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Abstract

In this paper, we define and study a two-parameter family of recursive sequences,

which we call the bow sequences. The general bow sequence is defined similarly to

the Stern sequence, and many of the properties of the bow sequences are related to

known properties of the Stern sequence. In particular, we focus on common divisors of

consecutive terms, maximum values, sums of terms, and generating functions.

1 Introduction

In 1858, Stern [19] studied the so-called “diatomic” array of integers, which was motivated
by a function studied by Eisenstein. The diatomic array can be completely understood by
consideration of the Stern sequence A002487. The Stern sequence is defined as follows:

s(0) = 0, s(1) = 1; (1)

s(2n) = s(n), for n ≥ 1; (2)

s(2n+ 1) = s(n) + s(n+ 1), for n ≥ 1. (3)

The terms in the Stern sequence can be written in an array, where the rth row consists of
s(n) for 2r ≤ n ≤ 2r+1, for r ≥ 0. The even entries in each row are copied from the previous
row, and the odd entries are found by adding adjacent entries in the row above. The first
five rows of the array are given in Table 1, with the enumeration of terms as in Sloane’s
On-Line Encyclopedia of Integer Sequences [18].

De Rham [8] was the first to consider the Stern sequence as defined above. He attributed
the name to Bachmann [4], who considered only the diatomic array. The related Stern-
Brocot array [10] was used in defining Minkowski’s ?-function [15], and the Stern sequence
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1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

Table 1: The first five rows of the diatomic array for the Stern sequence

has recently been used to understand 2-regular sequences [1] and the Tower of Hanoi graph
[12].

In this paper we define a new two-parameter family of recursive sequences called the bow
sequences, which have the flipped recursion from the Stern recursion.

Definition 1. The general bow sequence, bα,β(n), for α, β ∈ Z is defined by:

bα,β(0) = 0, bα,β(1) = α, bα,β(2) = β; (4)

bα,β(2n) = bα,β(n) + bα,β(n+ 1), for n ≥ 2; (5)

bα,β(2n+ 1) = bα,β(n), for n ≥ 1. (6)

We define bα,β(0) = 0 to simplify results, although the designation does not affect later
terms in the sequence, as bα,β(0) does not enter into the recurrence. It is also worth noting
that (5) fails in the case where n = 1, since if α 6= 0, then bα,β(2) 6= bα,β(1)+ bα,β(2). Table 2
lists the first 17 values of the general bow sequence.

Many properties of the bow sequences are related to known properties of the Stern se-
quence. In particular, in Section 3 we note that although pairs of consecutive terms in the
Stern sequence are always relatively prime, pairs of consecutive terms in the bow sequences
may share a common factor, but triples may only share factors which divide gcd(α, β). We
also show that, much like the Stern sequence, the maximum values of the bow sequences on
intervals are related to the Fibonacci numbers.

Next, in Section 4, we derive properties of the summatory function. Then we derive the
generating function for the general bow sequence, and give interpretations of the generating
function for two basic cases in Section 5. In particular, we note that b0,1(n) is the number

of ways of writing n− 2 as the sum
∑

i

ci2
i where ci ∈ {0, 2, 3}, while b1,0(n) is the number

of ways of writing n − 3 as a finite sum
k
∑

i=0

ci2
i where ci ∈ {1, 3, 4}. Lastly, we look at an

alternative representation of b0,1(n) in Section 6.
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n bα,β(n)
0 0
1 α

2 β

3 α

4 α + β

5 β

6 2α + β

7 α

8 α + 2β
9 α + β

10 2α + 2β
11 β

12 3α + β

13 2α + β

14 2α + 2β
15 α

16 2α + 3β

Table 2: The general bow sequence

2 Preliminaries

We begin by considering the values of the general bow sequence. Note that the terms of the
general bow sequence are not necessarily distinct. In particular, we can see from Table 2
that bα,β(10) = bα,β(14).

By considering the recursion, we see that bα,β(n) is linear in α and β. Accordingly, we
can write

bα,β(n) = αb1,0(n) + βb0,1(n). (7)

For simplicity, we shall define

b0(n) := b0,1(n),

and

b1(n) := b1,0(n).

In this paper we consider the sequences b0(n) A106345 and b1(n) A281185, as all other
cases of the general bow sequence can be determined from these two cases by applying
equation (7).
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We can present the values of the general bow sequence as a “triatomic” array where the
first row is bα,β(1), bα,β(2), bα,β(3), and the second row is bα,β(3), bα,β(4), bα,β(5), bα,β(6),
bα,β(7). In general the r-th row contains bα,β(2

r − 1), ..., bα,β(2
r+1 − 1). The odd entries in

each row are copied from the previous row in Table 3. The even entries are found by adding
the two numbers in the previous row that occur to the right of the entry. For example, the
second entry in the third row, bα,β(8) = α+ 2β, is obtained by adding the second and third
entries in the second row of the array, namely, α+ β and β. The last even entry in each row
is obtained by summing the first two entries in that same row. The first three rows of the
array are given in Table 3.

α β α

α α + β β 2α + β α

α α + 2β α + β 2α + 2β β 3α + β 2α + β 2α + 2β α

Table 3: First three rows of the triatomic array for the general bow sequence

The triatomic arrays for b0(n) and b1(n) are quite different from each other. As it turns
out, b0(n) is much more regular than b1(n), but the two sequences share many properties.
Consider Table 4 and Table 5:

0 1 0
0 1 1 1 0
0 2 1 2 1 1 1 2 0
0 3 2 3 1 3 2 2 1 2 1 3 1 2 2 3 0

Table 4: First four rows of the triatomic array for b0(n)

1 0 1
1 1 0 2 1
1 1 1 2 0 3 2 2 1
1 2 1 3 1 2 2 3 0 5 3 4 2 3 2 3 1

Table 5: First four rows of the triatomic array for b1(n)

3 Greatest common divisors and maximum values

3.1 Greatest common divisors of three consecutive terms

One interesting property of the bow sequences is that although two consecutive terms
may share a nontrivial factor, three consecutive terms can only share factors which divide
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gcd (α, β).

Theorem 2. For all {α, β} and n > 0,

gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) = gcd(α, β). (8)

Proof. Observe from Table 2 that gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) = gcd(α, β)
for n = 1, 2. Now assume that this holds true for n < k.

Case 1: k = 2n+ 1, with n < k. Then,

gcd(bα,β(k), bα,β(k + 1), bα,β(k + 2))

= gcd(bα,β(2n+ 1), bα,β(2n+ 2), bα,β(2n+ 3))

= gcd(bα,β(n), bα,β(n+ 1) + bα,β(n+ 2), bα,β(n+ 2))

= gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2))

= gcd(α, β).

Case 2: k = 2n, with n < k. Then,

gcd(bα,β(k), bα,β(k + 1), bα,β(k + 2))

= gcd(bα,β(2n), bα,β(2n+ 1), bα,β(2n+ 2))

= gcd(bα,β(n) + bα,β(n+ 1), bα,β(n), bα,β(n+ 1) + bα,β(n+ 2))

= gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2))

= gcd(α, β).

Thus gcd(bα,β(n), bα,β(n+ 1), bα,β(n+ 2)) = gcd(α, β) for all {α, β} and n > 0.

Remark 3. This result bears some similarity to a result for pairs of consecutive terms of the
Stern sequence. As noted by Stern [6, 13, 19], for n ≥ 0, every pair of consecutive terms of
the Stern sequence is relatively prime, or gcd(s(n), s(n+ 1)) = 1.

3.2 Greatest common divisors of pairs

Surprisingly, Theorem 2 has implications for pairs. Although we have seen in Table 4 and
Table 5 that pairs frequently share common factors, when the pairs

(b0(n), b0(n+ 1)), and (b1(n), b1(n+ 1))

are taken together, the resulting quadruple does not have a common factor.

Theorem 4. For n ≥ 0, gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = 1.
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Proof. Suppose p is prime, and let

p | gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)).

Then, p must necessarily divide b0(n) and b0(n + 1), so we know by Theorem 2 that p ∤
b0(n+ 2). Similarly, p ∤ b1(n+ 2). So let

b0(n+ 2) ≡ r (mod p) and b1(n+ 2) ≡ s (mod p),

where 1 ≤ r, s ≤ p− 1.
Consider bs,−r(n) = sb1(n)− rb0(n). Thus p | bs,−r(n), and p | bs,−r(n+ 1). Then, since

bs,−r(n+ 2) ≡ sr + (−r)s ≡ 0 (mod p),

we know that p | bs,−r(n + 2). But this implies that p | gcd(r, s), which is a contradiction.
Thus gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = 1.

Remark 5. Note that Theorem 4 fails if we consider only three of the four terms. For
example, consider n = 2149948. Then we have

(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = (2070, 1815, 1430, 1254)

= (2 · 32 · 5 · 23, 3 · 5 · 112, 2 · 5 · 11 · 13, 2 · 3 · 11 · 19).

When we consider the triples, we find that

gcd(b0(n), b0(n+ 1), b1(n)) = 5,

gcd(b0(n), b0(n+ 1), b1(n+ 1)) = 3,

gcd(b0(n), b1(n), b1(n+ 1)) = 2,

gcd(b0(n+ 1), b1(n), b1(n+ 1)) = 11.

However, clearly gcd(b0(n), b0(n+ 1), b1(n), b1(n+ 1)) = 1.

Similarly, we have the following theorem.

Theorem 6. For n ≥ 0, gcd(b0(n), b0(n+ 2), b1(n), b1(n+ 2)) = 1.

Proof. Suppose p is prime, and let

p | gcd(b0(n), b0(n+ 2), b1(n), b1(n+ 2)).

Then, p must necessarily divide b0(n) and b0(n + 2), so we know by Theorem 2 that p ∤
b0(n+ 1). Similarly, p ∤ b1(n+ 1). So let

b0(n+ 1) ≡ r (mod p) and b1(n+ 1) ≡ s (mod p),

where 1 ≤ r, s ≤ p− 1.
Consider bs,−r(n) = sb1(n)− rb0(n). Thus p | bs,−r(n), and p | bs,−r(n+ 2). Then, since

bs,−r(n+ 1) ≡ sr + (−r)s ≡ 0 (mod p),

we know that p | bs,−r(n + 1). But this implies that p | gcd(r, s), which is a contradiction.
Thus gcd(b0(n), b0(n+ 2), b1(n), b1(n+ 2)) = 1.

6



3.3 Maximum values on intervals

For the next theorem, we will need the Fibonacci numbers A000045, defined as usual by

F0 = 0, F1 = 1;

Fn = Fn−1 + Fn−2, for n ≥ 2.

Theorem 7. For r ≥ 1,

bα,β(2
r) = αFr−1 + βFr. (9)

In particular, for r ≥ 1,

b0(2
r) = Fr, b1(2

r) = Fr−1, and b1,1(2
r) = Fr+1.

Proof. First, note that by applying (5) and (6) we find for n ≥ 1,

bα,β(4n) = bα,β(2n) + bα,β(2n+ 1) = bα,β(2n) + bα,β(n).

Thus, for r ≥ 2,

bα,β(2
r) = bα,β(2

r−1) + bα,β(2
r−2).

Secondly, recall by (7) that

bα,β(2
r) = αb1(2

r) + βb0(2
r).

Thus we consider only these two cases. All that remains is to check the initial conditions.
We find that

(b0(2), b0(4)) = (0, 1) = (F0, F1),

and

(b1(2), b1(4)) = (1, 1) = (F1, F2).

Thus the initial conditions are satisfied.

Next, we estimate the size of bα,β(n). Let Ir = (2r−1, 2r] ∩ Z. To be specific,

Ir = {2r−1 + 1, . . . , 2r}.

Note that

Ir = (2Ir−1 − 1) ∪ 2Ir−1.

We have the following upper bound.
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Theorem 8. For r ≥ 1,

max
n∈Ir

|bα,β(n)| ≤ max {|α|, |β|}Fr+1. (10)

Moreover, for β ≥ α ≥ 0,

max
n∈Ir

|bα,β(n)| = bα,β(2
r) = αFr−1 + βFr. (11)

Proof. Since bα,β(n) ≥ 0 for α, β ≥ 0, |bα,β(n)| ≤ b|α|,|β|(n), and we may assume that α,
β ≥ 0. Observe that for α, β ≥ 0 and γ = max{α, β},

bα,β(n) ≤ bγ,γ(n) = γb1,1(n)

= γ (b0(n) + b1(n)) .

For r = 1, 2, it is easy to see that maxn∈Ir b1,1(n) is Fr+1. Now assume that this holds for
all r < k. Let r = k. Then

max
n∈Ik

b1,1(n) = max
n∈Ik−1

{b1,1(2n), b1,1(2n− 1)}

= max
n∈Ik−1

{b1,1(n) + b1,1(n+ 1), b1,1(n− 1)}.

However, one of n or n+ 1 is odd. Thus, if n, n+ 1 ∈ Ik−1, then

max
n∈Ik−1

{b1,1(n) + b1,1(n+ 1), b1,1(n− 1)} ≤ max{Fk + Fk−1, Fk}

= max{Fk+1, Fk}

= Fk+1.

The previous argument fails if n+ 1 is not in Ik−1. However, then

n+ 1 = 2k−1 + 1,

and

b1,1(2
k−1 + 1) = b1,1(2

k−2) = Fk−1

by Theorem 7.
Thus we have shown that

max
n∈Ik

bγ,γ(n) ≤ γFk+1.

8



Now we will show that maxn∈Ir b0(n) ≤ Fr. For r = 1, 2, it is easy to see that maxn∈Ir b0(n) =
Fr. Now assume that this statement also holds for all r < k. Let r = k. Then

max
n∈Ik

b0(n) = max
n∈Ik−1

{b0(2n), b0(2n− 1)}

= max
n∈Ik−1

{b0(n) + b0(n+ 1), b0(n− 1)}.

Similarly, one of n or n + 1 is odd, with the same result if n + 1 = 2k−1 + 1. Thus, if
n, n+ 1 ∈ Ik−1, then

max
n∈Ik−1

{b0(n) + b0(n+ 1), b0(n− 1)} ≤ max{Fk−1 + Fk−2, Fk−1}

= max{Fk, Fk−1}

= Fk.

With δ > 0 and b0,δ(n) = δb0(n), we have maxn∈Ir b0,δ(n) ≤ δFr.
Now we shall show that the maximum occurs at n = 2r. Let β ≥ α ≥ 0. Then, by setting

γ = α and δ = β − α in the previous results above, we find

bα,β(2
r) = αb1,1(2

r) + (β − α)b0(2
r)

≤ αFr+1 + (β − α)Fr

= αFr−1 + βFr.

However, by Theorem 7 we know that bα,β(2
r) = αFr−1+βFr, thus the maximum occurs

at n = 2r.

Remark 9. As noted by Lucas [14] and Lehmer [13], the maximum value of s(n) on Ir is
Fr+1.

4 Properties of the summatory function

Next, we consider the sums of the rows of the triatomic array. We define a new function as
follows:

Definition 10. Dα,β(r) is defined as the sum of the rth row of the triatomic array of the
bow sequence,

Dα,β(r) :=
∑

n∈Ir+1

bα,β(n) =
2r+1

∑

n=2r+1

bα,β(n). (12)
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Lemma 11. For r ≥ 5,

Dα,β(r) = 3Dα,β(r − 1)− αFr−5 − βFr−4. (13)

Proof. Starting with the definition of Dα,β(r) and applying the recurrence, we find

Dα,β(r) =
∑

n∈Ir+1

bα,β(n)

=
∑

n∈Ir

bα,β(2n) + bα,β(2n− 1)

=
∑

n∈Ir

bα,β(n) + bα,β(n+ 1) + bα,β(n− 1)

=

(

∑

n∈Ir

3bα,β(n)

)

+ bα,β(2
r + 1)− bα,β(2

r−1 + 1) + bα,β(2
r−1)− bα,β(2

r)

= 3Dα,β(r − 1) + bα,β(2
r−1)− bα,β(2

r−2) + bα,β(2
r−1)− bα,β(2

r).

Then, by applying Theorem 7 and simplifying we get

Dα,β(r) = 3Dα,β(r − 1) + 2(αFr−2 + βFr−1)− αFr−3 − βFr−2 − αFr−1 − βFr

= 3Dα,β(r − 1) + α (Fr−1 − 3Fr−3) + β (Fr − 3Fr−2)

= 3Dα,β(r − 1) + α (Fr−2 − 2Fr−3) + β (Fr−1 − 2Fr−2)

= 3Dα,β(r − 1) + α (Fr−4 − Fr−3) + β (Fr−3 − Fr−2)

= 3Dα,β(r − 1)− αFr−5 − βFr−4.

Lemma 11 suggests a relationship of the following form.

Theorem 12. For r ≥ 1,

Dα,β(r) = α

(

7

5
· 3r−1 +

3

5
· Fr −

4

5
· Fr−1

)

+ β

(

2

5
· 3r −

1

5
· Fr +

3

5
· Fr−1

)

.

Proof. By considering Table 2, we check that this holds for small r. Suppose that the formula
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holds for r < k. Then by Lemma 11,

Dα,β(k) = 3α

(

7

5
· 3k−2 +

3

5
· Fk−1 −

4

5
· Fk−2

)

+ 3β

(

2

5
· 3k−1 −

1

5
· Fk−1 +

3

5
· Fk−2

)

+ αFk−1 − 3αFk−3 + βFk − 3βFk−2

= α

(

7

5
· 3k−1 +

9

5
· Fk−1 −

12

5
· Fk−2 + Fk−1 − 3Fk−3

)

+ β

(

2

5
· 3k −

3

5
· Fk−1 +

9

5
· Fk−2 + Fk − 3Fk−2

)

= α

(

7

5
· 3k−1 +

3

5
· Fk −

4

5
· Fk−1

)

+ β

(

2

5
· 3k −

1

5
· Fk +

3

5
· Fk−1

)

.

Thus the theorem holds for r ≥ 1.

Remark 13. Theorem 12 implies that

Dα,β(r)

3r
=

7α + 6β

15
+O

((

φ

3

)r)

=
7α + 6β

15
+ o(1).

Remark 14. Interestingly, as noted by Stern [19] and Lehmer [13], the sum of the rth row of
the diatomic array for the Stern sequence is 3r + 1.

Remark 15. Note that D−6,7(r) = −5Fr + 9Fr−1, which means that the average value of
b−6,7(n) → 0 as n → ∞.

Now suppose we sum all the terms of the general bow sequence up to the N th term. Note
that summatory functions of k-regular sequences are again k-regular sequences, as they are
obtained by convolution with the all 1 sequence, which is also k-regular. The result is k-
regular, as noted by Allouche and Shallit [2], which explains in some sense Theorem 17.
Define a new function as follows:

Definition 16. Eα,β(N) is defined as the finite sum of the first N terms of the bow sequence,

Eα,β(N) :=
N
∑

k=1

bα,β(k). (14)

Theorem 17. For N ≥ 1 we have the following:

Eα,β(2N) = 3Eα,β(N)− α− bα,β(N) + bα,β(N + 1). (15)
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Proof. One can calculate quickly that this formula holds for N < 4. Let N ≥ 4. We start
with the definition, separate terms and apply the recursion to find

Eα,β(2N) =
2N
∑

k=1

bα,β(k)

= bα,β(1) + bα,β(2) + bα,β(3) +
2N
∑

k=4

bα,β(k)

= bα,β(1) + bα,β(2) + bα,β(3) +
N
∑

k=2

(bα,β(2k) + bα,β(2k + 1))− bα,β(2N + 1)

= bα,β(1) + bα,β(2) + bα,β(3) +
N
∑

k=2

(2bα,β(k) + bα,β(k + 1))− bα,β(2N + 1).

Using Table 2 we see that

Eα,β(2N) = 2α + β +
N
∑

k=2

(2bα,β(k) + bα,β(k + 1))− bα,β(2N + 1)

=
N
∑

k=1

2bα,β(k) +
N
∑

k=1

bα,β(k + 1)− bα,β(2N + 1).

We reindex the second sum and apply (14) to obtain

Eα,β(2N) = 2Eα,β(N) +
N+1
∑

k=2

bα,β(k)− bα,β(2N + 1)

= 2Eα,β(N) + Eα,β(N)− α + bα,β(N + 1)− bα,β(2N + 1).

Then by applying the recursion we get the desired result

Eα,β(2N) = 3Eα,β(N)− α− bα,β(N) + bα,β(N + 1).

Corollary 18. For r ≥ 3 we have

Eα,β(2
r+1) = 3Eα,β(2

r)− α(Fr−3 + 1)− βFr−2. (16)

Proof. By Theorem 17 we have

Eα,β(2
r+1) = 3Eα,β(2

r)− α− bα,β(2
r) + bα,β(2

r + 1).
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By applying Theorem 7 and (6), and simplifying we obtain

Eα,β(2
r+1) = 3Eα,β(2

r)− α− (αFr−1 + βFr) + (αFr−2 + βFr−1)

= 3Eα,β(2
r)− α− αFr−3 − βFr−2

= 3Eα,β(2
r)− α(Fr−3 + 1)− βFr−2.

Corollary 18 suggests the following relationship.

Theorem 19. For r ≥ 1 we have

Eα,β(2
r) = α

(

7

10
· 3r−1 −

1

5
· Fr +

3

5
· Fr−1 +

1

2

)

+ β

(

1

5
· 3r +

2

5
· Fr −

1

5
· Fr−1

)

. (17)

Proof. By considering Table 2, we check that this holds for small r ≥ 1. Suppose that the
formula holds for r < k. Then, by Corollary 18,

Eα,β(2
r) = 3α

(

7

10
· 3r−2 −

1

5
· Fr−1 +

3

5
· Fr−2 +

1

2

)

+ 3β

(

1

5
· 3r−1 +

2

5
· Fr−1 −

1

5
· Fr−2

)

− α(Fr−4 + 1)− βFr−3

= α

(

7

10
· 3r−1 −

3

5
· Fr−1 +

9

5
· Fr−2 +

3

2
− Fr−4 − 1

)

+ β

(

1

5
· 3r +

6

5
· Fr−1 −

3

5
· Fr−2 − Fr−3

)

.

Then, by simplifying the Fibonacci terms, we find

Eα,β(2
r) = α

(

7

10
· 3r−1 −

3

5
· Fr−1 +

4

5
· Fr−2 + Fr−3 +

1

2

)

+ β

(

1

5
· 3r +

1

5
· Fr−1 +

2

5
· Fr−2

)

= α

(

7

10
· 3r−1 −

1

5
· Fr +

3

5
· Fr−1 +

1

2

)

+ β

(

1

5
· 3r +

2

5
· Fr −

1

5
· Fr−1

)

.

Thus the theorem holds for r ≥ 1.

Remark 20. Theorem 19 implies that

Eα,β(2
r)

3r
=

7α + 6β

30
+O

((

φ

3

)r)

=
7α + 6β

30
+ o(1).

Remark 21. By comparison, as noted by Stern [19] and Lehmer [13], the sum of the first 2r

terms of the Stern sequence is

1

2
(3r + 1) .

13



5 Generating functions

We use the following notation for generating functions:

Ga1,a2,a3,...,am(x) := x

∞
∏

j=0

(1 + xa1·2j + xa2·2j + · · ·+ xam·2j) (18)

:=
∞
∑

n=1

ca1,a2,a3,...,am(n)xn. (19)

Combinatorially, this means that ca1,a2,a3,...,am(n) is the number of ways of writing n− 1

as the sum
∑

i≥0

γi2
i where γi ∈ {0, a1, a2, a3, . . . , am}.

Example 22. Consider

1

x
G1(x) =

∞
∏

n=0

(1 + x2j) =
1

1− x
=

∞
∑

k=0

xk.

Thus we recover the fact that every integer n > 0 has a unique representation

n =
∞
∑

i=0

γi2
i,

where γi ∈ {0, 1}.

We now consider the generating function for the general bow sequence. First, let

Bα,β(x) =
∑

n≥0

bα,β(n)x
n = αB1,0(x) + βB0,1(x). (20)

It follows from (10) that B1,0(x) and B0,1(x) have radius of convergence 1.
By repeatedly applying (5) and (6) and tweaking the limits, we have

Bα,β(x) = αx+ βx2 +
∑

n≥3

bα,β(n)x
n

= αx+ βx2 +
∑

n≥1

bα,β(2n+ 1)x2n+1 +
∑

n≥2

bα,β(2n)x
2n

= αx+ βx2 +
∑

n≥1

bα,β(n)x
2n+1 +

∑

n≥2

(bα,β(n) + bα,β(n+ 1))x2n

= αx+ βx2 +
∑

n≥1

bα,β(n)x
2n+1 +

∑

n≥2

bα,β(n)x
2n +

∑

n≥2

bα,β(n+ 1)x2n

= αx+ βx2 +
∑

n≥1

bα,β(n)x
2n+1 +

∑

n≥2

bα,β(n)x
2n +

∑

n≥3

bα,β(n)x
2n−2

14



= αx+ βx2 + x
∑

n≥1

bα,β(n)x
2n +

∑

n≥2

bα,β(n)x
2n +

1

x2

∑

n≥3

bα,β(n)x
2n

= αx+ βx2 + x
∑

n≥1

bα,β(n)x
2n +

∑

n≥1

bα,β(n)x
2n − αx2

+
1

x2

∑

n≥1

bα,β(n)x
2n − α− βx2

= −α + αx− αx2 +

(

1

x2
+ 1 + x

)

Bα,β(x
2)

= −α(1− x+ x2) +
1

x2
(1 + x2 + x3)Bα,β(x

2).

Since bα,β(0) = 0 and bα,β(1) = α, we can write Bα,β(x) = αx+x2Cα,β(x), with Cα,β(0) =
β, so Bα,β(x

2) = αx2 + x4Cα,β(x
2). Thus we have

Bα,β(x) = αx+ x2Cα,β(x)

=
1

x2
(1 + x2 + x3)(αx2 + x4Cα,β(x

2))− α(1− x+ x2).

Solving for Cα,β(x), we find

Cα,β(x) =
1

x2

(

α(1− x+ x2 + x3) + x2Cα,β(x
2)(1 + x2 + x3)− α(1− x+ x2)

)

= αx+ Cα,β(x
2)(1 + x2 + x3).

We can feed this identity back into the equation to get

Cα,β(x) = αx+ (1 + x2 + x3)(αx2 + Cα,β(x
4)(1 + x4 + x6))

= αx+ (1 + x2 + x3)αx2 + (1 + x2 + x3)(1 + x4 + x6)Cα,β(x
4).

After N steps,

Cα,β(x) = αx+ α

N
∑

k=0

x2·2k
k
∏

j=0

(1 + x2·2j + x3·2j) +
N+1
∏

k=0

(1 + x2·2k + x3·2k)Cα,β(x
2N+2

).

Since, Cα,β(x) = β + x · P (x) for some P (x), Cα,β(x
2N+2

) − β = x2N+2

P (x2N+2

). Thus for

|x| < 1, Cα,β(x
2N+2

)− β → 0 as N → ∞; hence we have

Cα,β(x) = αx+ α

∞
∑

k=0

x2·2k
k
∏

j=0

(1 + x2·2j + x3·2j) + β

∞
∏

k=0

(1 + x2·2k + x3·2k).

Thus we have the following theorem.

15



Theorem 23. The generating function for the general bow sequence is:

Bα,β(x) = αx+ αx3 + αx2

∞
∑

k=0

x2·2k
k
∏

j=0

(1 + x2·2j + x3·2j ) (21)

+ βx2

∞
∏

k=0

(1 + x2·2k + x3·2k).

Since Bα,β(x) = αB1,0(x)+ βB0,1(x), we can state two combinatorial implications. First,
as also noted by Anders, Lansing, Reznick, and the author [3] we have

B0,1(x) :=
∞
∑

n=0

b0(n)x
n = x2

∞
∏

k=0

(1 + x2·2k + x3·2k) = xG2,3(x) (22)

for the case when α = 0, β = 1.
We see that b0(n) = c2,3(n− 1), where c2,3(m) is the number of ways of writing m− 1 as

the sum
∑

i

ci2
i where ci ∈ {0, 2, 3}. We interpret this statement as:

Corollary 24. Combinatorially, for n ≥ 2, b0(n) is the number of ways of writing n− 2 as

the sum
∑

i

ci2
i where ci ∈ {0, 2, 3}.

We also have

B1,0(x) :=
∞
∑

n=0

b1(n)x
n = x+ x3 + x2

∞
∑

k=0

x2·2k
k
∏

j=0

(1 + x2·2j + x3·2j) (23)

for the case when α = 1, β = 0. We interpret this statement as:

Corollary 25. Combinatorially, for n ≥ 4, b1(n) is the number of ways of writing n−2−2k+1

as the sum
k
∑

i=0

ci2
i where ci ∈ {0, 2, 3} and k ∈ N.

Remark 26. By rearranging, we find that b1(n) is also the number of ways of writing n− 2

as the sum
k
∑

i=0

ci2
i where k ∈ N, ci ∈ {0, 2, 3} for i ≤ k − 1, and ck ∈ {2, 4, 5}.

Alternatively, since
k
∑

i=0

2i = 2k+1 − 1, we get the following formula

B1,0(x) = x+ x3 + x3

∞
∑

k=0

k
∏

j=0

(x1·2j + x3·2j + x4·2j), (24)
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which means that b1(n) is the number of ways of writing n− 3 as a finite sum
k
∑

i=0

ci2
i where

ci ∈ {1, 3, 4}.

Remark 27. Similarly, Reznick [17] showed for the Stern sequence that

S(x) = xT (x) = x

∞
∏

j=0

(1 + x2j + x2·2j). (25)

By equation (18) we see that S(x) = G1,2(x).

6 Another representation of b0(n)

In this section, we discuss another representation of b0(n), found independently in unpub-
lished work by Paul Barry [5], and referenced in Sloane’s On-Line Encyclopedia of Integer
Sequences [18]. The sequence was defined by Barry, but was not shown to satisfy the bow
recurrence. We show that b0(n) can be determined by computing this finite sum, which is
independent of the recurrence. Before we give this new equation we must first state a few
formulas which will be necessary in the proof of our theorem. The first is the well-known
dePolignac’s formula.

Theorem 28 (dePolignac’s Formula). [11, 16] For n ≥ 1, the exponent of the highest power
of a prime p dividing n! is

sp(n) :=
∞
∑

k=1

⌊

n

pk

⌋

. (26)

We will need the following corollary for the proof of the next theorem.

Corollary 29. For m ≥ 1,

s2(2m+ 1) = s2(2m) = s2(m) +m. (27)

Proof. We write (2m+ 1)! = (2m+ 1)(2m)!, thus s2(2m+ 1) = s2(2m).
Then, pulling the first term out of the sum, we find

s2(2m) =

⌊

2m

2

⌋

+
∞
∑

k=2

⌊

2m

2k

⌋

= m+ s2(m).

Thus s2(2m+ 1) = s2(2m) = s2(m) +m.

17



Remark 30. The second equality in Corollary 29 can also be shown directly by noting that

(2m)! = 2mm!
m
∏

j=1

(2j − 1).

Definition 31. Define ǫ(m) to be the smallest non-negative residue of m modulo 2, thus
m ∈ {0, 1}.

Let

c(n) :=

⌊n
2
⌋

∑

k=0

ǫ

((

k

n− 2k

))

. (28)

The terms of this sequence are 1, 0, 1, 1, 1, 0, 2, 1, 2, . . . We can see that this looks the
same as b0(n+ 2). In fact, we shall prove that c(n− 2) = b0(n).

Let c(n− 2) = a(n). We have the following lemma.

Lemma 32.
(

2a+ 1

2b+ 1

)

≡

(

2a+ 1

2b

)

≡

(

2a

2b

)

≡

(

a

b

)

(mod 2).

Proof. To show that the first three have the same parity, we note that

(2a+ 1)!

(2b+ 1)!(2a− 2b)!
,

(2a+ 1)!

(2b)!(2a+ 1− 2b)!
, and

(2a)!

(2b)!(2a− 2b)!

share all the same even factors in both their numerator and denominator. Thus the highest
power of 2 dividing

(

2a+1
2b+1

)

,
(

2a+1
2b

)

, and
(

2a
2b

)

is the same, and they are all congruent modulo
2.

Then, to show that
(

a
b

)

≡
(

2a
2b

)

(mod 2), we notice that if s2(a) = r, then by Corollary 29
we know that s2(2a) = r+a. Similarly, if s2(b) = t, then s2(2b) = t+b. Lastly, if s2(a−b) = s,
then s2(2a− 2b) = s+ (a− b).

The highest power of 2 dividing
(

a
b

)

is r− s− t, and the highest power of 2 dividing
(

2a
2b

)

is r+ a− (t+ b)− s− (a− b) = r− s− t. Thus the highest power of 2 dividing
(

a
b

)

and
(

2a
2b

)

is the same, and they are congruent modulo 2.

Remark 33. Note that Lemma 32 also follows from Lucas’s Theorem, stated below. In
particular, we can see that

(

2a
2b

)

≡
(

a
b

)

(mod 2) since multiplication by 2 simply shifts all the
indices in the base 2 expansions of a and b up by 1.
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Theorem 34 (Lucas’s Theorem). [9] For non-negative integers m and n and a prime p,
the congruence relation

(

m

n

)

≡

k
∏

i=0

(

mi

ni

)

(mod p)

holds, where m =
k
∑

i=0

mip
i and n =

k
∑

i=0

nip
i with mi, ni ∈ {0, . . . , p − 1} are the base p

expansions of m and n, using the convention that
(

m
n

)

= 0 if m < n.

6.1 A New Formula for b0(n)

We use Theorem 28, Corollary 29, and Lemma 32 to prove that b0(n) satisfies the following
formula.

Theorem 35. For n ≥ 2, b0(n) can be described by the following formula

b0(n) = a(n) :=

⌊n/2−1⌋
∑

k=0

ǫ

((

k

n− 2− 2k

))

. (29)

Proof. Clearly b0(2) = 1 = a(2). Defining a(0) = a(1) = 0, we shall show that the bow
recursion holds for a(n).

First we shall show that a(2n+ 1) = a(n), or

⌊(2n+1)/2−1⌋
∑

k=0

ǫ

((

k

2n− 1− 2k

))

=

⌊n/2−1⌋
∑

k=0

ǫ

((

k

n− 2− 2k

))

. (30)

Consider the terms in the left hand side of (30)

⌊(2n+1)/2−1⌋
∑

k=0

ǫ

((

k

2n− 1− 2k

))

=
n−1
∑

k=0

ǫ

((

k

2n− 1− 2k

))

.

In general, when k is even, the term
(

k
2a+1

)

≡ 0 mod 2. Thus we need only consider the
terms where k is odd. So let k = 2a+ 1 and now consider the sum

⌊n/2−1⌋
∑

a=0

ǫ

((

2a+ 1

2n− 1− 2(2a+ 1)

))

.

We know that

⌊n/2−1⌋
∑

k=0

ǫ

((

2k + 1

2n− 1− 2(2k + 1)

))

=

⌊n/2−1⌋
∑

k=0

ǫ

((

k

n− 2− 2k

))

(31)
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because the terms are equal, by Lemma 32 with a = k, and b = n − 2 − 2k. Thus, the
recurrence a(2n+ 1) = a(n) holds.

Second, we must show that a(2n) = a(n) + a(n+ 1) holds, or

n−1
∑

k=0

ǫ

((

k

2n− 2− 2k

))

=

⌊n/2−1⌋
∑

k=0

ǫ

((

k

n− 2− 2k

))

+

⌊(n+1)/2−1⌋
∑

k=0

ǫ

((

k

n− 1− 2k

))

. (32)

We shall first consider the right hand side.
By applying Lemma 32 with a = k and b = n− 2− 2k, we find

⌊n/2−1⌋
∑

k=0

ǫ

((

k

n− 2− 2k

))

=

⌊n/2−1⌋
∑

k=0

ǫ

((

2k + 1

2n− 4− 4k

))

. (33)

Similarly applying Lemma 32 with a = k and b = n− 1− 2k, we obtain

⌊(n+1)/2−1⌋
∑

k=0

ǫ

((

k

n− 1− 2k

))

=

⌊(n+1)/2−1⌋
∑

k=0

ǫ

((

2k

2n− 2− 4k

))

. (34)

Summing (33) and (34) together we observe that these are the odd and even terms of
the sum

n−1
∑

k=0

ǫ

((

k

2n− 2− 2k

))

. (35)

Therefore (32) holds and we have shown that a(2n) = a(n) + a(n + 1), and hence b0(n) =
a(n).
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