations of the zeros of the poly-
nomial Ψ. For example, the permutation (αγ) corresponds to the automorphism σ : α →
γ, γ → α, β → β.

2.2 Linear forms in logarithms

In order to prove Theorem 1, we need to use several times a Baker–type lower bound for a
nonzero linear form in logarithms of algebraic numbers. There are many such bounds in the
literature like that of Baker and Wüstholz [2]. We use the one of Matveev [16]. Matveev
[16] proved the following theorem, which is one of our main tools in this paper.
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Let γ be an algebraic number of degree d with minimal primitive polynomial over the
integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(x− γ(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of γ. Then the
logarithmic height of γ is given by

h(γ) :=
1

d

(

log a0 +
d
∑

i=1

log
(

max{|γ(i)|, 1}
)

)

.

In particular, if γ = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(γ) = logmax{|p|, q}. Some of the properties of the logarithmic height function h(·), that
will be used in the next sections of this paper without reference are as follows:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ), (7)

h(ηs) = |s|h(η) (s ∈ Z).

Theorem 2 (Matveev). Let γ1, . . . , γt be positive real numbers in a number field K ⊆ R of
degree D, and let b1, . . . , bt be nonzero integers. Assume that

Λ := γb1
1 · · · γbt

t − 1, (8)

is nonzero. Then,

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|}

and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

2.3 Baker-Davenport reduction procedure

During the course of our calculations, we get some upper bounds on our variables which
are too large. Thus, we need to reduce them. To do so, we use some results from the
theory of continued fractions. Specifically, for a nonhomogeneous linear form in two integer
variables, we use a slight variation of a result due to Dujella and Pethő [12], which itself is
a generalization of a result of Baker and Davenport [1].

For a real number X, we write ‖X‖ := min{|X − n| : n ∈ Z} for the distance from X to
the nearest integer.
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Lemma 3 (Dujella, Pethő). Let M be a positive integer, p/q be a convergent of the continued
fraction of the irrational number τ such that q > 6M , and let A, B, and µ be some real
numbers with A > 0 and B > 1. Let further ε := ‖µq‖ −M‖τq‖. If ε > 0, then there is no
solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

Finally, the following lemma is also useful. It is Lemma 7 in [13].

Lemma 4 (Gúzman, Luca). Let m > 1, Y > (4m2)m, and Y > x/(log x)m. Then

x < 2mY (log Y )m.

3 Proof of Theorem 1

Let n,m, n1, and m1 be non-negative integers such that (n,m) 6= (n1,m1) and

Tn − 3m = Tn1
− 3m1 .

Without loss of generality, we assume that m ≥ m1. If m = m1, then Tn = Tn1
, so

(n,m) = (n1,m1), which gives a contradiction to our assumption. Thus, m > m1. Since

Tn − Tn1
= 3m − 3m1 , (9)

and the right-hand side is positive, we get that the left-hand side is also positive and so
n > n1. Thus, n ≥ 3 and n1 ≥ 2.

Using the equation (9) and the inequality (6), we get

αn−4 ≤ Tn−2 ≤ Tn − Tn1
= 3m − 3m1 < 3m, (10)

αn−1 ≥ Tn ≥ Tn − Tn1
= 3m − 3m1 ≥ 3m−1, (11)

from which we get that

1 +

(

log 3

logα

)

(m− 1) < n <

(

log 3

logα

)

m+ 4. (12)

If n ≤ 300, then m ≤ 200. We ran a Mathematica program for 2 ≤ n1 < n ≤ 300 and
0 ≤ m1 < m ≤ 200 and found only the solutions from the list (3). From now, we assume
that n > 300. Note that the inequality (12) implies that m < 0.6n+0.4. Therefore, to solve
the Diophatine equation (1), it suffices to find an upper bound for n.
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3.1 Bounding n

From (4) and (5), we get

∣

∣Cαα
n−1 − 3m

∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− 3m1)
∣

∣

=
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1) + (Cαα

n1−1 − 3m1)
∣

∣

< 1 +
7

10
αn1−1 + 3m1

< αn1 + 3m1

< 2max{αn1 , 3m1}.

In the above we have used the fact that |Cα| < 0.62 < 0.7. Multiplying through by 3−m,
using the relation (10) and using the fact that α < 3, we get

∣

∣Cαα
n−13−m − 1

∣

∣ < 2max

{

αn1

3m
, 3m1−m

}

< max{αn1−n+6, 3m1−m+1}. (13)

For the left-hand side, we apply the result of Matveev, Theorem 2 with the following data:

t := 3, γ1 := Cα, γ2 := α, γ3 := 3, b1 := 1, b2 := n− 1, and b3 := −m.

Through out we work with the field K := Q(α) with D = 3. Since max{1, n − 1,m} ≤ n,
we take B := n. The minimal polynomial of Cα over the integers is given by

44x3 − 44x2 + 12x− 1.

Since |Cα|, |Cβ|, |Cγ| < 1, we get that h(Cα) =
1
3
log 44. So we can take A1 := 3h(γ1) =

log 44. We can also take A2 := 3h(γ2) = logα and A3 := 3h(γ3) = 3 log 3. We put

Λ := Cαα
n−13−m − 1.

First we check that Λ 6= 0, if it were, then Cαα
n−1 = 3m ∈ Z. Conjugating this relation

by the automorphism (αβ), we obtain that Cββ
n−1 = 3m, which is a contradiction because

|Cββ
n−1| < 1 while 3m ≥ 3 for all m ≥ 1. Thus, Λ 6= 0. Hence, by Theorem 2, the left-hand

side of (13) is bounded as follows:

log |Λ| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(log 44)(logα)(3 log 3).

By comparing with (13), we get

min{(n− n1 − 5) logα, (m−m1 − 1) log 3} < 2.06× 1013(1 + log n),

which gives

min{(n− n1) logα, (m−m1) log 3} < 2.12× 1013(1 + log n).
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Now we split the argument into two cases.

Case 1. min{(n− n1) logα, (m−m1) log 3} = (n− n1) logα.
In this case, we rewrite (9) as

∣

∣Cαα
n−1 − Cαα

n1−1 − 3m
∣

∣ =
∣

∣Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1)− 3m1

∣

∣

< 1 + 3m1 ≤ 3m1+1,

which implies

∣

∣Cα(α
n−n1 − 1)αn1−13−m − 1

∣

∣ < 3m1−m+1. (14)

We put

Λ1 := Cα(α
n−n1 − 1)αn1−13−m − 1.

As before, we take K := Q(α), so we have D = 3. We have Λ1 6= 0, for if Λ1 = 0, then

Cα(α
n−n1 − 1)αn1−1 = 3m.

By conjugating the above relation by the Galois automorphism (αβ), we get that

Cβ(β
n−n1 − 1)βn1−1 = 3m.

The absolute value of the left-hand side is at most |Cβ(β
n−n1 − 1)βn1−1| ≤ |Cββ

n−1| +
|Cββ

n1−1| < 2, while the absolute value of the right-hand side is at least 3m ≥ 3 for all
m ≥ 1, which is a contradiction.

We apply Theorem 2 on the left-hand side of (14) with the following data:

t := 3, γ1 := Cα(α
n−n1 − 1), γ2 := α, γ3 := 3, b1 := 1, b2 := n1 − 1, and b3 := −m.

Since

h(γ1) ≤ h(Cα) + h(αn−n1 − 1)

<
1

3
log 44 +

1

3
(n− n1) logα + log 2

<
1

3
(log 11 + log 32) +

1

3
× 2.12× 1013(1 + log n)

<
1

3
× 2.50× 1013(1 + log n). (15)

So, we can take A1 := 2.50 × 1013(1 + log n). Furthermore, as before, we take A2 := logα
and A3 := 3 log 3. Finally, since max{1, n1 − 1,m} ≤ n, we can take B := n. Then we get

log |Λ1| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(2.50× 1013(1 + log n))(logα)(3 log 3).
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Then,

log |Λ1| > −1.36× 1025(1 + log n)2.

By comparing the above relation with (14), we get that

(m−m1) log 3 < 1.40× 1026(1 + log n)2. (16)

Case 2. min{(n− n1) logα, (m−m1) log 3} = (m−m1) log 3.
In this case, we rewrite (9) as

∣

∣Cαα
n − (3m−m1 − 1) · 3m1

∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1) + Cαα

n1−1
∣

∣

< 1 +
7

10
αn−1 < αn−1 (beacause n ≥ 3),

which implies that

|Cα(3
m−m1 − 1)−1αn−13−m1 − 1| < αn1

3m − 3m1

≤ 3αn1

3m

< 3αn1−n+4 < αn1−n+6. (17)

We put

Λ2 := Cα(3
m−m1 − 1)−1αn−13−m1 − 1.

Clearly, Λ2 6= 0, for if Λ2 = 0, then Cα = (α−1)n−1(3m−3m1) implying that Cα is an algebraic
integer, a contradiction. We again apply Theorem 2 with the following data:

t := 3, γ1 := Cα(3
m−m1 − 1)−1, γ2 := α, γ3 := α, b1 := 1, b2 := n, and b3 := −m1.

We note that

h(γ1) = h(Cα(3
m−m1 − 1)−1) ≤ h(Cα) + h(3m−m1 − 1)

=
1

3
log 44 + h(3m−m1 − 1) < log(3m−m1+2)

= (m−m1 + 2) log 3 < 2.50× 1013(1 + log n).

So, we can take A1 := 7.5× 1013(1+ log n). Further, as in the previous applications, we take
A2 := logα and A3 := 3 log 3. Finally, since max{1, n − 1,m1} ≤ n, we can take B := n.
Then, we get

log |Λ2| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(7.5× 1013(1 + log n))(logα)(3 log 3).

Thus,

log |A2| > −4.08× 1026(1 + log n)2.
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Now, by comparing with (17), we get that

(n− n1) logα < 4.10× 1026(1 + log n)2. (18)

Therefore, in both Case 1 and Case 2, we have

min{(n− n1) logα, (m−m1) log 3} < 2.12× 1013(1 + log n),

max{(n− n1) logα, (m−m1) log 3} < 4.10× 1026(1 + log n)2. (19)

Finally, we rewrite the equation (9) as
∣

∣Cαα
n−1 − Cαα

n1−1 − 3m + 3m1

∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1)

∣

∣ < 1.

Dividing through by 3m − 3m1 , we get
∣

∣

∣

∣

Cα(α
n−n1 − 1)

3m−m1 − 1
αn1−13−m1 − 1

∣

∣

∣

∣

<
1

3m − 3m1

≤ 3

3m

≤ 3α−(n−4) ≤ α6−n, (20)

since 3 < α ≤ αn1 . We again apply Theorem 2 on the left-hand side of (20) with the
following data:

t := 3, γ1 :=
Cα(α

n−n1 − 1)

3m−m1 − 1
, γ2 := α, γ3 := 3, b1 := 1, b2 := n1 − 1, and b3 := −m1.

By using the algebraic properties of the logarithmic height function, we get

3h(γ1) = 3h

(

Cα(α
n−n1 − 1)

3m−m1 − 1

)

≤ h
(

Cα(α
n−n1 − 1)

)

+ h(3m−m1 − 1)

< log 352 + (n− n1) logα + 3(m−m1) log 3

< 6.80× 1026(1 + log n)2,

where in the above inequalities, we used the argument from (15) as well as the bounds
(19). Thus, we can take A1 := 6.80 × 1026(1 + log n), and again as before A2 := logα and
A3 := 3 log 3. If we put

Λ3 :=
Cα(α

n−n1 − 1)

3m−m1 − 1
αn1−13−m1 − 1,

we need to show that Λ3 6= 0. If not, Λ3 = 0 leads to

Cα(α
n−1 − αn1−1) = 3m − 3m1 .

A contradiction is reached upon a conjugation by the automorphism (αβ) in K and by taking
absolute values on both sides. Thus, Λ3 6= 0. Applying Theorem 2 gives

log |Λ3| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(6.80× 1026(1 + log n)2)(logα)(3 log 3),
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a comparison with (20) gives

(n− 6) < 3.70× 1039(1 + log n)3,

or

n < 3.8× 1039(1 + log n)3. (21)

Now, by applying Lemma 4 on (21) with the data m := 3, Y := 3.8×1039, and x := n, leads
to n < 3× 1046.

3.2 Reducing the bound for n

We need to reduce the above bound for n and to do so we make use of Lemma 3 several
times. To begin, we return to (13) and put

Γ := (n− 1) logα−m log 3 + logCα.

For technical reasons we assume that min{n − n1,m − m1} ≥ 20. We go back to the
inequalities for Λ, Λ1, and Λ2, Since we assume that min{n − n1,m − m1} ≥ 20 we get
|eΓ − 1| = |Λ| < 1

4
. Hence, |Λ| < 1

2
and since the inequality |y| < 2|ey − 1| holds for all

y ∈
(

−1
2
, 1
2

)

, we get

0 < |Γ| < 2max{αn1−n+6, 3m1−m+1} ≤ max{αn1−n+8, 3m1−m+2}.

By substituting for Γ in the above inequality and dividing through by log 3, we get the
inequality

0 <

∣

∣

∣

∣

(n− 1)

(

logα

log 3

)

−m+
logCα

log 3

∣

∣

∣

∣

< max

{

α8

(log 3)αn−n1

,
9

(log 3)3m−m1

}

.

We apply Lemma 3 with the following data

τ :=
logα

log 3
, µ :=

logCα

log 3
, and (A,B) :=

(

α8

log 3
, α

)

or

(

9

log 3
, 3

)

.

Let τ = [a0; a1, a2, . . .] = [0; 1, 1, 4, 13, 1, 6, 1, 4, 1, 10, 7, 1, 24, 3, 3, 2, 12, 4, 4, . . .] be the contin-
ued fraction expansion of τ . We choose M := 3× 1046 which is the upper bound on n. With
the help of Mathematica, we find out that the convergent

p

q
=

p88
q88

=
383979914200993729068715782793592146551951600940

692255294546383107303758900444711151890883197059

is such that q = q88 > 6M . Furthermore, it yields ε > 0.0428119, and therefore either

n− n1 ≤
log ((α8/ log 3)q/ε)

logα
< 193, or m−m1 ≤

log ((9/ log 3)q/ε)

log 3
< 105.
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Thus, we have that either n− n1 ≤ 193 or m−m1 ≤ 105.
Now we distinguish between the cases n−n1 ≤ 193 and m−m1 ≤ 105. First, we assume

that n− n1 ≤ 193. In this case we consider the inequality for Λ1, (14) and also assume that
m−m1 ≥ 20. We put

Γ1 := (n1 − 1) logα−m log 3 + log
(

Cα(α
n−n1 − 1)

)

.

Then, inequality (14) implies that

|Γ1| <
6

3m−m1

.

If we substitute for Γ1 in the above inequality and divide through by log 3, we then get

0 <

∣

∣

∣

∣

(n1 − 1)

(

logα

log 3

)

−m+
log(Cα(α

n−n1 − 1))

log 3

∣

∣

∣

∣

<
6

(log 3)3m−m1

.

Again we apply Lemma 3 with the same τ as in the case of Γ. We use the 88-th convergent

p/q = p88/q88 of τ as before. But in this case we choose (A,B) :=
(

6
log 3

, 3
)

and use

µℓ :=
log(Cα(α

ℓ − 1))

log 3
,

instead of µ for each possible value of ℓ := n−n1 ∈ [1, 2, . . . , 193]. For all values of ℓ, we get
ε > 0.0000420218. Hence, by Lemma 3, we get

m−m1 <
log ((6/ log 3)q/ε)

log 3
< 110.

Thus, n− n1 ≤ 193 implies that m−m1 ≤ 110.
Now let us turn to the case m−m1 ≤ 105 and we consider the inequlity for Λ2, (17). We

put

Γ2 := (n− 1) logα−m1 log 3 + log

(

Cα

3m−m1 − 1

)

,

and we also assume that n− n1 ≥ 20. We then have

|Γ2| <
α8

αn−n1

.

If we substitute for Γ2 in the above inequality and divide through by log 3, we then get

0 <

∣

∣

∣

∣

(n− 1)

(

logα

log 3

)

−m1 +
log(Cα/(3

m−m1 − 1))

log 3

∣

∣

∣

∣

<
α8

(log 3)αn−n1

.
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We apply again Lemma 3 with the same τ, q, M, (A,B) :=
(

α8

log 3
, α
)

, and

µℓ :=
log(Cα/(3

ℓ − 1))

log 3
for ℓ = 1, 2, . . . , 105.

We get ε > 0.00218297, therefore

n− n1 <
log ((α8/ log 3)q/ε)

logα
< 198.

To conclude, we first get that either n− n1 ≤ 193 or m−m1 ≤ 105. If n− n1 ≤ 193, then
m−m1 ≤ 110, and if m−m1 ≤ 105, then n− n1 ≤ 198. Thus, we conclude that we always
have n− n1 ≤ 198 and m−m1 ≤ 110.

Finally, we go to the inequality of Λ3, (20). We put

Γ3 := (n1 − 1) logα−m1 log 3 + log

(

Cα(α
n−n1 − 1)

3m−m1 − 1

)

.

Since n > 300, the inequality (20) implies that

|Γ3| <
2

αn−6
=

α8

αn
.

Substituting for Γ3 in the above inequality and dividing through by log 3, we get

0 <

∣

∣

∣

∣

(n1 − 1)

(

logα

log 3

)

−m1 +
log(Cα(α

k − 1)/(3ℓ − 1))

log 3

∣

∣

∣

∣

<
α8

(log 3)αn
,

where (k, ℓ) := (n−n1,m−m1). We again apply Lemma 3 with the same τ, q, M, (A,B) :=
(

α8

log 3
, α
)

, and

µk,l :=
log(Cα(α

k − 1)/(3ℓ − 1))

log 3
for 1 ≤ k ≤ 198 and 1 ≤ ℓ ≤ 110.

For the cases, we get ε > 0.0000115272, so we obtain

n ≤ log ((α8/ log 3)q/ε)

logα
< 207.

Hence, n ≤ 207. However, this contradicts our working assumption that n > 300. This
completes the proof of Theorem 1.
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