
23 11

Article 19.7.4
Journal of Integer Sequences, Vol. 22 (2019),2

3

6

1

47

Arithmetic Subderivatives:
Discontinuity and Continuity

Pentti Haukkanen and Jorma K. Merikoski
Faculty of Information Technology and Communication Sciences

FI-33014 Tampere University
Finland

pentti.haukkanen@tuni.fi

jorma.merikoski@tuni.fi

Timo Tossavainen
Department of Arts, Communication and Education

Lulea University of Technology
SE-97187 Lulea

Sweden
timo.tossavainen@ltu.se

Abstract

We first prove that any arithmetic subderivative of a rational number defines a
function that is everywhere discontinuous in a very strong sense. Second, we show
that although the restriction of this function to the set of integers is continuous (in the
relative topology), it is not Lipschitz continuous. Third, we see that its restriction to a
suitable infinite set is Lipschitz continuous. This follows from the solutions of certain
arithmetic differential equations.
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1 Introduction

Let 0 6= x ∈ Q. There exists a unique sequence (νp(x))p∈P of integers (with only finitely
many nonzero terms) such that

x = (sgn x)
∏

p∈P

pνp(x). (1)

Here P stands for the set of primes, and sgn x = x/|x|. Define sgn 0 = 0 and νp(0) = 0 for
all p ∈ P; then Eq. (1) also holds for x = 0.

Let ∅ 6= S ⊆ Q. The arithmetic subderivative [5] of x ∈ Q with respect to S is

x′
S = DS(x) = x

∑

p∈S

νp(x)

p
.

The arithmetic partial derivative [4, 3] of x with respect to p ∈ P is x′
p = Dp(x) = D{p}(x).

The arithmetic derivative [6, 2, 8] of x is x′ = D(x) = DP(x). Arithmetic differential
equations and arithmetic partial differential equations have been studied [8, 4, 3, 7].

We have DS(p) = 1 for all p ∈ S. If x is near to p and suitably chosen, then DS(x) can
be far from one. So it is natural to expect that DS is discontinuous at any a ∈ P. However,
it is not equally apparent that DS is discontinuous at an arbitrary a ∈ Q.

We say that a real-valued function f , defined on an open real (or rational) interval I,
is superdiscontinuous at a ∈ I if it attains values of an arbitrarily large absolute value
arbitrarily near to a and on its both sides. More precisely, given any δ,M > 0, there are
x, y ∈ I such that

a− δ < x < a < y < a+ δ and |f(x)|, |f(y)| > M.

If x (respectively, y) exists, then f is superdiscontinuous from the left (right) at a. We prove
in Section 2 that DS is superdiscontinuous at any a ∈ Q. We need two lemmas.

Lemma 1. Let p, q ∈ P, p 6= q. The set {±pmqn | m,n ∈ Z} is dense in Q.

Proof. See the proof of [3, Lemma 30].

Lemma 2. Let f be a real-valued function, defined on an open real (or rational) interval I,
and let a ∈ I. If f is superdiscontinuous at each point of I \{a}, then it is superdiscontinuous

also at a.

Proof. Let δ,M > 0. It is no restriction to assume that a ± δ ∈ I. Since f is superdiscon-
tinuous (from the right) at a − δ, there is x ∈ I satisfying a − δ < x < a and |f(x)| > M .
Similarly, since f is superdiscontinuous (from the left) at a + δ, there is y ∈ I satisfying
a < y < a+ δ and |f(y)| > M .
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Let f and I be as above. The function f is Lipschitz continuous (in I) if there exists
L > 0 satisfying

|f(x)− f(y)| ≤ L|x− y| (2)

for all x, y ∈ I. Since a Lipschitz continuous function is continuous in the ordinary sense,
the results in Section 2 imply that DS is Lipschitz discontinuous. But the restriction of DS

to Z, denoted by DS|Z, is continuous (in the relative topology); so, is it Lipschitz continuous?
We show in Section 3 that it is not. This raises a further question: Is there an infinite set
A ⊂ Q such that DS|A is Lipschitz continuous? Applying the previously known solutions
of the differential equations x′ = 0 and x′

p = ax, we give a positive answer. This, in turn,
motivates us to consider the more general differential equation x′

S = ax. We solve it in
Section 4. Finally, we complete our paper with concluding remarks in Section 5.

2 Superdiscontinuity of DS

We state in Theorem 3 an additional assumption, in order to make the proof easier.

Theorem 3. Let ∅ 6= S ⊆ P. If there are distinct p, q ∈ P\S, then DS is superdiscontinuous

at any a ∈ Q.

Proof.

Case 1: a > 0. Let δ,M > 0, s ∈ S, and k ∈ Z+. By Lemma 1, there are m,n ∈ Z such that

a

sk
< pmqn <

a

sk
+

δ

sk
.

Then x = skpmqn satisfies
a < x < a+ δ.

The subderivative

DS(x) = ksk−1pmqn > ksk−1 a

sk
=

ka

s
> M

if

k >
sM

a
.

Consequently, superdiscontinuity from the right follows.
To prove superdiscontinuity from the left, we use the above notation but let δ < a (which

is no restriction). Now, by Lemma 1, there are m,n ∈ Z such that

a

sk
−

δ

sk
< pmqn <

a

sk
.

Hence,
a− δ < x < a,
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and

DS(x) = ksk−1pmqn > ksk−1a− δ

sk
=

k(a− δ)

s
> M

if

k >
sM

a− δ
.

This verifies superdiscontinuity from the left.

Case 2: a < 0. Apply the fact that DS(a) = −DS(−a).

Case 3: a = 0. Apply Lemma 2.

What about trying the same idea for S = P \ {p}, p ∈ P? It is enough to assume that
a > 0. Let q ∈ S and T = S \ {q}; then p, q /∈ T . Let δ,M, s, and k be as above. Again,
there are m and n such that x = skpmqn satisfies

a < x < a+ δ.

If

k >
sM

a
,

then
DS(x) = DT (x) +

n

q
skpmqn > M + nskpmqn−1.

Consequently, if n ≥ 0 (i.e., νq(x) ≥ 0 for some q ∈ S), then DS(x) > M , and superdis-
continuity from the right follows. Unfortunately, a problem arises if n < 0 (i.e., νq(x) < 0
for all q ∈ S). Then DS(x) < 0, and we get nothing reasonable. It seems that our method
cannot be revised to work in this case. Instead of a single x, we apparently should consider
a suitable sequence (xi). We do this in the proof of the next theorem, where S is arbitrary.
Theorem 3 could now be omitted, but we find its proof interesting on its own and therefore
keep it.

Theorem 4. Let ∅ 6= S ⊆ P. Then DS is superdiscontinuous at any a ∈ Q.

Proof. We can assume that a 6= 0; then superdiscontinuity at a = 0 follows from Lemma 2.
Let p, q ∈ P, p 6= q, and denote m = νp(a), n = νq(a). Then

a = pmqnr,

where r 6= 0 has νp(r) = νq(r) = 0. We show that there is a sequence (xi) of rational numbers
with

xi → a, x1, x2, . . . > a, (3)

and
|DS(xi)| → ∞. (4)
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By a simple modification of this proof, it can be seen that there also exists a sequence (xi)
satisfying

xi → a, x1, x2, . . . < a

and (4).
By Lemma 1, there are integer sequences (mi) and (ni) such that the sequence

(xi), xi = pmiqni

satisfies (3). To prove (4), we must know their limiting behaviour.

Case 1: Both (mi) and (ni) are bounded from above. Then they are bounded also from below,
since otherwise xi → 0 or (xi) diverges, contradicting (3). Therefore, (xi) has only finitely
many different terms, implying that its limit a is one of them. This again contradicts (3).
Consequently, this case is impossible.

Case 2: The sequence (mi) is not bounded from above. If, instead, (ni) is not bounded from
above, we can proceed similarly. Now, (mi) has a subsequence (mik) satisfying mik → ∞.
Since pmik → ∞ but xik → a 6= 0, necessarily qnik → 0, i.e., nik → −∞. Including also the
case when (ni) is not bounded from above, we therefore have

mik → ±∞ and nik → ∓∞. (5)

In order to keep the notation simple, we let (xi) denote the subsequence (xik). Then Eq. (5)
reads

mi → ±∞ and ni → ∓∞. (6)

By the convergence, the sequence (xi) is bounded also from above. Let u ∈ Q satisfy

x1, x2, . . . < u.

We can assume in Eq. (6) that

mi → −∞ and ni → ∞. (7)

If the signs are opposite, then a simple modification applies. There is i0 ∈ Z+ such that
ni > 0 for all i ≥ i0. Denote

ci =
mi −m

ni

, where i ≥ i0.

Then

a < xi < u ⇐⇒ pmqnr < pmiqni < u ⇐⇒

qn−nir < pmi−m < p−mq−niu ⇐⇒

(n− ni) logp q + logp r < mi −m < −m− ni logp q + logp u ⇐⇒

(n− ni + logq r) logp q < mi −m < −m+ (−ni + logq u) logp q

⇐⇒
(n+ logq r

ni

− 1
)

logp q < ci < −
m

ni

+
( logq u

ni

− 1
)

logp q. (8)
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By Eq. (7),

(n+ logq r

ni

− 1
)

logp q → − logp q, −
m

ni

+
( logq u

ni

− 1
)

logp q → − logp q.

Hence, by Eq. (8),
ci → − logp q. (9)

The function DS has not yet had any role. Let us now focus on it.
If p, q ∈ S (i.e., there are at least two elements in S), then

DS(xi) = xi

(mi

p
+

ni

q

)

= xi

(m+ cini

p
+

ni

q

)

=

xi

m

p
+ xi

(ci
p
+

1

q

)

ni =: Ai +Bi. (10)

By (3),

Ai → a
m

p
. (11)

Further, (3) and (9) imply that

xi

(ci
p
+

1

q

)

→ a
(1

q
−

logp q

p

)

=
a

p

(p

q
− logp q

)

6= 0,

because a 6= 0 and pp 6= qq. Consequently, by Eq. (7),

|Bi| → ∞. (12)

Finally, Eqs. (12), (11), and (10) imply (4).
The case of S = {p} (i.e., there is only one element in S) remains. Then

DS(xi) = xi

mi

p
.

Since xi → a( 6= 0) and mi → ±∞, the result (4) again follows.

3 Lipschitz discontinuity of DS|Z

We recall Dirichlet’s theorem on arithmetic progressions.

Theorem 5. Let a ∈ Z, b ∈ Z+. If gcd (a, b) = 1, then there exist infinitely many primes of

the form a+ kb, where k ∈ Z+.

Proof. See the proof of [1, Theorem 7.9].
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Since all integer points are isolated (i.e., for all a ∈ Z, there is r > 0 such that N(a, r) ∩
Z = {a}, where N(a, r) = {x ∈ Q | |x− a| < r}), the restriction DS|Z is continuous (in the
relative topology). However, we prove that even DS|Z+

is Lipschitz discontinuous.

Theorem 6. Let ∅ 6= S ⊆ P. The restriction DS|Z+
is Lipschitz discontinuous.

Proof. Let L > 0. We show that there exist x, y ∈ Z+ such that

x− y = 1 and DS(x)−DS(y) > L. (13)

Let p ∈ S. Choose n ∈ Z+ with
npn−1 > L+ 1. (14)

By Theorem 5, there is k ∈ Z+ such that

y = kpn − 1 ∈ P.

Let x = kpn. Then
x− y = 1, DS(y) ∈ {0, 1}, (15)

and
DS(x) = kDS(p

n) + pnDS(k) ≥ kDS(p
n) = knpn−1 ≥ npn−1. (16)

Now, Eqs. (15), (16), and (14) imply Eq. (13).

On the other hand, we give two examples showing that if S = P or S = {p}, p ∈ P, then
there is an infinite set A ⊂ Q such that DS|A is Lipschitz continuous.

Example 7. Let x ∈ Q. Then [8, Theorem 15]

x′ = 0 (17)

if (not “only if”, contrary to this theorem)

x = 0 or x = ±
∏

p∈P

pξp(x)p, (18)

where (ξp(x))p∈P is an integer sequence with a finite number of nonzero terms such that

∑

p∈P

ξp(x) = 0.

We present a correct “only if” part in Theorem 9. Anyway, the set

A =
{

x ∈ Q | x satisfies (18)}

is clearly infinite. Since the restriction D|A is identically zero by Eq. (17), it is Lipschitz
continuous.
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Example 8. Let p ∈ P and a ∈ Q satisfy

ap ∈ Z, (19)

and let x ∈ Q. Then [3, Theorem 3]
x′
p = ax (20)

if and only if
x = cpap, where νp(c) = 0. (21)

The set
A = {x ∈ Q | x satisfies (21)}

is clearly infinite. By Eq. (20), we have Dp|A(x) = ax. It is Lipschitz continuous with
L = |a|.

4 The differential equation x′S = ax

We extend Examples 7 and 8.

Theorem 9. Let ∅ 6= S ⊆ P and a, x ∈ Q. Then

x′
S = ax (22)

if and only if

x = c
∏

p∈S

pξp(x)p. (23)

Here

νp(c) = 0 for all p ∈ S, (24)

and (c = 0 or) (ξp(x))p∈S is a sequence of rational numbers with a finite number of nonzero

terms (this is needed if S is infinite) satisfying

ξp(x)p ∈ Z for all p ∈ S (25)

and
∑

p∈S

ξp(x) = a. (26)

Proof. If x is as in Eq. (23), then, by Eq. (26), we get

x′
S = x

∑

p∈S

ξp(x)p

p
= x

∑

p∈S

ξp(x) = xa,

verifying Eq. (22).
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Conversely, suppose that x satisfies Eq. (22). We show that it satisfies Eq. (23). The
case of x = 0 is trivial. If the claim holds for x, then it also holds for −x. Therefore, it is
enough to consider

x =
∏

p∈P

pνp(x).

Denoting νp = νp(x) for short, we can write

x = c
∏

p∈S

pνp = c
∏

p∈S

pξpp,

where c satisfies Eq. (24) and

ξp =
νp
p
, p ∈ S.

Now,
∑

p∈S

ξp =
∑

p∈S

νp
p

=
x′
S

x
=

ax

x
= a

by Eq. (22), i.e., Eq. (26) holds. Also Eq. (25) is obviously satisfied. Thus Eq. (23) follows.

The set
A = {x ∈ Q | x satisfies (23)}

is clearly infinite. By Eq. (22), the restriction DS|A(x) = ax. It is Lipschitz continuous with
L = |a|.

If S = P and a = 0, then Eq. (23) reads

x = c
∏

p∈P

pξp(x)p.

Here
∑

p∈P

ξp(x) = 0

and νp(c) = 0 for all p ∈ P, i.e., c ∈ {0,±1}. Thus we encounter Eq. (18), but it is enough
that ξp(x)p ∈ Z for all p ∈ P, not necessarily ξp(x) ∈ Z.

If S = {p}, then

a =
∑

q∈{p}

ξq(x) = ξp(x).

Hence, by Eq. (23),

x = c
∏

q∈{p}

pξq(x)q = cpξp(x)p = cpap, where νp(c) = 0,

repeating Eq. (21). The condition (25) reduces to (19).
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5 Concluding remarks

We proved that DS is superdiscontinuous at any a ∈ Q. We also proved that its restriction
to a suitable infinite set A is Lipschitz continuous. This happens if, for example, the set A
consists of the solutions of x′ = 0 or those of

x′
p = ax, (27)

where ap ∈ Z. These equations have been discussed in the literature, while the more general
equation,

x′
S = ax, (28)

apparently has not. Anyway, it also provides us a suitable A if there is a sequence (ξp(x))p∈S
satisfying Eqs. (25) and (26).

According to Example 8, ap ∈ Z is a sufficient condition for Eq. (27) to have nontrivial
solutions. In fact, it is also necessary [3, Theorem 3]. But what about Eq. (28)? It has
nontrivial solutions if and only if there are p1, . . . , pk ∈ S such that ap1 · · · pk ∈ Z. We will
present the proof in a forthcoming paper.
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