Two New Identities Involving the Catalan Numbers and Sign-Reversing Involutions

Jovan Mikić
J.U. SŠC "Jovan Cvijić"
74480 Modriča
Republic of Srpska
jnmikic@gmail.com

Abstract

We give a combinatorial proof of a known sum concerning the product of a binomial coefficient with two central binomial coefficients. The method of description, involution, and exception is used. The same combinatorial argument also proves the " -1 shifted version" of this sum. As a consequence, two new binomial coefficient identities with the Catalan numbers are derived.

1 Introduction

Let n be a non-negative integer. The Catalan numbers are the famous sequence

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

In this paper, we derive two new (to our knowledge) binomial coefficient identities with the Catalan numbers.

Theorem 1. For non-negative integers n, we have

$$
\begin{align*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} C_{k}\binom{2 n-2 k}{n-k} & =\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}^{2} \tag{1}\\
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{k} C_{2 n-k} & =C_{n}\binom{2 n}{n} \tag{2}
\end{align*}
$$

In order to prove Theorem 1, we consider a known combinatorial sum

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}= \begin{cases}0, & \text { if } n \text { is odd } \tag{3}\\ \binom{n}{\frac{n}{2}}^{2}, & \text { if } n \text { is even }\end{cases}
$$

Eq. (3) appears several times in the literature; see, for example, [2, Eq. (6.12), p. 52], [3, Eq. (6.61), p. 29], and [7, Example 3.6.2, p. 45]. There are two binomial coefficient identities ([3, Eq. (6.10), p. 23; Eq. (7.3), p. 34]) similar to Eq. (3). They are proved combinatorially, for example, in [8]. See [6] and [5, Conclusions] for the connection between these identities and Shapiro's formula [9, Ex. (6.C.18), p. 41] and Segner's recurrence relation [4, Eq. (5.6), p. 117] respectively.

We give a proof of Eq. (3) by using the method of "description, involution, and exception" [1].

By using the same idea, we derive the " -1 shifted version" of Eq. (3). We assert that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}= \begin{cases}-\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}^{2}, & \text { if } n \text { is odd } \tag{4}\\ 0, & \text { if } n \text { is even }\end{cases}
$$

Clearly, subtracting Eq. (4) from Eq. (3) and by using the well-known relation $C_{k}=$ $\binom{2 k}{k}-\binom{2 k}{k-1}$, we get Eq. (1). Furthermore, it can be shown that Eq. (2) is a consequence of Eq. (1).

Throughout the paper, $[n]$ denotes the set $\{1,2, \ldots, n\}$, if n is a positive integer; and $[0]$ denotes the empty set \emptyset.

Let A and B be sets. Then $|A|$ denotes the cardinality of the set A, and $A \backslash B$ denotes the set difference: $\{x: x \in A, x \notin B\}$.

We end this paper with the generalization of Eqns. (3) and (4).

2 Definitions

Let n be a fixed non-negative integer.
Definition 2. For $A \subset[n]$, we define

$$
A_{t}= \begin{cases}\emptyset, & \text { if } A=\emptyset \\ x+n: x \in A, & \text { if } A \neq \emptyset\end{cases}
$$

Obviously, if $A \subset[n]$, then $A^{t} \subset[2 n] \backslash[n]$.
Definition 3. We define the function $\varphi:[2 n] \rightarrow[2 n]$, as follows:

$$
\varphi(x)= \begin{cases}x+n, & \text { if } x \in[n] ; \\ x-n, & \text { if } x \in[2 n] \backslash[n]\end{cases}
$$

Definition 4. Let $S \subset[2 n]$. The set S is balanced if $S=(S \cap[n]) \cup(S \cap[n])^{t}$. Otherwise, S is a unbalanced set.

In other words, set S is balanced if $\forall x(x \in S \Leftrightarrow \varphi(x) \in S)$. Clearly, if set S is balanced, then $|S|$ must be even.

The union of two balanced sets is a balanced set. Note that the converse does not hold even if two sets are disjoint. For example, unbalanced sets $[n]$ and $[2 n] \backslash[n]$ are disjoint, but their union is a balanced set $[2 n]$.

However, if S_{1} and S_{2} are disjoint sets such that $S_{1} \cup \varphi\left(S_{1}\right)$ and $S_{2} \cup \varphi\left(S_{2}\right)$ are disjoint sets, then $S_{1} \cup S_{2}$ is a balanced set if and only if both sets S_{1} and S_{2} are balanced.

3 Proof of Eq. (3)

Proof. Let n be a fixed non-negative integer. We use the method of description, involution, and exception, as discussed in [1].

Description:

Let X denote the set

$$
\left\{(A, B, C): A \subset[n], B \subset A \cup A^{t},|A|=|B|, C \subset[2 n] \backslash\left(A \cup A^{t}\right),|A|+|C|=n\right\}
$$

For integers k, where $0 \leq k \leq n$, we define the sets X_{k}, as follows:

$$
X_{k}=\{(A, B, C) \in X:|A|=k\}
$$

Obviously, $X=\bigcup_{k=0}^{n} X_{k}$ and $\left|X_{k}\right|=\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}$. We have

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=\sum_{k=0}^{n}(-1)^{k}\left|X_{k}\right|=|\mathcal{E}|-|\mathcal{O}| \tag{5}
\end{equation*}
$$

where

$$
\mathcal{E}=\{(A, B, C) \in X:|A| \text { is even }\} \text { and } \mathcal{O}=\{(A, B, C) \in X:|A| \text { is odd }\}
$$

Involution:

Let us define sets D and E, as follows:

$$
\begin{align*}
& D=\{(A, B, C) \in X: B \cup C \text { is an unbalanced set }\} \tag{6}\\
& E=\{(A, B, C) \in X: B \cup C \text { is balanced set }\} \tag{7}
\end{align*}
$$

Obviously, D and E are disjoint sets and $X=D \cup E$.
Let $(A, B, C) \in D$. We let $d_{B, C}$ denote $\min \{x \in B \cup C: \varphi(x) \notin B \cup C\}$. The integer $d_{B, C}$ is well-defined because $B \cup C$ is an unbalanced set.

Let us define the function $\Psi: D \rightarrow D$, as follows:

$$
\Psi((A, B, C))= \begin{cases}\left(A \backslash\left\{d_{B, C}\right\}, B \backslash\left\{d_{B, C}\right\}, C \cup\left\{d_{B, C}\right\}\right), & \text { if } d_{B, C} \in B \cap[n] ; \tag{8}\\ \left(A \backslash\left\{d_{B, C}-n\right\}, B \backslash\left\{d_{B, C}\right\}, C \cup\left\{d_{B, C}\right\}\right), & \text { if } d_{B, C} \in B \cap[n]^{t} ; \\ \left(A \cup\left\{d_{B, C}\right\}, B \cup\left\{d_{B, C}\right\}, C \backslash\left\{d_{B, C}\right\}\right), & \text { if } d_{B, C} \in C \cap[n] ; \\ \left(A \cup\left\{d_{B, C}-n\right\}, B \cup\left\{d_{B, C}\right\}, C \backslash\left\{d_{B, C}\right\}\right), & \text { if } d_{B, C} \in C \cap[n]^{t}\end{cases}
$$

The function Ψ is well-defined and an involution on D. Moreover, if $(A, B, C) \in D \cap \mathcal{E}$, then $\Psi((A, B, C)) \in D \cap \mathcal{O}$; and vice versa. Therefore, we may conclude that $|D \cap \mathcal{E}|=$ $|D \cap \mathcal{O}|$.

We have

$$
\begin{aligned}
|\mathcal{E}|-|\mathcal{O}| & =|\mathcal{E} \cap X|-|\mathcal{O} \cap X| & & \\
& =|\mathcal{E} \cap D|+|\mathcal{E} \cap E|-(|\mathcal{O} \cap D|+|\mathcal{O} \cap E|) & & (X=D \cup E) \\
& =|\mathcal{E} \cap E|-|\mathcal{O} \cap E| & & \text { (because }|\mathcal{E} \cap D|=|\mathcal{O} \cap D|) .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
|\mathcal{E}|-|\mathcal{O}|=|\mathcal{E} \cap E|-|\mathcal{O} \cap E| . \tag{9}
\end{equation*}
$$

From Eqns. (5) and (9), it follows that

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=|\mathcal{E} \cap E|-|\mathcal{O} \cap E| . . \tag{10}
\end{equation*}
$$

Exception:

Let $(A, B, C) \in E$.
By Eq. (7), the set $B \cup C$ is balanced. Sets B and C are disjoint. Moreover, $B \cup \varphi(B)$ and $C \cup \varphi(C)$ are disjoint sets too. Then it follows that both sets B and C must be balanced. Hence integers $|B|$ and $|C|$ are even. Since $|A|=|B|$ (by the definition of X), $|A|$ is even and $(A, B, C) \in \mathcal{E}$. Therefore, $E \subset \mathcal{E}$.

Eq. (10) simplifies to

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=|E| \tag{11}
\end{equation*}
$$

We have two cases:
Case (a): n is odd.
Since $|B \cup C|=n$, it follows that the set $B \cup C$ is unbalanced and $E=\emptyset$. By Eq. (11), it follows that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=0
$$

as desired.
Case (b): n is even.
We use the Chu-Vandermonde convolution formula:

$$
\begin{equation*}
\sum_{k=0}^{c}\binom{a}{k}\binom{b}{c-k}=\binom{a+b}{c} \tag{12}
\end{equation*}
$$

where a, b, and c are non-negative integers.
Let us count the number of elements of the set E. The set E is equal to the set $\left\{\left(A, B_{1} \cup B_{1}^{t}, C_{1} \cup C_{1}^{t}\right): A \subset[n],|A|\right.$ even, $\left.B_{1} \subset A,\left|B_{1}\right|=\frac{|A|}{2}, C_{1} \subset[n] \backslash A,\left|C_{1}\right|+\left|B_{1}\right|=\frac{n}{2}\right\}$.
Obviously, it follows that $|E|$ is equal to

$$
\left.\left\lvert\,\left\{\left(A, B_{1}, C_{1}\right): A \subset[n],|A| \text { even, } B_{1} \subset A,\left|B_{1}\right|=\frac{|A|}{2}, C_{1} \subset[n] \backslash A,\left|C_{1}\right|+\left|B_{1}\right|=\frac{n}{2}\right\}\right. \right\rvert\, .
$$

Clearly, there is a one-to-one correspondence between $\left(A, B_{1}, C_{1}\right)$ and $\left(B_{1} \cup C_{1}, B_{1}, A \backslash B_{1}\right)$. Therefore, $|E|$ is equal to

$$
\begin{equation*}
\left|\left\{\left(B_{2}, B_{1}, A_{1}\right): B_{2} \subset[n],\left|B_{2}\right|=\frac{n}{2}, B_{1} \subset B_{2}, A_{1} \subset[n] \backslash B_{2},\left|A_{1}\right|=\left|B_{1}\right|\right\}\right| \tag{13}
\end{equation*}
$$

Let $k=\left|B_{1}\right|$. By Eq. (13), it follows that

$$
\begin{aligned}
|E| & =\binom{n}{\frac{n}{2}} \sum_{k=0}^{\frac{n}{2}}\binom{\frac{n}{2}}{k}\binom{\frac{n}{2}}{k} & \\
& =\binom{n}{\frac{n}{2}} \sum_{k=0}^{\frac{n}{2}}\binom{\frac{n}{2}}{k}\binom{\frac{n}{2}}{\frac{n}{2}-k} & \text { (by symmetry) } \\
& =\binom{n}{\frac{n}{2}}^{2} & \text { (by Eq. (12)). }
\end{aligned}
$$

We obtain

$$
|E|=\binom{n}{\frac{n}{2}}^{2}
$$

By Eq. (11), it follows that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=\binom{n}{\frac{n}{2}}^{2}
$$

as desired. This completes the proof of Eq. (3).

4 Proof of Eq. (4)

Proof. The proof of Eq. (4) is similar to the proof of Eq. (3).

Description:

Let X denote the set

$$
\left\{(A, B, C): A \subset[n], B \subset A \cup A^{t},|B|=|A|-1, C \subset[2 n] \backslash\left(A \cup A^{t}\right),|A|+|C|=n\right\}
$$

For integers k, where $0 \leq k \leq n$, we define the following sets X_{k}, as follows:

$$
X_{k}=\{(A, B, C) \in X:|A|=k\}
$$

Obviously, $X=\bigcup_{k=0}^{n} X_{k}$ and $\left|X_{k}\right|=\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}$. We have

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}=\sum_{k=0}^{n}(-1)^{k}\left|X_{k}\right|=|\mathcal{E}|-|\mathcal{O}| \tag{14}
\end{equation*}
$$

where

$$
\mathcal{E}=\{(A, B, C) \in X:|A| \text { is even }\} \text { and } \mathcal{O}=\{(A, B, C) \in X:|A| \text { is odd }\}
$$

Involution:

Same as in Eq. (3). Let D, E, and Ψ be same as in Eqns. (6),(7), and (8) respectively. It is readily verified that the function Ψ is well-defined and an involution on D. Hence the equation

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}=|\mathcal{E} \cap E|-|\mathcal{O} \cap E| \tag{15}
\end{equation*}
$$

holds.

Exception:

Let $(A, B, C) \in E$. By Eq. (7), the set $B \cup C$ is balanced. As before, both sets B and C must be balanced. Thus, integers $|B|$ and $|C|$ are even. Since $|A|=|B|+1$ (by the new definition of X), $|A|$ is odd and $(A, B, C) \in \mathcal{O}$. Therefore, $E \subset \mathcal{O}$. Eq. (15) simplifies to

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}=-|E| \tag{16}
\end{equation*}
$$

We have two cases:
Case (a): n is even.

Since $|B \cup C|=n-1,|B \cup C|$ is odd. It follows that the set $B \cup C$ is unbalanced and $E=\emptyset$. By Eq. (16), it follows that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}=0
$$

as desired.
Case (b): n is odd.
Again, we use Eq. (12). Let us count the number of elements of the set E.
The set E is equal to the set

$$
\begin{gathered}
\left\{\left(A, B_{1} \cup B_{1}^{t}, C_{1} \cup C_{1}^{t}\right):\right. \\
\left.A \subset[n],|A| \text { odd, } B_{1} \subset A,\left|B_{1}\right|=\frac{|A|-1}{2}, C_{1} \subset[n] \backslash A,\left|C_{1}\right|+\left|B_{1}\right|=\frac{n-1}{2}\right\} .
\end{gathered}
$$

Obviously, $|E|$ is equal to

$$
\left.\left\lvert\,\left\{\left(A, B_{1}, C_{1}\right): A \subset[n],|A| \text { odd, } B_{1} \subset A,\left|B_{1}\right|=\frac{|A|-1}{2}, C_{1} \subset[n] \backslash A,\left|C_{1}\right|+\left|B_{1}\right|=\frac{n-1}{2}\right\}\right. \right\rvert\, .
$$

Clearly, there is one-to-one correspondence between $\left(A, B_{1}, C_{1}\right)$ and ($B_{1} \cup C_{1}, B_{1}, A \backslash B_{1}$). Therefore, $|E|$ is equal to

$$
\begin{equation*}
\left|\left\{\left(B_{2}, B_{1}, A_{1}\right): B_{2} \subset[n],\left|B_{2}\right|=\frac{n-1}{2}, B_{1} \subset B_{2}, A_{1} \subset[n] \backslash B_{2},\left|A_{1}\right|=\left|B_{1}\right|+1\right\}\right| . \tag{17}
\end{equation*}
$$

Let $k=\left|B_{1}\right|$. By Eq. (17), it follows that

$$
\begin{array}{rlr}
|E| & =\binom{n}{\frac{n-1}{2}} \sum_{k=0}^{\frac{n-1}{2}}\binom{\frac{n-1}{2}}{k}\binom{\frac{n+1}{2}}{k+1} \\
& =\binom{n}{\frac{n-1}{2}} \sum_{k=0}^{\frac{n-1}{2}}\binom{\frac{n-1}{2}}{k}\binom{\frac{n+1}{2}}{\frac{n-1}{2}-k} & \\
& =\binom{n}{\frac{n-1}{2}}^{2} & \text { (by symmetry) }
\end{array}
$$

Thus we have shown

$$
|E|=\binom{n}{\frac{n-1}{2}}^{2}
$$

By Eq. (16), it follows that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{2 k}{k-1}\binom{2 n-2 k}{n-k}=-\binom{n}{\frac{n-1}{2}}^{2}
$$

as desired. This completes the proof of Eq. (4).

5 Proof of Theorem 1

Proof. Eq. (1) directly follows from Eqns. (3),(4), and from the relation [4, p. 106] $C_{k}=$ $\binom{2 k}{k}-\binom{2 k}{k-1}$.

Let us prove Eq. (2). By Eq. (1), it follows that

$$
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{k}\binom{4 n-2 k}{2 n-k}=\binom{2 n}{n}^{2}
$$

Changing k to $2 n-k$, we obtain that

$$
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{k}\binom{4 n-2 k}{2 n-k}=\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{2 n-k}\binom{2 k}{k}
$$

Now we use a lesser known identity on the Catalan numbers:

$$
\begin{equation*}
C_{k}\binom{4 n-2 k}{2 n-k}+\binom{2 k}{k} C_{2 n-k}=2(n+1) C_{k} C_{2 n-k} \tag{18}
\end{equation*}
$$

Eq. (18) is a special case [5, p. 8] of the following identity:

$$
C_{k}\binom{2 n-2 k}{n-k}+\binom{2 k}{k} C_{n-k}=(n+2) C_{k} C_{n-k}
$$

We have

$$
\begin{align*}
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{k}\binom{4 n-2 k}{2 n-k}+\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{2 n-k}\binom{2 k}{k} & =2\binom{2 n}{n}^{2} \\
2(n+1) & \sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} C_{k} C_{2 n-k} \tag{18}
\end{align*}=2\binom{2 n}{n}^{2} \quad(\text { by Eq. (18)) }) ~=~ 1 ~(-1)^{k}\binom{2 n}{k} C_{k} C_{2 n-k}=\frac{1}{n+1}\binom{2 n}{n}^{2} .
$$

The last equation above proves Eq. (2). This completes the proof of Theorem 1.

6 Conclusion

Let n, α, β be non-negative integers. By using the same idea from proofs of Eqns. (3) and (4), we can conclude that

7 Acknowledgments

I would like to thank my teachers Vanja Vujić and Ivana Božičković for proofreading this paper. Also I would like to thank the referee for useful suggestions.

References

[1] A. T. Benjamin and J. J. Quinn, An alternate approach to alternating sums: a method to DIE for, College Math. J. 39 (2008), 191-201.
[2] H. W. Gould, Combinatorial Identities, published by the author, revised edition, 1972.
[3] H. W. Gould and J. Quaintance, Combinatorial identities: Table I: intermediate techniques for summing finite series, preprint, 2010. Available at https://www.math.wvu. edu/~gould/Vol.4.PDF,
[4] T. Koshy, Catalan Numbers with Applications, Oxford University Press, 2009.
[5] J. Mikić, A proof of a famous identity concerning the convolution of the central binomial coefficients, J. Integer Sequences 19 (2016), Article 16.6.6.
[6] G. V. Nagy, A combinatorial proof of Shapiro's Catalan convolution, Adv. in Appl. Math. 50 (2012) 391-396.
[7] M. Petkovšek, H. Wilf, and D. Zeilberger, $A=B$, A. K. Peters, 1996.
[8] M. Z. Spivey, A combinatorial proof for the alternating convolution of the central binomial coefficients, Amer. Math. Monthly 121 (2014), 537-540.
[9] R. P. Stanley, Catalan Numbers, Cambridge University Press, 2015.

2010 Mathematics Subject Classification: Primary 05A19 ; Secondary 05A10.
Keywords: Catalan number, central binomial coefficient, combinatorial proof, method of involution, binomial coefficient identity.

Received May 5 2019; revised versions received May 13 2019; May 26 2019; November 9 2019. Published in Journal of Integer Sequences, November 112019.

Return to Journal of Integer Sequences home page.

