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Abstract

We present new identities involving Fibonacci and Bernoulli numbers, and Lu-
cas and Euler numbers, respectively. To achieve this, we derive general relations
between Bernoulli (Euler) polynomials and balancing (Lucas-balancing) polynomials.
The derivations make use of elementary methods including generating functions and
functional equations. Evaluating these polynomial relations at specific points, we get
several new identities for the Fibonacci-Bernoulli and Lucas-Euler pairs. We also state
some identities involving Bernoulli and balancing numbers.

1 Introduction and Preliminaries

Bernoulli numbers (Bn)n≥0 and Fibonacci numbers (Fn)n≥0 are regarded as the most impor-
tant and fascinating sequences in mathematics. Relationships between them and between
their companion sequences, Euler numbers (En)n≥0 and Lucas numbers (Ln)n≥0, have been
studied by some authors in the past. Zhang and Ma proved [11] a relation between Fibonacci
polynomials and Bernoulli numbers. The following identity is a special case of their result:

n
∑

k=0

(

n

k

)

5
n−k

2 FkBn−k = nβn−1, (1)
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where β = (1 −
√
5)/2. Byrd [3] derived a result of similar structure involving Lucas and

Euler numbers:
n

∑

k=0

(

n

k

)

(5

4

)
n−k

2

LkEn−k = 21−n. (2)

Still other relations are contained in the articles [2, 4, 7, 8], congruences are studied in [10].
Inspired by these elegant results, the present paper is devoted to develop further relations
between these famous number sequences. To achieve this goal, we study relations between
Bernoulli (Euler) polynomials and balancing (Lucas-balancing) polynomials. The deriva-
tions are based on functional equations for the respective generating functions.

We begin by introducing some notation. As usual, Bn(x) will be used for the nth Bernoulli
polynomial and En(x) will denote the nth Euler polynomial, where the argument x is assumed
to be a complex number. These classical polynomials are defined by [1]

H(x, z) =
∞
∑

n=0

Bn(x)
zn

n!
=

zexz

ez − 1
(|z| < 2π) (3)

and

I(x, z) =
∞
∑

n=0

En(x)
zn

n!
=

2exz

ez + 1
(|z| < π). (4)

The numbers Bn(0) = Bn and En = 2nEn(1/2) are the famous Bernoulli and Euler
numbers, respectively. Bernoulli numbers are rational numbers starting with B0 = 1, B1 =
−1/2, B2 = 1/6, B4 = −1/30 and so on. Also, B2n+1 = 0 for n ≥ 1. In contrast, Euler
numbers are integers. We have E0 = 1, E2 = −1, E4 = 5 and E2n+1 = 0 for n ≥ 0. Bernoulli
and Euler numbers (polynomials) play a distinguished role in many mathematical branches,
such as, number theory, combinatorics and analysis. There is a countless number of articles
in which their properties are studied. The basic properties can be found in the textbook [1],
for instance. For more material we refer to a bibliography of Bernoulli numbers (polynomials)
[5]. The following properties of Bernoulli and Euler polynomials will be employed in a sequel:
The reciprocal relations are

Bn(1− x) = (−1)nBn(x) and En(1− x) = (−1)nEn(x),

and the difference equations are given by

nxn−1 = (−1)nBn(−x)−Bn(x) and 2xn = En(x) + (−1)nEn(−x).

Euler polynomials can be expressed in terms of Bernoulli polynomials via

En−1(x) =
2

n
(Bn(x)− 2nBn(x/2)).
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In this article, we choose balancing polynomials B∗
n(x) and Lucas-balancing polynomials

Cn(x) to serve as the linking objects between Fibonacci and Bernoulli numbers and Lucas
and Euler numbers, respectively. Balancing polynomials are defined by the recurrence (see
[9])

B∗
n(x) = 6xB∗

n−1(x)−B∗
n−2(x), n ≥ 2, (5)

with the initial terms B∗
0(x) = 0 and B∗

1(x) = 1. Similarly, Lucas-balancing polynomials are
defined by

Cn(x) = 6xCn−1(x)− Cn−2(x), n ≥ 2, (6)

with the initial terms C0(x) = 1 and C1(x) = 3x. The numbers B∗
n(1) = B∗

n and Cn(1) = Cn

are called balancing and Lucas-balancing numbers, respectively. It is a routine task to derive
the Binet forms for these polynomials. We have

B∗
n(x) =

λn(x)− λ−n(x)

λ(x)− λ−1(x)
and Cn(x) =

1

2

(

λn(x) + λ−n(x)
)

, (7)

where λ(x) = 3x +
√
9x2 − 1 and λ−1(x) = 3x−

√
9x2 − 1. The polynomials are connected

to Chebyshev and Legendre polynomials (see [6]). We will exploit two other results about
balancing polynomials to prove many of our discoveries. The first result relates balancing
polynomials to Fibonacci and Lucas numbers.

Lemma 1. Balancing and Lucas-balancing polynomials admit the following evaluations:

B∗
n

(L2m

6

)

=
F2mn

F2m

, Cn

(L2m

6

)

=
L2mn

2
, (8)

B∗
n

( i

6
L2m+1

)

= in−1F(2m+1)n

F2m+1

, Cn

( i

6
L2m+1

)

= in
L(2m+1)n

2
, (9)

where m is an integer, i =
√
−1 is the imaginary unit, and Fn and Ln denote Fibonacci and

Lucas numbers, respectively.

The second lemma deals with exponential generating functions for balancing and Lucas-
balancing polynomials.

Lemma 2. Let F (x, z) and G(x, z) be the exponential generating functions of (B∗
n(x))n≥0

and (Cn(x))n≥0, respectively. Then

F (x, z) =
∞
∑

n=0

B∗
n(x)

zn

n!
=

1√
9x2 − 1

e3xz sinh(
√
9x2 − 1z), (10)

and

G(x, z) =
∞
∑

n=0

Cn(x)
zn

n!
= e3xz cosh(

√
9x2 − 1z), (11)

where sinh(·) and cosh(·) are the hyperbolic sine and cosine functions.
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2 Results

Our first result is the following theorem.

Theorem 3. Let n ≥ 1. Then

n
∑

k=0
n≡k (mod 2)

(

n

k

)

B∗
k(x)(2

√
9x2 − 1)n−kBn−k = nCn−1(x), (12)

and
n

∑

k=0
n≡k (mod 2)

(

n

k

)

Ck(x)(2
√
9x2 − 1)n−k(2n−k − 1)Bn−k = n(9x2 − 1)B∗

n−1(x). (13)

Proof. By (10) and (11) we have

zG(x, z) =
√
9x2 − 1z coth(

√
9x2 − 1z)F (x, z).

The left hand side is

zG(x, z) =
∞
∑

n=1

Cn−1(x)n
zn

n!
.

Next, form the power series expansion

coth(z) =
1

z
+

∞
∑

n=1

22n

(2n)!
B2nz

2n−1,

we immediately get

√
9x2 − 1z coth(

√
9x2 − 1z) =

∞
∑

n=0

(2
√
9x2 − 1)2nB2n

z2n

(2n)!
.

Now, the relation follows from multiplying the series on the right using Cauchy’s rule and
comparing coefficients. The second statement is proved analogously utilizing

(9x2 − 1)zF (x, z) =
√
9x2 − 1z tanh(

√
9x2 − 1z)G(x, z),

in combination with

tanh(z) =
∞
∑

n=0

22n(22n − 1)

(2n)!
B2nz

2n−1.
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Corollary 4. Let n ≥ 1 be an integer. Then we have the following relations between balanc-
ing numbers and Bernoulli numbers:

n
∑

k=0
n≡k (mod 2)

(

n

k

)

32
n−k

2 B∗
kBn−k = nCn−1, (14)

and
n

∑

k=0
n≡k (mod 2)

(

n

k

)

32
n−k

2 (2n−k − 1)CkBn−k = 8nB∗
n−1. (15)

Also, for each m ≥ 0 (or ≥ 1), the following identities are valid:

n
∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 F(2m+1)kF
n−1−k
2m+1 Bn−k =

n

2
L(2m+1)(n−1), (16)

n
∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 (2n−k − 1)L(2m+1)kF
n−1−k
2m+1 Bn−k =

5n

2
F(2m+1)(n−1), (17)

n
∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 F2mkF
n−1−k
2m Bn−k =

n

2
L2m(n−1), (18)

and
n

∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 (2n−k − 1)L2mkF
n−1−k
2m Bn−k =

5n

2
F2m(n−1). (19)

Proof. Evaluate (12) and (13) at the points x = 1, x = i/6L2m+1 and x = 1/6L2m, respec-
tively and use Lemma 1. To simplify the square root recall that L2

n = 5F 2
n + (−1)n4.

Special cases of the corollary are the following sums which should be compared with (1):

n
∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 FkBn−k =
n

2
Ln−1, (20)

n
∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 (2n−k − 1)LkBn−k =
5n

2
Fn−1, (21)

n
∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 F2kBn−k =
n

2
L2n−2, (22)
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and
n

∑

k=0
n≡k (mod 2)

(

n

k

)

5
n−k

2 (2n−k − 1)L2kBn−k =
5n

2
F2n−2. (23)

The next theorem deals with sums of weighted products of balancing and Bernoulli
polynomials and Lucas-balancing and Euler polynomials, respectively.

Theorem 5. Let n ≥ 1. Then

n
∑

k=0

(

n

k

)

(2
√
9x2 − 1)n−kB∗

k(x)Bn−k(x) = n
(

3x+ (2x− 1)
√
9x2 − 1

)n−1

. (24)

Also, for n ≥ 0, we have the identity

n
∑

k=0

(

n

k

)

(2
√
9x2 − 1)n−kCk(x)En−k(x) =

(

3x+ (2x− 1)
√
9x2 − 1

)n

. (25)

Proof. Since

H(x, z) =
ze(x−1/2)z

ez/2 − e−z/2
=

z

2

e(x−1/2)z

sinh(z/2)
,

we have the functional relation

F (x, z)H(x, 2
√
9x2 − 1z) = ze(3x+(2x−1)

√
9x2−1)z.

Expanding both sides in form of power series and comparing the coefficients of zn yields the
first formula. The second formula corresponds to the similar functional relation

G(x, z)I(x, 2
√
9x2 − 1z) = e(3x+(2x−1)

√
9x2−1)z.

Theorem 5 also contains some interesting sums as special cases. In order to give a more
detailed exposition, we state each example as a separate corollary.

Corollary 6. For n ≥ 1

⌊n−1

2
⌋

∑

k=0

(

n

2k + 1

)

2n−2k−1Bn−2k−1 = n(−1)n−1, (26)

and for n ≥ 0
⌊n

2
⌋

∑

k=0

(

n

2k

)

Bn−2k+1

n− 2k + 1
2n−2k+1(1− 2n−2k+1) = (−1)n. (27)
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Proof. Both expressions follow from (24) and (25) evaluated at x = 0 in combination with

B∗
n(0) =

{

0, n even;

(−1)
n−1

2 n odd;
and Cn(0) =

{

(−1)
n

2 , n even;

0 n odd.

To complete the proof of the second expression we have used

En(0) =
2

n+ 1
Bn+1(1− 2n+1).

Corollary 7. Let m ≥ 1. Then, for each n ≥ 1

n
∑

k=0

(

n

k

)

5
n−k

2 F2mkF
n−k−1
2m Bn−k

(L2m

6

)

= n
(3L2m +

√
5F2m(L2m − 3)

6

)n−1

, (28)

and for n ≥ 0

n
∑

k=0

(

n

k

)

5
n−k

2 L2mkF
n−k
2m En−k

(L2m

6

)

= 2
(3L2m +

√
5F2m(L2m − 3)

6

)n

. (29)

Proof. Evaluate (24) and (25) at x = L2m/6.

It is worth to remark that the following two results are contained in the corollary as
special cases for m = 1:

n
∑

k=0

(

n

k

)

(5

4

)
n−k

2

(

1− 2n−k−1
)

F2kBn−k =
n

2

(3

2

)n−1

, (30)

and
n

∑

k=0

(

n

k

)

(5

4

)
n−k

2

L2kEn−k = 2
(3

2

)n

. (31)

Compare with (1) and (2). Also, using the relations B∗
n(−x) = (−1)n+1B∗

n(x) and Cn(−x) =
(−1)nCn(x) in combination with the difference relations for Bn(x) and En(x), explicit eval-
uations at negative points can be derived easily. For instance, setting x = −1/2 in (24) and
(25) leads to

n
∑

k=0

(

n

k

)

(5

4

)
n−k

2

F2k

((

1− 2n−k−1
)

Bn−k + n− k
)

=
n

2

(

α2 +

√
5

2

)n−1

, (32)

and
n

∑

k=0

(

n

k

)

(5

4

)
n−k

2

L2k

(

1− En−k

2

)

=
(

α2 +

√
5

2

)n

, (33)

where α = (1 +
√
5)/2 is the golden ratio.
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Corollary 8. Let m ≥ 0 and i =
√
−1. Then, for each n ≥ 1

n
∑

k=0

(

n

k

)

5
n−k

2 F(2m+1)kF
n−k−1
2m+1 Bn−k

(

i
L2m+1

6

)

= n
(3L2m+1 +

√
5F2m+1(iL2m+1 − 3)

6

)n−1

,

(34)
and for n ≥ 0

n
∑

k=0

(

n

k

)

5
n−k

2 L(2m+1)kF
n−k
2m+1En−k

(

i
L2m+1

6

)

= 2
(3L2m+1 +

√
5F2m+1(iL2m+1 − 3)

6

)n

. (35)

Proof. Evaluate (24) and (25) at x = iL2m+1/6.

When m = 0, then

n
∑

k=0

(

n

k

)

5
n−k

2 FkBn−k

( i

6

)

= n
(

β +

√
5i

6

)n−1

, (36)

and
n

∑

k=0

(

n

k

)

5
n−k

2 LkEn−k

( i

6

)

= 2
(

β +

√
5i

6

)n

, (37)

where β = (1−
√
5)/2 = −1/α.

Indeed, we can prove more for these special sums.

Theorem 9. For n ≥ 1 we have

n
∑

k=0

(

n

k

)

5
n−k

2 FkBn−k(x) = n
(

β +
√
5x

)n−1

, (38)

and for n ≥ 0 the analogue relation for the Lucas-Euler pair is

n
∑

k=0

(

n

k

)

5
n−k

2 LkEn−k(x) = 2
(

β +
√
5x

)n

. (39)

Proof. We start with

H(x,
√
5z) =

√
5z

2

e(x−1/2)
√
5z

sinh(
√
5z/2)

and
∞
∑

n=0

Fn
zn

n!
=

2√
5
ez/2 sinh(

√
5z/2).

8



Hence,
(

∞
∑

n=0

Fn
zn

n!

)(

∞
∑

n=0

Bn(x)5
n/2 z

n

n!

)

= zez/2e(x−1/2)
√
5z = ze(β+

√
5x)z,

and the proof of the first identity is completed. To prove the second identity we use

I(x,
√
5z) =

e(x−1/2)
√
5z

cosh(
√
5z/2)

and
∞
∑

n=0

Ln
zn

n!
= 2ez/2 cosh(

√
5z/2).

If we set x = 0 in (38), then we recover (1). Setting x = 0 in (39) gives

n
∑

k=0

(

n

k

)

5
n−k

2

1− 2n−k+1

n− k + 1
LkBn−k+1 = βn. (40)

Similarly, setting x = 1/2 in (38) results in

n
∑

k=0

(

n

k

)

5
n−k

2

(

21−(n−k) − 1
)

FkBn−k = n21−n, (41)

whereas setting x = 1/2 in (39) gives (2). Also, using the reciprocal relations for Bn(x) and
En(x) and α− β =

√
5, we immediately get the alternating version of Theorem 9:

Corollary 10. The alternating variants for the Fibonacci-Bernoulli and Lucas-Euler pairs
equal

n
∑

k=0

(

n

k

)

5
n−k

2 (−1)n−kFkBn−k(x) = n
(

α−
√
5x

)n−1

, (42)

and
n

∑

k=0

(

n

k

)

5
n−k

2 (−1)n−kLkEn−k(x) = 2
(

α−
√
5x

)n

. (43)

Now, the value x = 0 produces

n
∑

k=0

(

n

k

)

5
n−k

2 (−1)n−kFkBn−k = nαn−1, (44)

which is the alternating version of (1) and

n
∑

k=0

(

n

k

)

5
n−k

2 (−1)n−k 1− 2n−k+1

n− k + 1
LkBn−k+1 = αn. (45)
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Corollary 11. Let n and q be two integers with n ≥ 1 and q ≥ 2. Then it holds that

n
∑

k=0

(

n

k

)

5
n−k

2

(

q1−(n−k) − 1
)

FkBn−k

=
n

∑

k=0

(

n

k

)

5
n−k

2 (−1)n−k
(

q1−(n−k) − 1
)

FkBn−k

= nq1−n

q−1
∑

r=1

(

βq +
√
5r
)n−1

= nq1−n

q−1
∑

r=1

(

αq −
√
5r
)n−1

. (46)

Proof. The statement follows from (38) and (42) combined with Raabe’s formula

1

q

q−1
∑

r=0

Bn

(

x+
r

q

)

= q−nBn(qx).

When q = 2, then (46) gives (41). When q = 3, then we obtain

n
∑

k=0

(

n

k

)

5
n−k

2

(

31−(n−k) − 1
)

FkBn−k

=
n

∑

k=0

(

n

k

)

5
n−k

2 (−1)n−k
(

31−(n−k) − 1
)

FkBn−k = n31−nL2n−2. (47)

Theorem 12. The following relation between even-indexed Fibonacci numbers and Bernoulli
polynomials holds for n ≥ 1:

n
∑

k=0

(

2n

2k

)

5n−kF2kB2(n−k)(x) = 22(1−n)

n
∑

k=0

(

2n

2k

)

k5n−k(2x− 1)2(n−k). (48)

For n ≥ 0, the analogue relation involving even-indexed Lucas numbers and Euler polynomials
is

n
∑

k=0

(

2n

2k

)

5n−kL2kE2(n−k)(x) = 21−2n

n
∑

k=0

(

2n

2k

)

5n−k(2x− 1)2(n−k). (49)

Proof. We start with (48). By (3) we have

∞
∑

n=0

B2n(x)
z2n

(2n)!
=

1

2
(H(x, z) +H(x,−z)) =

z

2

cosh((x− 1/2)z)

sinh(z/2)
.

Also, it is easy to show that

∞
∑

n=0

F2n
z2n

(2n)!
=

2√
5
sinh(

√
5z/2) sinh(z/2).

10



Thus, applying Cauchy’s rule, we arrive at

∞
∑

n=0

n
∑

k=0

(

2n

2k

)

5n−kF2kB2(n−k)(x)
z2n

(2n)!
= z sinh(z/2) cosh((2x− 1)

√
5z/2).

To finish the proof of (48) we must apply Cauchy’s rule a second time and keep in mind that

z sinh(z/2) =
∞
∑

n=0

(2n)21−2n z2n

(2n)!
,

and

cosh((2x− 1)
√
5z/2) =

∞
∑

n=0

5n2−2n(2x− 1)2n
z2n

(2n)!
.

The proof of (49) uses similar arguments. The key components are

∞
∑

n=0

E2n(x)
z2n

(2n)!
=

cosh((x− 1/2)z)

cosh(z/2)
,

which follows from (4) and

∞
∑

n=0

L2n
z2n

(2n)!
= 2 cosh(

√
5z/2) cosh(z/2).

A slight modification in the above proof leads to the next theorem.

Theorem 13.

n
∑

k=0

(

2n

2k

)

F2kB2(n−k)(x) = 22(1−n)

n
∑

k=0

(

2n

2k

)

k5k−1(2x− 1)2(n−k), (50)

and
n

∑

k=0

(

2n

2k

)

L2kE2(n−k)(x) = 21−2n

n
∑

k=0

(

2n

2k

)

5k(2x− 1)2(n−k). (51)

Corollary 14. For each n ≥ 1 we have the following relations:

n
∑

k=0

(

2n

2k

)

5n−kF2kB2(n−k) = 22(1−n)

n
∑

k=0

(

2n

2k

)

k5n−k, (52)

n
∑

k=0

(

2n

2k

)

5n−k
(

21−2(n−k) − 1
)

F2kB2(n−k) = n22(1−n), (53)
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n
∑

k=0

(

2n

2k

)

5n−k
(

31−2(n−k) − 1
)

F2kB2(n−k) = 22(1−n)+1

n
∑

k=0

(

2n

2k

)

k
(5

9

)n−k

, (54)

n
∑

k=0

(

2n

2k

)

F2kB2(n−k) = 22(1−n)

n
∑

k=0

(

2n

2k

)

k5k−1, (55)

n
∑

k=0

(

2n

2k

)

(

21−2(n−k) − 1
)

F2kB2(n−k) = n5n−122(1−n), (56)

and
n

∑

k=0

(

2n

2k

)

(

31−2(n−k) − 1
)

F2kB2(n−k) =
8

5
6−2n

n
∑

k=0

(

2n

2k

)

k45k. (57)

In addition, we have the identities

L2n = 21−2n

n
∑

k=0

(

2n

2k

)

5n−k, (58)

n
∑

k=0

(

2n

2k

)

(5

4

)n−k

L2kE2(n−k) = 21−2n, (59)

and
n

∑

k=0

(

2n

2k

)

2−2(n−k)L2kE2(n−k) = 5n21−2n. (60)

Proof. Equations (52), (53) and (54) follow from (48) for x = 0 (or x = 1), x = 1/2 and
for x = 1/3, respectively, where we have also used B2n(1/3) = 2−1(31−2n − 1)B2n. To get
equations (55), (56) and (57) set x = 0 (or x = 1), x = 1/2 and for x = 1/3 in (50). Identity
(58) is (49) (or (51)) evaluated at x = 0 (or x = 1). Identities (59) and (60) are (49) and
(51) evaluated at x = 1/2, respectively.

Interestingly, it is known that

n
∑

k=0

(

2n

2k

)

= 22n−1.

This leads to somewhat curious versions of the previous results. For instance, L2n can be
expressed as

L2n =

∑n
k=0

(

2n
2k

)

5k
∑n

k=0

(

2n
2k

) . (61)

We conclude this study with the following theorem.
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Theorem 15. Let n ≥ 1. Then

n
∑

k=1

(

n

k

)

B∗
k(x)Bn−k(x)

(2
√
9x2 − 1)k

=
n

∑

k=1

(

n

k

)

k
Ck−1(x)En−k(x)

(2
√
9x2 − 1)k

. (62)

Proof. From (3) and (4) we have

H(x, z)

I(x, z)
=

z

2

ez/2 + e−z/2

ez/2 − e−z/2
=

z

2
coth(z/2).

This gives the functional relation

F (x, z)H(x, 2
√
9x2 − 1z) = zG(x, z)I(x, 2

√
9x2 − 1z).

Expanding both sides in form of power series and comparing the coefficients of zn yields

n
∑

k=0

(

n

k

)

B∗
k(x)Bn−k(x)

(2
√
9x2 − 1)k

= n
n−1
∑

k=0

(

n− 1

k

)

Ck(x)En−1−k(x)

(2
√
9x2 − 1)k+1

.

The proof is completed noting that B∗
0(x) = 0 and

n

(

n− 1

k

)

= (k + 1)

(

n

k + 1

)

.

Corollary 16. The following identities are immediate consequences of Theorem 15:

n
∑

k=1

(

n

k

)

(−1)n−k32−
k

2B∗
kBn−k =

n
∑

k=1

(

n

k

)

(−1)n−k32−
k

2

2k

n− k + 1

(

1− 2n−k+1
)

Ck−1Bn−k+1,

(63)
n

∑

k=1

(

n

k

)

5−
k

2

(

21−(n−k) − 1
)

F2kBn−k =
n

∑

k=1

(

n

k

)

k5−
k

2 2−(n−k+1)L2k−2En−k, (64)

and more generally

n
∑

k=1

(

n

k

)

5−
k

2F2mkF
−(k+1)
2m Bn−k

(L2m

6

)

=
n

∑

k=1

(

n

k

)

k

2
5−

k

2F−k
2mL2m(k−1)En−k

(L2m

6

)

, (65)

and

n
∑

k=1

(

n

k

)

5−
k

2F(2m+1)kF
−(k+1)
2m+1 Bn−k

(

i
L2m+1

6

)

=
n

∑

k=1

(

n

k

)

k

2
5−

k

2F−k
2m+1L(2m+1)(k−1)En−k

(

i
L2m+1

6

)

.

(66)
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