A Graph-Theoretic Model for a Generalized Fibonacci Gem

Thomas Koshy
Department of Mathematics
Framingham State University
Framingham, MA 01701
USA
tkoshy@emeriti.framingham.edu

Abstract

We extend a charming Fibonacci pleasantry to Fibonacci, Lucas, Jacobsthal, and Jacobsthal-Lucas polynomials; and then confirm the resulting polynomial delights using graph-theoretic tools.

1 Introduction

Generalized Fibonacci polynomials $z_{n}(x)$ are defined by the recurrence $z_{n}(x)=a(x) z_{n-1}(x)+$ $b(x) z_{n-2}(x)$, where x is an arbitrary complex variable; $a(x), b(x), z_{0}(x)$, and $z_{1}(x)$ are arbitrary complex polynomials; and $n \geq 2$.

Let $a(x)=x$ and $b(x)=1$. When $z_{0}(x)=0$ and $z_{1}(x)=1, z_{n}(x)=f_{n}(x)$, the nth Fibonacci polynomial; and when $z_{0}(x)=2$ and $z_{1}(x)=x, z_{n}(x)=l_{n}(x)$, the nth Lucas polynomial. Clearly, $f_{n}(1)=F_{n}$, the nth Fibonacci number; and $l_{n}(1)=L_{n}$, the nth Lucas number $[2,3,12,13]$.

Pell polynomials $p_{n}(x)$ and Pell-Lucas polynomials $q_{n}(x)$ are defined by $p_{n}(x)=f_{n}(2 x)$ and $q_{n}(x)=l_{n}(2 x)$, respectively. The Pell numbers P_{n} and Pell-Lucas numbers Q_{n} are given by $P_{n}=p_{n}(1)=f_{n}(2)$ and $2 Q_{n}=q_{n}(1)=l_{n}(2)$, respectively [7,10].

Suppose $a(x)=1$ and $b(x)=x$. When $z_{0}(x)=0$ and $z_{1}(x)=1, z_{n}(x)=J_{n}(x)$, the nth Jacobsthal polynomial; and when $z_{0}(x)=2$ and $z_{1}(x)=1, z_{n}(x)=j_{n}(x)$, the nth JacobsthalLucas polynomial [5, 6]. Correspondingly, $J_{n}=J_{n}(2)$ and $j_{n}=j_{n}(2)$ are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_{n}(1)=F_{n}$; and $j_{n}(1)=L_{n}$.

The polynomials $f_{n}(x), l_{n}(x), J_{n}(x)$, and $j_{n}(x)$ can also be defined explicitly using Binetlike formulas:

$$
\begin{array}{ll}
f_{n}(x)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} ; & l_{n}(x)=\alpha^{n}+\beta^{n} \\
J_{n}(x)=\frac{u^{n}-v^{n}}{u-v} ; & j_{n}(x)=u^{n}+v^{n}
\end{array}
$$

where $\alpha=\alpha(x)$ and $\beta=\beta(x)$ are the solutions of the equation $t^{2}-x t-1$, and $u=u(x)$; and $v=v(x)$ are those of $t^{2}-t-x=0$. Notice that $\alpha-\beta=\sqrt{x^{2}+4}$ and $u-v=\sqrt{4 x+1}$.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_{n} means $z_{n}(x)$. In addition, we let $g_{n}=f_{n}$ or l_{n}; $b_{n}=p_{n}$ or q_{n}; and $c_{n}=J_{n}(x)$ or $j_{n}(x)$; and correspondingly, $G_{n}=F_{n}$ or $L_{n} ; B_{n}=P_{n}$ or Q_{n}; and $C_{n}=J_{n}$ or j_{n}.

$2 \quad Q$-matrix and digraph

Gibonacci polynomials f_{n} and l_{n} can be studied using the Q-matrix

$$
Q=\left[\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right]
$$

where $Q=Q(x)=\left(q_{i j}\right)_{2 \times 2}[11,14]$. It then follows by induction that

$$
Q^{n}=\left[\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right]
$$

where $n \geq 1$.
The Q-matrix has a graph-theoretic appeal. It can be interpreted as the weighted adjacency matrix of a weighted digraph D_{1} with vertices v_{1} and $v_{2}[11,14]$; see Figure 1. Notice that a weight is assigned to each edge.

A walk from vertex v_{i} to vertex v_{j} is a sequence $v_{i}-e_{i}-v_{i+1} \cdots-v_{j-1}-e_{j-1}-v_{j}$ of vertices v_{k} and edges e_{k}, where edge e_{k} is incident with vertices v_{k} and v_{k+1}. The walk is closed if $v_{i}=v_{j}$; otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of a walk is the product of the weights of the edges along the walk.

We can employ the weighted adjacency matrix to compute the weight of a walk of length n from any vertex v_{i} to any vertex v_{j}, as the following theorem shows [9, 11].

Figure 1: Weighted digraph D_{1}
Theorem 1. Let A be the weighted adjacency matrix of a weighted and connected digraph with vertices $v_{1}, v_{2}, \ldots, v_{k}$. Then the ijth entry of the matrix A^{n} gives the sum of the weights of all walks of length n from v_{i} to v_{j}, where $n \geq 1$.

This theorem implies the following result.
Corollary 2. The ijth entry of Q^{n} gives the sum of the weights of all walks of length n from v_{i} to v_{j} in the weighted digraph D_{1}, where $1 \leq i, j \leq 2$.

It follows by this corollary that the sum of the weights of all closed walks of length n originating in the digraph model is f_{n+1}, and that of walks of length n originating at v_{2} is f_{n-1}. So the sum of the weights of all closed walks of length n is $f_{n+1}+f_{n-1}=l_{n}$.

3 A Gibonacci delight

In 1963, H. W. Gould established a charming identity for Fibonacci squares [8, 13]:

$$
\begin{equation*}
F_{n+3}^{2}=2 F_{n+2}^{2}+2 F_{n+1}^{2}-F_{n}^{2} \tag{1}
\end{equation*}
$$

It has a simple, but delightful geometric interpretation [13].
The next theorem extends identity (1) to gibonacci polynomials g_{n}.

Theorem 3.

$$
\begin{equation*}
g_{n+3}^{2}=f_{3} g_{n+2}^{2}+f_{3} g_{n+1}^{2}-g_{n}^{2} . \tag{2}
\end{equation*}
$$

Proof. Using the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n+3}^{2}+g_{n}^{2} & =\left(x g_{n+2}+g_{n+1}\right)^{2}+\left(g_{n+2}-x g_{n+1}\right)^{2} \\
& =\left(x^{2}+1\right) g_{n+2}^{2}+\left(x^{2}+1\right) g_{n+1}^{2}
\end{aligned}
$$

This yields the desired identity. (It also follows by Binet's formulas.)

4 Graph-theoretic models

With these tools at our finger tips, we can give graph-theoretic interpretations of the gibonacci results in Theorem 3. The essence of our technique hinges on Corollary 2, and the "weighted" version of Fubini's principle [1, 13]: Counting the number of elements in a set in two different ways yields the same result.

We begin our discourse with $g_{n}=f_{n}$.

4.1 Interpretation with $g_{n}=f_{n}$

It follows by Corollary 2 that the sum of the weights of closed walks of length $n+2$ originating at v_{1} is f_{n+3}. The sum S of the weights of ordered pairs (v, w) of such closed walks is the product of the sum of the weights of such walks v and w. Consequently, $S=f_{n+3}^{2}$.

We will now compute the sum S in a different way.
Proof. Case 1. Suppose v and w begin with a loop at v_{1}. The sum of the weights of pairs (v, w) of such closed walks of length $n+2$ is $\left(x f_{n+2}\right)\left(x f_{n+2}\right)=x^{2} f_{n+2}^{2}$.

Case 2. Suppose v begins with a loop at v_{1}, but w does not. The sum of the weights of pairs of such closed walks is $\left(x f_{n+2}\right)\left(1 \cdot 1 \cdot f_{n}\right)=x f_{n+2} f_{n}$.

Case 3. On the other hand, suppose v does not begin with a loop, but w does. The sum of the weights of pairs of such closed walks is $\left(1 \cdot 1 \cdot f_{n}\right)\left(x f_{n+2}\right)=x f_{n+2} f_{n}$.

Case 4. Finally, suppose neither v nor w begins with a loop. The contribution of pairs of such walks toward the sum S is $\left(1 \cdot f_{n+1}\right)\left(1 \cdot f_{n+1}\right)=f_{n+1}^{2}$.

Combining the four cases, we also get

$$
\begin{aligned}
S & =x^{2} f_{n+2}^{2}+f_{n+1}^{2}+2 x f_{n+2} f_{n} \\
& =\left(x^{2}+1\right) f_{n+2}^{2}+\left(x^{2}+1\right) f_{n+1}^{2}-f_{n}^{2}
\end{aligned}
$$

as in the proof of Theorem 3.
Equating the cumulative sums yields the desired result.
As a byproduct, this discourse then gives a graph-theoretic proof of the Pell identity

$$
p_{n+3}^{2}=p_{3} p_{n+2}^{2}+p_{3} p_{n+1}^{2}-p_{n}^{2} .
$$

Next we investigate the graph-theoretic interpretation of identity (2) with $g_{n}=l_{n}$.

4.2 Interpretation with $g_{n}=l_{n}$

Proof. Let A denote the set of closed walks of length $n+3$ originating at v_{1}, and B that of length $n+3$ originating at v_{2}. Let $C=A \cup B$, where $A \cap B=\emptyset$. The sum of the weights of all closed walks in C equals $f_{n+4}+f_{n+2}=l_{n+3}$. Consequently, the sum S of the weights of ordered pairs $(v, w) \in C \times C$ is given by $S=l_{n+3}^{2}$.

To compute this sum in a different way, first we make an interesting observation. By Theorem 3, we have

$$
\begin{align*}
x^{2} f_{n+3}^{2}+4 f_{n+2}^{2}+4 x f_{n+3} f_{n+2} & =\left(x f_{n+3}+2 f_{n+2}\right)^{2} \\
& =\left(f_{n+4}+f_{n+2}\right)^{2} \\
& =l_{n+3}^{2} \tag{3}\\
& =f_{3} l_{n+2}^{2}+f_{3} l_{n+1}^{2}-l_{n}^{2}
\end{align*}
$$

Consequently, it suffices to establish graph-theoretically the equivalent identity

$$
\begin{equation*}
x^{2} f_{n+3}^{2}+4 f_{n+2}^{2}+4 x f_{n+3} f_{n+2}=l_{n+3}^{2} \tag{4}
\end{equation*}
$$

We will accomplish this using four cases for an arbitrary element $(v, w) \in C \times C$.
Case 1. Suppose $v, w \in A$. Suppose both v and w begin with a loop. The sum of the weights of pairs (v, w) of such closed walks is $\left(x f_{n+3}\right)\left(x f_{n+3}\right)=x^{2} f_{n+3}^{2}$. If v begins with a loop at v_{1} and w does not, then $v \in A$ and $w \in B$. The sum of the weights of all such pairs (v, w) of closed walks equals $\left(x \cdot f_{n+3}\right)\left(1 \cdot 1 \cdot f_{n+2}\right)=x f_{n+3} f_{n+2}$. Suppose v does not begin with a loop, but w does. Then $v \in B$ and $w \in A$. The sum of the weights of all such pairs (v, w) of closed walks equals $\left(1 \cdot 1 \cdot f_{n+2}\right)\left(x \cdot f_{n+3}\right)=x f_{n+3} f_{n+2}$. Suppose neither v nor w begins with a loop. The total contribution by the corresponding pairs (v, w) is $\left(1 \cdot 1 \cdot f_{n+2}\right)\left(1 \cdot 1 \cdot f_{n+2}\right)=f_{n+2}^{2}$.

Thus, when $v, w \in A$, the sum of the weights of such closed walks of length $n+3$ is given by

$$
S_{1}=x^{2} f_{n+3}^{2}+2 x f_{n+3} f_{n+2}+f_{n+2}^{2}
$$

Case 2. Suppose $v \in A$ and $w \in B$. If v begins with a loop, then the sum of the weights of products of such closed walks of length $n+3$ is $\left(x f_{n+3}\right)\left(f_{n+2}\right)=x f_{n+3} f_{n+2}$. On the other hand, suppose v does not begin with a loop. The corresponding sum is $\left(1 \cdot 1 \cdot f_{n+2}\right)\left(f_{n+2}\right)=$ f_{n+2}^{2}. Consequently, the total contribution from this case is

$$
S_{2}=x f_{n+3} f_{n+2}+f_{n+2}^{2}
$$

Case 3. Suppose $v \notin A$, but $w \in B$. Then $v \in B$. If w begins with a loop, the resulting contribution is $\left(f_{n+2}\right)\left(x f_{n+3}\right)=x f_{n+3} f_{n+2}$. If w does not begin with a loop, then the corresponding contribution is $\left(f_{n+2}\right)\left(1 \cdot 1 \cdot f_{n+2}\right)=f_{n+2}^{2}$. Consequently, the total contribution from Case 3 toward the cumulative sum is

$$
S_{3}=x f_{n+3} f_{n+2}+f_{n+2}^{2}
$$

Case 4. Suppose $v, w \in B$. Clearly, the resulting contribution from this case toward S is

$$
S_{4}=\left(f_{n+2}\right)\left(f_{n+2}\right)=f_{n+2}^{2}
$$

Collecting all contributions from the four cases and using identities (2) and (3), we get

$$
\begin{aligned}
S & =S_{1}+S_{2}+S_{3}+S_{4} \\
& =x^{2} f_{n+3}^{2}+4 f_{n+2}^{2}+4 x f_{n+3} f_{n+2} \\
& =l_{n+3}^{2},
\end{aligned}
$$

as desired.

An Alternate Proof.

Proof. Alternatively, by focusing on the closed walks at v_{1} alone, we can establish identity (3). To see this, let C denote the set of closed walks of length $n+3$ at v_{1}, and D that of length $n+1$ at v_{1}. Let $E=C \cup D$, where $C \cap D=\emptyset$. The sum of the weights of the walks in E is $f_{n+4}+f_{n+2}=l_{n+3}$. Consequently, the sum S of the weights of elements in $E \times E$ is $S=l_{n+3}^{2}$.

We will now compute S in a different way. (In the interest of brevity, we highlight the key steps only.) To this end, let (v, w) be an arbitrary element in $E \times E$.

Suppose $v, w \in C$. Then the sum of the weights of the pairs (v, w) of such closed walks is given by

$$
S_{1}=x^{2} f_{n+3}^{2}+f_{n+2}^{2}+2 x f_{n+3} f_{n+2} .
$$

On the other hand, let $v \in C$ and $w \in D$. The total contribution from such pairs (v, w) is

$$
\begin{aligned}
S_{2} & =x^{2} f_{n+3}^{2} f_{n+1}+x f_{n+3} f_{n}+x f_{n+2} f_{n+1}+f_{n+2} f_{n} \\
& =f_{n+2}^{2}+x f_{n+3} f_{n+2}
\end{aligned}
$$

When $v, w \in D$, the total contribution from the corresponding pairs is

$$
\begin{aligned}
S_{3} & =x^{2} f_{n+1}^{2}+2 x f_{n+1} f_{n}+f_{n}^{2} \\
& =f_{n+2}^{2}
\end{aligned}
$$

Finally, let $v \in D$ and $w \in C$. The corresponding contribution is

$$
\begin{aligned}
S_{4} & =x^{2} f_{n+3} f_{n+1}+x f_{n+3} f_{n}+x f_{n+2} f_{n+1}+f_{n+2} f_{n} \\
& =f_{n+2}^{2}+x f_{n+3} f_{n+2}
\end{aligned}
$$

Thus the cumulative sum S of the weights of all pairs $(v, w) \in E \times E$ is also given by

$$
\begin{aligned}
S_{1}+S_{2}+S_{3}+S_{4} & =x^{2} f_{n+3}^{2}+4 f_{n+2}^{2}+4 x f_{n+3} f_{n+2} \\
& =l_{n+3}^{2}
\end{aligned}
$$

as expected.

Since $[4,14]$

$$
g_{n+1}^{2}+g_{n}^{2}= \begin{cases}f_{2 n+1}, & \text { if } g_{n}=f_{n} \\ \left(x^{2}+4\right) f_{2 n+1}, & \text { if } g_{n}=l_{n}\end{cases}
$$

these models also give a graph-theoretic interpretation of the identity [2, 4, 14]

$$
\begin{aligned}
g_{n+3}^{2}+g_{n}^{2} & =\left(x^{2}+1\right)\left(g_{n+2}^{2}+g_{n+1}^{2}\right) \\
& = \begin{cases}\left(x^{2}+1\right) f_{2 n+3}, & \text { if } g_{n}=f_{n} \\
\left(x^{2}+1\right)\left(x^{2}+4\right) f_{2 n+3}, & \text { if } g_{n}=l_{n}\end{cases}
\end{aligned}
$$

We now add that using the bijection algorithm in [11], we can translate the graphtheoretic models into tiling models with squares and dominoes, where weight(square) $=x$; weight(domino) $=1$; and the weight of a tiling is the product of the weights of tiles in the tiling.

Replacing x with $2 x$ in this discourse yields a graph-theoretic proof of the Pell-Lucas identity

$$
\begin{aligned}
q_{n+3}^{2} & =4 x^{2} p_{n+3}^{2}+4 p_{n+2}^{2}+8 x p_{n+3} p_{n+2} \\
& =p_{3} q_{n+2}^{2}+p_{3} q_{n+1}^{2}-q_{n}^{2}
\end{aligned}
$$

Finally, it follows from identity (4) that

$$
F_{n+3}^{2}+4 F_{n+2}^{2}+4 F_{n+3} F_{n+2}=L_{n+3}^{2} .
$$

Consequently, an $L_{n+3} \times L_{n+3}$ floor can be tessallated with nine tiles: one $F_{n+3} \times F_{n+3}$ tile; four $F_{n+2} \times F_{n+2}$ tiles; and four $F_{n+3} \times F_{n+2}$ tiles, where $n \geq 0$.

5 Jacobsthal implications

Using the gibonacci-Jacobsthal relationships $J_{n}(x)=x^{(n-1) / 2} f_{n}(u)$ and $j_{n}(x)=x^{n / 2} l_{n}(u)$ [12], we can easily find the Jacobsthal counterparts of identities (2) and (3), where $u=1 / \sqrt{x}$:

$$
\begin{align*}
c_{n+3}^{2} & =J_{3}(x) c_{n+2}^{2}+x J_{3}(x) c_{n+1}^{2}-x^{3} c_{n}^{2} \tag{5}\\
j_{n+1}^{2}(x) & =J_{n+1}^{2}(x)+4 x^{2} J_{n}^{2}(x)+4 x J_{n+1}(x) J_{n}(x),
\end{align*}
$$

respectively. (We have omitted the basic algebra for brevity and convenience.)
Consequently,

$$
\begin{align*}
C_{n+3}^{2} & =3 C_{n+2}^{2}+6 C_{n+1}^{2}-8 C_{n}^{2} \\
j_{n+1}^{2} & =J_{n+1}^{2}+16 J_{n}^{2}+8 J_{n+1} J_{n} \tag{6}
\end{align*}
$$

Identity (6) implies that a $j_{n+1} \times j_{n+1}$ floor can be tiled with 25 tiles: one $J_{n+1} \times J_{n+1}$ tile; sixteen $J_{n} \times J_{n}$ tiles; and eight $J_{n+1} \times J_{n}$ tiles, where $n \geq 1$.

5.1 A Jacobsthal digraph

Next we confirm independently identity (5) using graph-theoretic tools. To this end, we first present a weighted digraph D_{2}; see Figure 2. Its weighted adjacency matrix is

$$
M=\left[\begin{array}{ll}
1 & x \\
1 & 0
\end{array}\right]
$$

Then

$$
M^{n}=\left[\begin{array}{cc}
J_{n+1}(x) & x J_{n}(x) \\
J_{n}(x) & x J_{n-1}(x)
\end{array}\right],
$$

where $n \geq 1$; we can confirm this using induction.

Figure 2: Weighted digraph D_{2}
It then follows that the sum of the weights of closed walks of length n originating at v_{1} is $J_{n+1}(x)$, and that of those originating at v_{2} is $x J_{n-1}(x)$. Consequently, the sum of all closed walks of length in the digraph D_{2} is $J_{n+1}(x)+x J_{n-1}(x)=j_{n}(x)$. These facts play a central role in the graph-theoretic proof.

With these tools at our finger tips, we now present the proof of each part.

Proof.

Part 1. To establish part 1, we let A be the set of closed walks of length $n+2$ starting at v_{1}. The sum of the weights of all such closed walks is $J_{n+3}(x)$; so the sum S of the weights of all ordered pairs $(v, w) \in A \times A$ is $J_{n+3}^{2}(x)$.

We will now compute S in a different way. Again, let (v, w) be an arbitrary element of $A \times A$. Suppose both v and w begin with a loop; the sum of the weights of such pairs (v, w) is $\left[1 \cdot J_{n+2}(x)\right]\left[1 \cdot J_{n+2}(x)\right]=J_{n+2}^{2}(x)$. If v begins with a loop and w does not, the corresponding sum is $\left[1 \cdot J_{n+2}(x)\right]\left[x \cdot 1 \cdot J_{n+1}(x)\right]=x J_{n+2}(x) J_{n+1}(x)$. Suppose v does not begin with a loop, but w does; then also the resulting sum is $\left[x \cdot 1 \cdot J_{n+1}(x)\right]\left[1 \cdot J_{n+2}(x)\right]=x J_{n+2}(x) J_{n+1}(x)$.

Finally, if both v and w do not begin with a loop, the contribution from such pairs equals $\left[x \cdot 1 \cdot J_{n+1}(x)\right]\left[x \cdot 1 \cdot J_{n+1}(x)\right]=x^{2} J_{n+1}^{2}(x)$.

Thus the cumulative contribution of pairs (v, w) all closed walks of length $n+2$ starting at v_{1} is given by

$$
\begin{aligned}
S & =J_{n+2}^{2}(x)+2 x J_{n+2}(x) J_{n+1}(x)+x^{2} J_{n+1}^{2}(x) \\
& =J_{n+2}^{2}(x)+x J_{n+2}(x)\left[J_{n+2}(x)-x J_{n}(x)\right]+x J_{n+1}(x)\left[J_{n+1}(x)+x J_{n}(x)\right]+x^{2} J_{n+1}^{2}(x) \\
& =(x+1) J_{n+2}^{2}(x)+x(x+1) J_{n+1}^{2}(x)-x^{2} J_{n}(x)\left[J_{n+2}(x)-J_{n+1}(x)\right] \\
& =(x+1) J_{n+2}^{2}(x)+x(x+1) J_{n+1}^{2}(x)-x^{3} J_{n}(x) .
\end{aligned}
$$

Combining the two values of S yields identity (5) when $c_{n}=J_{n}(x)$.
Part 2. To confirm identity (5) when $c_{n}=j_{n}(x)$, we focus on the closed walks of lengths $n+3$ and n in the digraph. Let C be the set of closed walks of length $n+3$ starting at v_{1}, and D the set of those starting at v_{2}. Clearly, $C \cap D=\emptyset$, so the sum of the weights of the walks in $F=C \cup D$ is $j_{n+3}(x)$. Consequently, the sum S_{1} of the weights of the ordered pairs $(v, w) \in F \times F$ is $j_{n+3}^{2}(x)$.

Now let R denote the set of closed walks of length n originating at v_{1}, and S that of those originating at v_{2}. It follows by the preceding argument that the sum S_{2} of the weights of the ordered pairs $(v, w) \in G \times G$ is $j_{n}^{2}(x)$, where $G=R \cup S$ and $R \cap S=\emptyset$.

Thus

$$
S_{1}+x^{3} S_{2}=j_{n+3}^{2}(x)+x^{3} j_{n}^{2}(x) .
$$

We will now compute the sum $S_{1}+x^{3} S_{2}$ in a different way. Again, let (v, w) be an arbitrary element of $F \times F$.

Suppose $v, w \in C$. Then the sum of the weights of pairs (v, w) of such closed walks of length $n+3$ originating at v_{1} is $\left[J_{n+4}(x)\right]\left[J_{n+4}(x)\right]=J_{n+4}^{2}(x)$. If $v \in C$ and $w \in D$, then the resulting sum is $\left[J_{n+4}(x)\right]\left[x J_{n+2}(x)=x J_{n+4}(x) J_{n+2}(x)\right.$. When $v \in D$ and $w \in C$, the corresponding sum is $\left[x J_{n+2}(x)\right]\left[J_{n+4}(x)\right]=x J_{n+4}(x) J_{n+2}(x)$. Finally, when $v, w \in D$, the contribution from such pairs (v, w) is $\left[x J_{n+2}(x)\right]\left[x J_{n+2}(x)\right]=x^{2} J_{n+2}^{2}(x)$. Thus

$$
S_{1}=J_{n+4}^{2}(x)+2 x J_{n+4}(x) J_{n+2}(x)+x^{2} J_{n+2}^{2}(x) .
$$

It then follows that

$$
S_{2}=J_{n+1}^{2}(x)+2 x J_{n+1}(x) J_{n-1}(x)+x^{2} J_{n-1}^{2}(x) .
$$

Consequently, $S_{1}+x^{3} S_{2}=A+B$, where

$$
\begin{aligned}
A & =J_{n+4}^{2}(x)+x^{2} J_{n+2}^{2}(x)+x^{3} J_{n+1}^{2}(x) \\
B & =x^{5} J_{n-1}^{2}(x)+2 x J_{n+4}(x) J_{n+2}(x)+2 x^{4} J_{n+1}(x) J_{n-1}(x)
\end{aligned}
$$

Proof. We will now confirm that $S_{1}+x^{3} S_{2}=(x+1) j_{n+2}^{2}(x)+x(x+1) j_{n+1}^{2}(x)$. The proof involves a lot of carefully prepared basic algebra; so in the interest of brevity, clarity, and convenience, we present only the major steps; also we omit the argument in the functional notation.

We have

$$
\begin{aligned}
A= & \left(J_{n+3}+x J_{n+2}\right)^{2}+x^{2} J_{n+2}^{2}+x^{3} J_{n+1}^{2} \\
= & J_{n+3}^{2}+2 x^{2} J_{n+2}^{2}+2 x J_{n+2}\left(J_{n+2}+x J_{n+1}\right)+x^{3} J_{n+1}^{2} \\
= & J_{n+3}^{2}+\left(x^{2}+x\right) J_{n+2}^{2}+x^{3} J_{n+1}^{2}+\left(x^{2}+x\right) J_{n+2}^{2}+2 x^{2} J_{n+2} J_{n+1} \\
= & J_{n+3}^{2}+\left(x^{2}+x\right) J_{n+2}^{2}+x^{3} J_{n+1}^{2}+\left(x^{2}+x\right) J_{n+2}^{2}+2 x^{2} J_{n+1}\left(J_{n+3}-x J_{n+1}\right) \\
= & J_{n+3}^{2}+\left(x^{2}+x\right) J_{n+2}^{2}+x^{3} J_{n+1}^{2}+\left(x^{2}+x\right) J_{n+2}^{2}+2 x^{2} J_{n+3} J_{n+1}-2 x^{3} J_{n+1}^{2} ; \\
B= & x^{3}\left(J_{n+1}-J_{n}\right)^{2}+2 x J_{n+2}\left(J_{n+3}+x J_{n+2}\right)+2 x^{3} J_{n+1}\left(J_{n+1}-J_{n}\right) \\
= & x^{3} J_{n+1}^{2}+x^{3} J_{n}^{2}-2 x^{3} J_{n+1} J_{n}+2 x J_{n+3} J_{n+2}+2 x^{2} J_{n+2}^{2}+2 x^{3} J_{n+1}^{2}-2 x^{3} J_{n+1} J_{n} \\
= & x^{3} J_{n+1}^{2}+x^{3} J_{n}^{2}-2 x^{3} J_{n+1} J_{n}+2 x J_{n+3}\left(J_{n+1}+x J_{n}\right)+2 x^{2} J_{n+2}^{2}+2 x^{3} J_{n+1}^{2}-2 x^{3} J_{n+1} J_{n} \\
= & 2 x J_{n+3} J_{n+1}+x^{3} J_{n}^{2}+2 x^{3} J_{n+1} J_{n}+2 x^{2} J_{n+2}^{2}+3 x^{3} J_{n+1}^{2}-4 x^{3} J_{n+1} J_{n} \\
= & 2 x J_{n+3} J_{n+1}+x^{3} J_{n}^{2}+2 x^{2} J_{n}\left(J_{n+2}+x J_{n+1}\right)+x\left(J_{n+3}-J_{n+2}\right)^{2}++2 x^{2} J_{n+2}^{2}+2 x^{3} J_{n+1}^{2} \\
& -4 x^{3} J_{n+1} J_{n} \\
= & 2 x J_{n+3} J_{n+1}+x^{3} J_{n}^{2}+2 x^{2} J_{n+2} J_{n}+x J_{n+3}^{2}+2 x^{3} J_{n+1} J_{n}+\left(2 x^{2}+x\right) J_{n+2}^{2}-2 x J_{n+3} J_{n+2} \\
& +2 x^{3} J_{n+1}^{2}-4 x^{3} J_{n+1} J_{n} .
\end{aligned}
$$

Then

$$
S_{1}+x^{3} S_{2}=C+D+\left(x^{2}+x\right) J_{n+2}^{2}-2 x^{3} J_{n+1} J_{n}+\left(2 x^{2}+x\right) J_{n+2}^{2}-2 x J_{n+3} J_{n+2}
$$

where

$$
\begin{aligned}
C & =(x+1)\left(J_{n+3}^{2}+2 x J_{n+3} J_{n+1}\right)+x^{3} J_{n+1}^{2} \\
& =(x+1)\left(J_{n+3}+x J_{n+1}\right)^{2}-x^{2} J_{n+1}^{2} \\
& =(x+1) j_{n+2}^{2}-x^{2} J_{n+1}^{2} ; \\
D & =\left(x^{2}+x\right) J_{n+2}^{2}+x^{3} J_{n}^{2}+2 x^{2} J_{n+2} J_{n} \\
& =\left(x^{2}+x\right)\left(J_{n+2}+x J_{n}\right)^{2}-2 x^{3} J_{n+2} J_{n}-x^{4} J_{n}^{2} \\
& =x(x+1) j_{n+1}^{2}-2 x^{3} J_{n+2} J_{n}-x^{4} J_{n}^{2} .
\end{aligned}
$$

Consequently,

$$
S_{1}+x^{3} S_{2}=(x+1) j_{n+2}^{2}+x(x+1) j_{n+1}^{2}+E,
$$

where

$$
\begin{aligned}
E & =-2 x^{3} J_{n+1} J_{n}-2 x^{2} J_{n+2} J_{n+1}-2 x^{4} J_{n}^{2}+2 x^{2} J_{n+2}^{2} \\
& =-2 x^{3} J_{n}\left(J_{n+1}+x J_{n}\right)+2 x^{2} J_{n+2}\left(J_{n+2}-J_{n+1}\right) \\
& =-2 x^{3} J_{n+2} J_{n}+2 x^{3} J_{n+2} J_{n} \\
& =0 .
\end{aligned}
$$

Thus

$$
S_{1}+x^{3} S_{2}=(x+1) j_{n+2}^{2}+x(x+1) j_{n+1}^{2},
$$

as expected.

6 Acknowledgments

The author would like to thank the reviewer for his/her constructive suggestions for improving the quality of exposition of the original version.

References

[1] C. Alsina and R. B. Nelsen, Charming Proofs: A Journey Into Elegant Mathematics, MAA, 2010.
[2] T. Amdeberhan, X. Chen, V. H. Moll, and B. E. Sagan, Generalized Fibonacci polynomials and Fibonomial coefficients, Ann. Comb. 18 (2014), 541-562.
[3] M. Bicknell, A primer for the Fibonacci numbers: Part VII, Fibonacci Quart. 8 (1970), 407-420.
[4] R. Flórez, N. McAnally, and A. Mukherjee, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Article A2.
[5] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), 40-54.
[6] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997), 137-148.
[7] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), 7-20.
[8] H. W. Gould, Problem B-7, Fibonacci Quart. 1 (1963), 80.
[9] T. Koshy, Discrete Mathematics with Applications, Elsevier, 2004.
[10] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, 2014.
[11] T. Koshy, Graph-theoretic models for the univariate Fibonacci family, Fibonacci Quart. 53 (2015), 135-146.
[12] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities revisited, Fibonacci Quart. 55 (2017), 147-151.
[13] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume I, Second Edition, Wiley, 2018.
[14] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, 2019.

2010 Mathematics Subject Classification: Primary 05A19; Secondary 11B37, 11B39, 11Cxx. Keywords: Fibonacci number, Lucas number, Pell number, Pell-Lucas number, Jacobsthal number, Jacobsthal-Lucas number, Q-matrix, weight, weighted digraph, weighted adjacency matrix, walk.
(Concerned with sequences $\underline{A 000032}, \underline{A 000045}, \underline{A 000129}, \underline{A 001045}, \underline{A 002203}$, and $\underline{A 014551 .)}$

Received June 1 2018; revised versions received August 24 2018; February 24 2019; February 25 2019. Published in Journal of Integer Sequences, May 222019.

Return to Journal of Integer Sequences home page.

