Approximating Sums of Consecutive Integral Roots

Pongpol Ruankong and Kantaphon Kuhapatanakul Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900
Thailand
fscippru@ku.ac.th
fscikpkk@ku.ac.th

Abstract

We present an alternative proof of Saltzman and Yuan's result on the sums of consecutive integral roots. We use the AM-GM-HM inequality to prove the main result. Moreover, the lower bound for which the result holds is greatly improved.

1 Introduction

For each real number x, let $\lfloor x\rfloor$ denote the greatest integer not exceeding x. The sums of consecutive integral roots have been studied by many mathematicians (see [1]-[5]). For instance, the following identities hold for every positive integer n :
(1) $\lfloor\sqrt{n}+\sqrt{n+1}\rfloor=\lfloor\sqrt{4 n+1}\rfloor$
(2) $\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}\rfloor=\lfloor\sqrt{9 n+8}\rfloor$
(3) $\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}\rfloor=\lfloor\sqrt{16 n+20}\rfloor$
(4) $\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+\sqrt{n+4}\rfloor=\lfloor\sqrt{25 n+49}\rfloor$

$$
\begin{align*}
& \text { (5) }\lfloor\sqrt[3]{n}+\sqrt[3]{n+1}\rfloor=\lfloor\sqrt[3]{8 n+3}\rfloor \tag{5}\\
& \text { (6) }\lfloor\sqrt[3]{n}+\sqrt[3]{n+1}+\sqrt[3]{n+2}\rfloor=\lfloor\sqrt[3]{27 n+26}\rfloor
\end{align*}
$$

On the contrary, Zhan [5] showed that for any real number c, there is a positive integer n such that

$$
\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+\sqrt{n+4}+\sqrt{n+5}\rfloor \neq\lfloor\sqrt{36 n+c}\rfloor
$$

Saltzman and Yuan [3] presented the following similar formula for $n \geq 4$.

$$
\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+\sqrt{n+4}+\sqrt{n+5}\rfloor=\lfloor\sqrt{36 n+89}\rfloor
$$

and gave the general formula: for all integers $p, m \geq 2$,

$$
\begin{equation*}
\lfloor\sqrt[p]{n}+\sqrt[p]{n+1}+\sqrt[p]{n+2}+\cdots+\sqrt[p]{n+m-1}\rfloor=\left\lfloor\sqrt[p]{m^{p} n+\frac{m^{p}(m-1)}{2}-1}\right\rfloor \tag{1}
\end{equation*}
$$

holds for all positive integers

$$
\begin{equation*}
n>\frac{m^{p}(m-1)(2 m-1)(p-1)}{12 p} \tag{2}
\end{equation*}
$$

They utilized properties of concave functions to approximate the sums of consecutive integral roots.

In this paper, we give an alternative proof of (1) using the AM-GM-HM inequality and obtain a new lower bound on n, which is approximately half of (2).

2 Results

In the sequel, let m and p be two positive integers greater than 1 , let $M=\frac{(p-1) m^{p}\left(m^{2}-1\right)}{12 p}$, and let $i_{1}, i_{2}, \ldots, i_{p} \in\{0,1,2, \ldots, m-1\}$. Denoted by A_{p}, G_{p} and H_{p} the arithmetic mean, the geometric mean, and the harmonic mean of the positive integers $n+i_{1}, n+i_{2}, \ldots, n+i_{p}$, respectively, i.e.,

$$
\begin{aligned}
A_{p} & =\frac{1}{p} \sum_{j=1}^{p}\left(n+i_{j}\right), \\
G_{p} & =\sqrt[p]{\left(n+i_{1}\right) \ldots\left(n+i_{p}\right)}, \\
H_{p} & =\frac{p}{\sum_{j=1}^{p} \frac{1}{n+i_{j}}} .
\end{aligned}
$$

By the well-known AM-GM-HM inequality,

$$
H_{p} \leq G_{p} \leq A_{p}
$$

where equality holds if and only if $n+i_{1}=n+i_{2}=\cdots=n+i_{p}$. To prove the main theorem, we first present two technical lemmas.

Lemma 1. For every positive integer n,

$$
\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(A_{p}-H_{p}\right)<\frac{M}{n^{p-1}}\left(n+\frac{m-1}{2}\right)^{p-2} .
$$

Proof. Observe that

$$
\begin{aligned}
A_{p}-H_{p} & =\frac{1}{p} \sum_{j=1}^{p}\left(n+i_{j}\right)-\frac{p}{\sum_{j=1}^{p} \frac{1}{n+i_{j}}} \\
& =\frac{\left(\left(n+\frac{1}{p} \sum_{j=1}^{p} i_{j}\right)\left(\frac{1}{p} \sum_{k=1}^{p} \frac{\prod_{j=1}^{p}\left(n+i_{j}\right)}{n+i_{k}}\right)-\prod_{j=1}^{p}\left(n+i_{j}\right)\right)}{\frac{1}{p} \sum_{k=1}^{p} \frac{\prod_{j=1}^{p}\left(n+i_{j}\right)}{n+i_{k}}}
\end{aligned}
$$

Hence

$$
\frac{A_{p}-H_{p}}{p} \sum_{k=1}^{p} \frac{\prod_{j=1}^{p}\left(n+i_{j}\right)}{n+i_{k}}=\left(n+\frac{1}{p} \sum_{j=1}^{p} i_{j}\right)\left(\frac{1}{p} \sum_{k=1}^{p} \frac{\prod_{j=1}^{p}\left(n+i_{j}\right)}{n+i_{k}}\right)-\prod_{j=1}^{p}\left(n+i_{j}\right) .
$$

Next, we determine the coefficients of

$$
\begin{equation*}
\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(\left(n+\frac{1}{p} \sum_{j=1}^{p} i_{j}\right)\left(\frac{1}{p} \sum_{k=1}^{p} \frac{\prod_{j=1}^{p}\left(n+i_{j}\right)}{n+i_{k}}\right)-\prod_{j=1}^{p}\left(n+i_{j}\right)\right) \tag{3}
\end{equation*}
$$

as a polynomial in variable n.
It is easy to see that the coefficients of n^{p} and n^{p-1} in (3) are zero. Moreover, we claim that, for each $t=2,3, \ldots, p$, the coefficient of n^{p-t} in (3) is equal to $M\binom{p-2}{t-2}\left(\frac{m-1}{2}\right)^{t-2}$ implying that the polynomial is $M\left(n+\frac{m-1}{2}\right)^{p-2}$.

The coefficient of n^{p-t} in (3), for $t=2,3, \ldots, p$, is equal to the sums of the following:

$$
\begin{aligned}
& \text { (i) } \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(\frac{1}{p^{2}} \sum_{j=1}^{p} i_{j}\left(\sum_{S} \sum_{\substack{j_{1}<\cdots<j_{t-1} \\
j_{1}, \ldots, j_{t-1} \in S}} i_{j_{1}} \cdots i_{j_{t-1}}\right)\right) \\
& \text { (ii) } \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(\frac{1}{p} \sum_{S} \sum_{\substack{j_{1}<\cdots<j_{t} \\
j_{1}, \ldots, j_{t} \in S}} i_{j_{1}} \cdots i_{j_{t}}\right)
\end{aligned}
$$

(iii) $\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(-\sum_{\substack{j_{1}<\cdots<j_{t} \\ j_{1}, \ldots, j_{t} \in \mathbb{N}_{p}}} i_{j_{1}} \cdots i_{j_{t}}\right)$
where \sum_{S} represents the sum over all $(p-1)$-subsets S of $\mathbb{N}_{p}=\{1,2, \ldots, p\}$. (Note that for the case $t=p$, (ii) is an empty sum which is conventionally zero. This coincides with the fact that (ii) does not occur in the case $t=p$.)

Distributing $\sum_{j=1}^{p} i_{j}$ inside the double sum, (i) becomes

$$
\frac{1}{p^{2}} \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(\sum_{S} \sum_{\substack{j_{1}<\cdots<j_{t-1} \\ j_{1}, \ldots, j_{t-1} \in S}}\left(\sum_{r=1}^{t-1} i_{j_{r}}\left(i_{j_{1}} \cdots i_{j_{t-1}}\right)+\sum_{r \notin\{1, \ldots, t-1\}} i_{j_{r}}\left(i_{j_{1}} \cdots i_{j_{t-1}}\right)\right)\right)
$$

Since the double sum consists of exactly $p\binom{p-1}{t-1}$ terms, using the symmetry of the i_{j} and combining the like terms, (i) amounts to

$$
\begin{equation*}
\frac{1}{p}\binom{p-1}{t-1}\left((t-1) \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} i_{1}^{2} \cdots i_{t-1}+(p-t+1) \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} i_{1} \cdots i_{t}\right) \tag{4}
\end{equation*}
$$

Similarly, (ii) amounts to

$$
\begin{equation*}
\binom{p-1}{t} \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} i_{1} \cdots i_{t} \tag{5}
\end{equation*}
$$

and (iii) amounts to

$$
\begin{equation*}
-\binom{p}{t} \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} i_{1} \cdots i_{t} \tag{6}
\end{equation*}
$$

Note that

$$
\frac{p-t+1}{p}\binom{p-1}{t-1}+\binom{p-1}{t}-\binom{p}{t}=-\frac{t-1}{p}\binom{p-1}{t-1}
$$

for $t=2, \ldots, p$. Hence adding (4), (5) and (6) yields

$$
\begin{aligned}
\frac{t-1}{p}\binom{p-1}{t-1} & \left(\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} i_{1}^{2} \cdots i_{t-1}-\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} i_{1} \cdots i_{t}\right) \\
& =\frac{p-1}{p}\binom{p-2}{t-2}\left(m^{p-t+1} \sum_{i=0}^{m-1} i^{2}\left(\sum_{i=0}^{m-1} i\right)^{t-2}-m^{p-t}\left(\sum_{i=0}^{m-1} i\right)^{t}\right) \\
& =\frac{p-1}{p}\binom{p-2}{t-2} m^{p-t}\left(\sum_{i=0}^{m-1} i\right)^{t-2}\left(m \sum_{i=0}^{m-1} i^{2}-\left(\sum_{i=0}^{m-1} i\right)^{2}\right) \\
& =M\binom{p-2}{t-2}\left(\frac{m-1}{2}\right)^{t-2}
\end{aligned}
$$

which is the coefficient of n^{p-t} in $M\left(n+\frac{m-1}{2}\right)^{p-2}$. Therefore,

$$
\begin{aligned}
\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(A_{p}-H_{p}\right) & <\frac{1}{n^{p-1}} \sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(\frac{A_{p}-H_{p}}{p} \sum_{k=1}^{p} \frac{\prod_{j=1}^{p}\left(n+i_{j}\right)}{n+i_{k}}\right) \\
& <\frac{M}{n^{p-1}}\left(n+\frac{m-1}{2}\right)^{p-2} .
\end{aligned}
$$

Lemma 2. For every positive integer $n \geq M+\frac{(p-2)(m-1)}{2}$,

$$
n^{p-1} \geq M\left(n+\frac{m-1}{2}\right)^{p-2}
$$

Proof. For $n \geq M+\frac{(p-2)(m-1)}{2}$,

$$
\begin{aligned}
n^{p-1} & \geq M n^{p-2}+\frac{(p-2)(m-1)}{2} n^{p-2} \\
& \geq M n^{p-2}+\frac{(p-2)(m-1)}{2} M n^{p-3}+\left(\frac{(p-2)(m-1)}{2}\right)^{2} n^{p-3} \\
& \vdots \\
& \geq M \sum_{j=0}^{p-3}\left(\frac{(p-2)(m-1)}{2}\right)^{j} n^{p-2-j}+\left(\frac{(p-2)(m-1)}{2}\right)^{p-2} n \\
& \geq M \sum_{j=0}^{p-2}\left(\frac{(p-2)(m-1)}{2}\right)^{j} n^{p-2-j} .
\end{aligned}
$$

Since $(p-2)^{j} \geq\binom{ p-2}{j}$ for all $0 \leq j \leq p-2$,

$$
n^{p-1} \geq M \sum_{j=0}^{p-2}\binom{p-2}{j}\left(\frac{m-1}{2}\right)^{j} n^{p-2-j}=M\left(n+\frac{m-1}{2}\right)^{p-2}
$$

as desired.
Now we are ready to state and prove the main result.
Theorem 3. For every positive integer $n \geq M+\frac{(p-2)(m-1)}{2}$,

$$
\lfloor\sqrt[p]{n}+\sqrt[p]{n+1}+\cdots+\sqrt[p]{n+m-1}\rfloor=\left\lfloor\sqrt[p]{m^{p} n+\frac{m^{p}(m-1)}{2}-1}\right\rfloor
$$

Proof. Let

$$
S=\sqrt[p]{n}+\sqrt[p]{n+1}+\sqrt[p]{n+2}+\cdots+\sqrt[p]{n+m-1}
$$

One obtains

$$
S^{p}=\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} \sqrt[p]{\left(n+i_{1}\right) \cdots\left(n+i_{p}\right)}=\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} G_{p} .
$$

By the AM-GM-HM inequality,

$$
\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} A_{p}-\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(A_{p}-H_{p}\right)<S^{p}<\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} A_{p} .
$$

Observe that

$$
\begin{aligned}
\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} A_{p} & =\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1} n+\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(\frac{1}{p} \sum_{j=1}^{p} i_{j}\right) \\
& =m^{p} n+\frac{m^{p}(m-1)}{2}
\end{aligned}
$$

Moreover, by Lemma 1 and Lemma 2, we have

$$
\sum_{i_{1}=0}^{m-1} \cdots \sum_{i_{p}=0}^{m-1}\left(A_{p}-H_{p}\right)<\frac{M}{n^{p-1}}\left(n+\frac{m-1}{2}\right)^{p-2} \leq 1
$$

Thus

$$
m^{p} n+\frac{m^{p}(m-1)}{2}-1<S^{p}<m^{p} n+\frac{m^{p}(m-1)}{2}
$$

holds for all positive integers $n \geq M+\frac{(p-2)(m-1)}{2}$. Equivalently,

$$
\lfloor\sqrt[p]{n}+\sqrt[p]{n+1}+\cdots+\sqrt[p]{n+m-1}\rfloor=\left\lfloor\sqrt[p]{m^{p} n+\frac{m^{p}(m-1)}{2}-1}\right\rfloor
$$

holds for all positive integers $n \geq M+\frac{(p-2)(m-1)}{2}$.

The table below compares the lower bounds of n between Saltzman and Yuan's work, $N_{S Y}=\frac{m^{p}(m-1)(2 m-1)(p-1)}{12 p}+1$, and our work, $N=\frac{(p-1) m^{p}\left(m^{2}-1\right)}{12 p}+\frac{(p-2)(m-1)}{2}$, for small values of p and m.

	$p=3$		$p=4$		$p=5$		$p=6$	
m	$N_{S Y}$	N						
2	2	2	4	4	7	8	14	16
3	16	13	51	43	163	133	507	409
4	75	55	337	243	1434	1029	5974	4273
5	251	169	1407	942	7501	5006	39063	29050
6	661	423	4456	2840	28513	18152	178201	113410
7	1487	918	11705	7209	87397	53792	637266	392176
8	2587	1796	26881	16135	229377	137637	1911467	1146894
9	5509	3244	55769	32813	535378	314940	5019166	2952466
10	9501	5505	106876	61884	1140001	660014	11875001	6875018

3 Acknowledgments

The authors greatly appreciate the anonymous referee for his/her careful reading and helpful comments.

References

[1] F. D. Hammer, Problem E3010, Amer. Math. Monthly 95 (1988), 133-134.
[2] K. Kuhapatanakul and P. Ruankong, Sums of square roots, Math. Gazette 101 (2017), 276-280.
[3] P. W. Saltzman and P. Yuan, On sums of consecutive integral roots, Amer. Math. Monthly 115 (2008), 254-261.
[4] Z. Wang, A City of Nice Mathematics (in Chinese), The Democracy and Construction Press, Beijing, 2000.
[5] X. Zhan, Formulae for sums of consecutive square roots, Math. Intelligencer 27 (2005), 4-5.

2010 Mathematics Subject Classification: Primary 11A99; Secondary 11Y55.
Keywords: sum of roots.

Received April 30 2019; revised version received September 2 2019. Published in Journal of Integer Sequences, September 252019.

Return to Journal of Integer Sequences home page.

