
23 11

Article 19.7.3
Journal of Integer Sequences, Vol. 22 (2019),2

3

6

1

47

Subset Parking Functions

Sam Spiro
Department of Mathematics

University of California, San Diego
9500 Gilman Dr.

La Jolla, CA 92093
USA

sspiro@ucsd.edu

Abstract

A parking function (c1, . . . , cn) can be viewed as having n cars trying to park on a
one-way street with n parking spots from left to right, where car i tries to park in spot
ci, and otherwise it parks in the leftmost available spot after ci. Another way to view
this is that each car has a set Ci of “acceptable” parking spots, namely Ci = [ci, n],
and that each car tries to park in the leftmost available spot that it finds acceptable.

Motivated by this, we define a subset parking function (C1, . . . , Cn), with each Ci a
subset of {1, . . . , n}, by having the ith car try to park in the leftmost available element
of Ci. We further generalize this idea by restricting our sets to be of size k, intervals,
and intervals of length k. In each of these cases we provide formulas for the number of
such parking functions.

1 Introduction

Parking functions are well-studied objects in combinatorics, and are often defined in the
following way. Imagine that there are n parking spots labeled 1 though n on a one way
street. There are n cars, also labeled 1 through n, that wish to park in these spots, and
each has a preferred parking spot ci. When it is car i’s turn to park, it goes to its preferred
spot ci and parks there if it is empty. Otherwise, it tries to park in the next available spot
that is after ci. The tuple (c1, . . . , cn) is said to be a parking function if every car succeeds
in parking.

1

mailto:sspiro@ucsd.edu

For example, (2, 2, 2) is not a parking function, as car 1 parks in slot 2; car 2 tries to park
in slot 2 but can not and goes to the next available slot 3; and car 3 tries to park in slot 2
but can not, and there are no slots after this that are available. On the other hand, (2, 1, 1)
is a parking function as car 1 parks in slot 2; car 2 parks in slot 1; and car 3 tries to park
in slot 1 but can not, so it goes to the next available slot 3. We will say that the parking
function (2, 1, 1) has outcome 213, which describes how one would see the cars parked if one
were to walk from slot 1 to slot 3.

Parking functions have many interesting combinatorial properties. For example, a nec-
essary and sufficient condition for (c1, . . . , cn) to be a parking function is, after rearranging
the ci in increasing order as b1 ≤ b2 ≤ · · · ≤ bn, we have bi ≤ i for all i. In particular, this
shows that any permutations of the entries of a parking function is also a parking function.
One can also prove that the number of parking functions PF(n) satisfies

PF(n) = (n+ 1)n−1. (1)

Parking functions have connections to many other areas of combinatorics, such as hyperplane
arrangements [6] and the lattice of non-crossing partitions [7]. We refer the reader to the
survey of Yan [9] for an elegant proof of (1) and a more in depth study of parking functions.

Many generalizations and variants of parking functions have been studied, such as x-
parking functions [8] and G-parking functions [4]. These examples generalize the bi ≤ i
characterization of parking functions. One can also generalize the parking analogy. An
example of this is to allow cars to park a few spaces before their preferred spot if this is
already taken, which has been studied recently [1].

In this paper we also consider a variant of parking function that is obtained by modifying
the parking rule. To motivate the idea, we observe that a parking function (c1, . . . , cn) can
be viewed as each car choosing a set Ci = [ci, n] of “acceptable” parking spaces, with each
car parking in the leftmost available spot which is acceptable to them. One can generalize
this idea by allowing each Ci to be an arbitrary set.

To this end, let [n] := {1, 2, . . . , n} and let Sn denote the set of permutations of size n
written in one line notation. Given n non-empty subsets Ci ⊆ [n] and a permutation π ∈ Sn,
we will say that C = (C1, . . . , Cn) is a subset parking function with outcome π if for all
1 ≤ i ≤ n, having πj = i implies j is the smallest element of Ci \ {π−1

i′ : i′ < i}. That is,
if car i ends up in spot j, it must find spot j to be acceptable, all the earlier spots which
are acceptable are already taken, and no one has taken spot j yet. We let SPF(n, π) denote
the number of subset parking functions with outcome π, and we denote the total number
of subset parking functions by SPF(n) :=

∑

π∈Sn
SPF(n, π). Technically we should say that

SPF(n) counts the number of parking functions of size n, but here and throughout we omit
explicitly noting this dependency on n whenever it is clear from context.

For example, ({2}, {2, 3}, {1, 2, 3}) is a subset parking function with outcome 312. How-
ever, ({2, 3}, {1, 2, 3}, {2}) is not a subset parking function since we require π2 = 1, π1 = 2,
and then no choice from C3 will work. In particular this shows that for subset parking
functions the order of the Ci sets are important, which is not the case in the classical study
of parking functions.

2

Our first goal is to enumerate subset parking functions. To this end, we recall that the
inversion number inv(π) of a permutation π is equal to the number of pairs (i, j) such that
i < j and πj < πi.

Theorem 1. For any integer n ≥ 1 and π ∈ Sn,

SPF(n, π) = 2n(n−1)−inv(π),

SPF(n) =
n−1
∏

i=0

(2n − 2i).

(Classical) parking functions are subset parking functions where each Ci is required to
be an interval of the form [ci, n]. We can get other interesting variants by restricting the Ci

sets in other ways. For example, we say that C = (C1, . . . , Cn) is a k-subset parking function
if C is a subset parking function and |Ci| = k for all i. We let SPFk(n, π) denote the number
of k-subset parking functions with outcome π and SPFk(n) the number of k-subset parking
functions.

To state our next result, we define the local inversion number invi(π) to be the number
of pairs (i, j) with i < j and πj < πi. Observe that inv(π) =

∑

invi(π). We adopt the
convention that

(

0
0

)

= 1 and
(

0
x

)

= 0 for x > 0.

Theorem 2. For any integer n ≥ 1, π ∈ Sn, and 1 ≤ k ≤ n,

SPFk(n, π) =
n
∏

i=1

(

n− invi(π)− 1

k − 1

)

,

SPFk(n) =
n−1
∏

i=0

((

n

k

)

−

(

i

k

))

.

We next consider the case that each Ci is an interval, and we call such parking functions
interval parking functions. Let IPF(n) and IPF(n, π) be the total number of interval parking
functions and the number of interval parking functions with outcome π, respectively.

To state our full result, given a permutation π we define ai(π) to be the largest j with
1 ≤ j ≤ i such that πi ≥ {πi, πi−1, . . . , πi−j+1}. For example, ai(π) ≥ 2 if and only if
πi > πi−1. As another example, for π = 31524, we have ai(π) equal to 1, 1, 3, 1, 2 as i ranges
from 1 to 5. Finally, define PF(n, π) to be the number of (classical) parking functions with
outcome π.

Theorem 3. For any n ≥ 1 and π ∈ Sn,

IPF(n, π) = n! · PF(n, π) = n!
n
∏

i=1

ai(π),

IPF(n) = n! · PF(n) = n! · (n+ 1)n−1.

3

Other properties of interval parking functions are currently being investigated by Chris-
tensen, DeMuse, Martin, and Yin [2].

The last variant we consider are k-interval parking functions, which are interval parking
functions where each Ci is an interval containing k elements. We let IPFk(n) denote the
number of k-interval parking functions and IPFk(n, π) the number of those with outcome π.
Define Sk

n to be the set of permutations π of order n with πn > πn−1 > · · · > πn−k+1.

Theorem 4. Let k and n be integers with 1 ≤ k ≤ n and let π ∈ Sn. If π /∈ Sk
n, then

IPFk(n, π) = 0. Otherwise,

IPFk(n, π) =
n−k
∏

i=1

min{ai(π), k} ·
n
∏

i=n−k+1

min{n− i− k + ai(π) + 1, n− i+ 1}.

This formula is rather complicated, but for certain k it is manageable. For example,
when k = 1 each term in the product is 1. We conclude that IPF1(n, π) = 1 for all π, and
hence IPF1(n) = n!. When k = n, we have IPFn(n, π) = 1 when π = 12 · · ·n (since in
general a1(π) = 1 and an−i(π) ≤ n− i), and otherwise IPFn(n, π) = 0, so IPFn(n) = 1. Both
of these results can also be verified directly. The formulas for k = n− 1 and k = 2 are also
quite nice.

Corollary 5. If n ≥ 2 and π ∈ Sn−1
n with π1 = j, then

IPFn−1(n, π) =

{

2n−j−1, if j 6= n;

1, if j = n.

Moreover,

IPFn−1(n) = 2n−1.

To state the formula for k = 2, we define the ascent number asc(π) of a permutation π
to be the number of i with 2 ≤ i ≤ n and πi−1 < πi. Define the Eulerian number

〈

n

k

〉

to be
the number of permutations π ∈ Sn with asc(π) = k.

Corollary 6. If n ≥ 2 and π ∈ S2
n, then

IPF2(n, π) = 2asc(π)−1.

Moreover,

IPF2(n) =
n−1
∑

k=1

(n− k)

〈

n− 1

k − 1

〉

2k−1.

4

2 Subset results

We first prove enumeration results for a generalization of subset parking functions where
each car is given a list of allowed subset sizes. To this end, given L = (L1, . . . , Ln) with
Li ⊆ [n], we define SPF(n,L) to be the number of subset parking functions where |Ci| ∈ Li,
and we will call this an L-parking function. Our first goal will be to enumerate SPF(n,L).

To do this, we define the notion of a partial parking function, which intuitively describes
where the first m cars have parked. Let Sm,n denote the set of strings π = π1 · · · πn where
for all 1 ≤ i ≤ m there exists a unique index j with πj = i and such that every other letter
is an auxillary letter ∗. Note that Sn,n is simply the set of permutations. For i ≤ m we let
π−1
i denote the unique index j with πj = i.
We say that (C1, . . . , Cm) with each Ci a non-empty subset of [n] is a partial L-parking

function with outcome π ∈ Sm,n if for all 1 ≤ i ≤ m, |Ci| ∈ Li and π−1
i = j implies j is

the smallest element of Ci \ {π
−1
i′ : i′ < i}. Finally, given a permutation π, we write π(m) to

denote the string where π
(m)
i = πi if i ≤ m and π

(m)
i = ∗ otherwise. Once one unpacks these

definitions, the following is immediate.

Lemma 7. Let 1 ≤ m ≤ n and π ∈ Sn. C is an L-parking function with outcome π if and

only if (C1, . . . , Cm) is a partial L-parking function with outcome π(m) for all m.

The following lemma shows how to extend partial parking functions.

Lemma 8. Let 1 ≤ m ≤ n and π ∈ Sn. If (C1, . . . , Cm−1) is a partial L-parking function

with outcome π, then (C1, . . . , Cm) is a partial L-parking function if and only if |Cm| ∈ Lm

and Cm 6⊂ {π−1
i : i < m}.

Proof. If Cm is such a set, then by assumption |Cm| ∈ Lm and there exists some minimal j
in Cm \ {π−1

k : k < m}. Thus by defining π′ by π′
i = πi for i 6= j and π′

j = m, we see that
(C1, . . . , Cm) is a partial L-parking function with outcome π′. Conversely, if (C1, . . . , Cm) is
a partial L-parking function, then Cm \ {π−1

k : k < m} must be non-empty, so Cm 6⊂ {π−1
k :

k < m}. We also must have |Cm| ∈ Lm by definition, proving the result.

Theorem 9. For any n ≥ 1 and L = (L1, . . . , Ln),

SPF(n,L) =
n
∏

i=1

(

∑

ℓ∈Li

(

n

ℓ

)

−

(

i− 1

ℓ

)

)

.

Proof. Consider the following procedure. We start with an empty list (). Recursively, given
a partial L-parking function (C1, . . . , Ci−1), we choose a set Ci such that (C1, . . . , Ci) is a
partial L-parking function. By Lemma 7, every L-parking function is obtained (uniquely)
by this procedure. Thus to obtain our result we need only enumerate how many choices we
can make at each stage of the procedure.

Assume one has already chosen (C1, . . . , Ci−1) so now we need to choose Ci. By Lemma 8,
for any ℓ ∈ Li, the number of ways to choose an appropriate Ci with |Ci| = ℓ is

(

n

ℓ

)

−
(

i−1
ℓ

)

.

5

Namely, one can choose any ℓ-element subset that is not contained in {π−1
j : j < i}. As we

allow |Ci| to be any element of Li, we conclude that the number of choices for Ci is exactly
∑

ℓ∈Li

(

n

ℓ

)

−
(

i−1
ℓ

)

. As the number of choices for Ci is independent of all of the other Cj sets,
we conclude that the total number of ways to complete this procedure is the product of all
of these sums. This gives the desired result.

We can prove a similar general theorem when the outcome is specified. To this end,
define SPF(n,L, π) to be the number of L-parking functions with outcome π. Recall that
invi(π) is defined to be the number of (i, j) with i < j and πj < πi.

Theorem 10. For any n ≥ 1, π ∈ Sn, and L = (L1, . . . , Ln),

SPF(n,L, π) =
n
∏

i=1

(

∑

ℓ∈Li

(

n− invi(π)− 1

ℓ− 1

)

)

.

Proof. Consider the following procedure. We start with an empty list (). Recursively, given
a partial L-parking function (C1, . . . , Ci−1) with outcome π(i−1), we choose a set Ci such that
(C1, . . . , Ci) is a partial L-parking function with outcome π(i). By Lemma 7, every L-parking
function with outcome π is obtained (uniquely) by this procedure. Thus to obtain our result
we need only enumerate how many choices we can make at each stage of the procedure.

Assume (C1, . . . , Ci−1) is a partial L-parking function with outcome π(i−1). By Lemma 8,
if we wish to have |Ci| = ℓ ∈ Li, then we must have Ci 6⊂ {π−1

i′ : i′ < i}. Moreover, we also
must choose this set so that it has outcome π(i). If j = π−1

i , this is equivalent to having Ci

be any subset with j the minimal element of Ci \ {π
−1
i′ : i′ < i}. To summarize, necessary

and sufficient conditions for Ci to have |Ci| = ℓ are

(a) |Ci| = ℓ,

(b) Ci 6⊂ {π−1
i′ : i′ < i},

(c) j ∈ Ci, and

(d) k /∈ Ci if k < j and k /∈ {π−1
i′ : i′ < i}.

Note that (b) is implied by (c), so this is irrelevant. Condition (d) is equivalent to avoiding
k with k < j and i < πk (that is, the car that appears in the earlier spot k parks after i).
The number of such k is exactly invi(π), so we conclude that the number of Ci satisfying
these conditions is exactly

(

n−1−invi(π)
ℓ−1

)

. Summing this value over all ℓ ∈ Li gives the total
number of choices for Ci. As this quantity is independent of all the other choices of Cj, we
can take their product to arrive at the desired count for SPF(n,L, π).

With this we can now prove our results. We start with Theorem 2.

Proof of Theorem 2. Note that k-subset parking functions are precisely L-parking functions
where Li = {k} for all i. The result follows from Theorems 9 and 10.

6

Proof of Theorem 1. Subset parking functions are precisely L-parking functions where Li =
[n] \ {0} for all i. By Theorem 9 we have

SPF(n) =
n
∏

i=1

(

(2n − 1)− (2i−1 − 1)
)

.

Canceling the 1’s and reindexing the product gives the first result. For the second result,
Theorem 10 implies

SPF(n, π) =
n
∏

i=1

2n−invi(π)−1 = 2n(n−1)−inv(π),

where we used that inv(π) =
∑

invi(π).

We note that Theorem 1 implies

∑

π∈Sn

2n(n−1)−inv(π) =
n−1
∏

i=0

(2n − 2i),

which one can verify using the generating function for the inversion statistic. This also
provides an alternative way to prove the formula for SPF(n) given the formulas for each
SPF(n, π). Similarly Theorem 2 implies

∑

π∈Sn

n
∏

i=1

(

n− invi(π)− 1

k − 1

)

=
∏

i=1

((

n

k

)

−

(

i− 1

k

))

.

We are not aware of a more direct method to prove this.
Before closing this section, we briefly discuss a variant of subset parking functions. Since

subset parking functions allow each car to have any set of positions be acceptable, it also
makes sense to allow each car to have their own preference order for these spots insteadof
always requiring them to park in the left-most available spot.

To formalize this, we say that a list of subsets C = (C1, . . . , Cn), together with a list
of bijections fi : Ci → [|Ci|], is an ordered parking function with outcome π = π1 · · · πn if
for all 1 ≤ i ≤ n, πj = i implies fi(j) = minj′∈Di

fi(j
′), where Di := Ci \ {π−1

i′ : i′ < i}.
We let OPF(n, π) denote the number of ordered parking functions with outcome π and
OPF(n) :=

∑

OPF(n, π) the number of ordered parking functions.
If we define L-ordered parking functions analogous to how we defined L-parking functions,

then essentially the same proof used to prove Theorem 9 shows that

OPF(n,L) =
n
∏

i=1

(

∑

ℓ∈Li

(

n

ℓ

)

ℓ!−

(

i− 1

ℓ

)

ℓ!

)

.

7

With this established, one can prove a nice analog of Theorem 1. Namely, define O(n) =
∑n

ℓ=0

(

n

ℓ

)

ℓ! to be the number of ordered subset of [n]. Then

OPF(n) =
n−1
∏

i=0

(O(n)−O(i)).

In the ordered setting, every π is equally likely to be the outcome of an ordered parking
function, so OPF(n, π) = OPF(n)/n! for all π.

3 Interval results

As before we first prove a more general theorem. Let K = (K1, . . . , Kn) be such that
Ki ⊆ [n]\{0} for all i. We say that (C1, . . . , Cn) is a K-interval parking function if each Ci is
an interval with |Ci| ∈ Ki. We define partial K-interval parking functions analogous to how
we defined partial L-parking functions in the previous section, and as before we immediately
have the following.

Lemma 11. Let 1 ≤ m ≤ n and π ∈ Sn. C is a K-interval parking function with outcome

π if and only if (C1, . . . , Cm) is a partial K-interval parking function with outcome π(m) for

all m.

We also have an analog of Lemma 8. Recall that we define ai(π) to be the largest j ≤ i
such that πi ≥ {πi, πi−1, . . . , πi−j+1}.

Lemma 12. Let 1 ≤ m ≤ n and π ∈ Sn. Let (C1, . . . , Cm−1) be a partial K-interval parking

function with outcome π(m−1) and let p = π−1
m . Then (C1, . . . , Cm) is a partial K-interval

parking function with outcome π(m) if and only if Cm = [r, r + k − 1] with k ∈ Ki and

max{p− ap(π) + 1, p− k + 1} ≤ r ≤ min{p, n− k + 1}.

Proof. Assume (C1, . . . , Cm) is such a partial K-interval parking function with Cm = [r, r +
k − 1] for some r and k. Because |Cm| = k we require k ∈ Km, and because Cm ⊆ [n] we
must have r + k − 1 ≤ n. We also need p − k + 1 ≤ r ≤ p so that this set contains p.
Further, we require every x ∈ [r, p] to satisfy πx < m, otherwise p will not be the smallest
element of Cm \ {π−1

i : i < m}, which would contradict (C1, . . . , Cm) having outcome π(m).
By definition this will not be the case if r < p−ap(π)+1, so r ≥ p−ap(π)+1. We conclude
that r satisfies the desired inequalities.

Conversely, assume Cm = [r, r + k] has r and k satisfying these conditions. Because
p− ap(π)+ 1 ≥ 1 we have Cm ⊆ [n], and we also have |Cm| = k ∈ Ki. Again by definition of
ap(π) these inequalities imply that p is the smallest element of Cm \ {π−1

i : i < m}, so this
gives the desired partial K-interval parking function.

8

Let IPF(n,K, π) denote the number of K-interval parking functions with outcome π and
define

bi(π, k) :=

min{ai(π), k}, if i ≤ n− k;

0, if ai(π) < k + i− n;

min{n− i− k + ai(π) + 1, n− i+ 1}, otherwise.

Theorem 13. For any n ≥ 1, π ∈ Sn, and K = (K1, . . . , Kn),

IPF(n,K, π) =
n
∏

i=1

∑

k∈Kπi

bi(π, k)

 .

Proof. We consider the number of ways to iteratively build partial K-interval parking func-
tions with outcomes π(m). If one has already chosen (C1, . . . , Ci−1) and p = π−1

i , then by
Lemma 12 the number of ways to choose an appropriate Ci with |Ci| = k ∈ Ki is the number
of r in the range

max{p− ap(π) + 1, p− k + 1} ≤ r ≤ min{p, n− k + 1}.

If p ≤ n− k this number is exactly min{ap(π), k}. Otherwise it is

max{0,min{n− k − p+ ap(π) + 1, n− p+ 1}}.

Because n − p + 1 ≥ 1, this quantity is 0 if and only if ap(π) + 1 ≤ k + p − n. Thus the
number of choices for Ci with |Ci| = k is exactly bp(π, k). Summing this over all k ∈ Ki

gives a quantity independent of all the other Cj, so we can take the product of these values
and conclude

IPF(n,K, π) =
n
∏

i=1

(

∑

k∈Ki

bπ−1

i

(π, k)

)

.

By reindexing this product, we get the stated result.

Proof of Theorem 4. Recall that we wish to prove

IPFk(n, π) =
n−k
∏

i=1

min{ai(π), k} ·
n
∏

i=n−k+1

min{n− i− k + ai(π) + 1, n− i+ 1}

whenever π ∈ Sk
n. That is, whenever πn > · · · > πn−k+1. Observe that k-interval parking

functions are exactly K-interval parking functions with Ki = {k} for all i, so a formula for
IPFk(n, π) is given by Theorem 13. It remains to rewrite this formula into the desired form.

If π /∈ Sk
n, then there exists some i with 0 ≤ i ≤ k − 2 and πn−i < πn−i−1. This implies

an−i(π) = 1 < k − i, and hence bn−i(π, k) = 0. Thus IPFk(n, π) = 0.
From now on we assume π ∈ Sk

n. This implies an−i(π) ≥ k − i for all 0 ≤ i ≤ k − 1, and
hence for these i we have bn−i(π, k) = min{i− k+ an−i(π) + 1, i+1}. This gives bj(π, k) for
all j ≥ n − k + 1, and otherwise we have bj(π, k) = min{aj(π), k}. Taking the products of
these terms gives the desired result.

9

Proof of Corollary 5. The statement can be verified for n = 2, so assume n ≥ 3. By Theo-
rem 2 we have for π ∈ Sn−1

n that IPFn−1(n, π) equals

min{a1(π), n− 1} ·min{a2(π), n− 1} ·
n
∏

i=3

min{ai(π)− i+ 2, n− i+ 1}

= a2(π) ·
n−1
∏

i=3

min{ai(π)− i+ 2, n− i+ 1},

where we used a1(π) ≤ 1 and a2(π) ≤ 2 ≤ n− 1. We claim that this is equal to

n−1
∏

i=2

(ai(π)− i+ 2).

Indeed this follows from the fact that ai(π)− i+ 2 ≤ 2 ≤ n− i+ 1 for all i ≤ n− 1.
Assume π1 = j, and recall that π ∈ Sn−1

n implies that π2 < · · · < πn. Thus for all i > 1
we have ai(π) = i if πi > j and ai(π) = i−1 otherwise. Thus j = n implies that ai(π) = i−1
for all i ≥ 2, and otherwise there are exactly n − 1 − j different i with 2 ≤ i ≤ n − 1 and
ai(π) = i. We conclude the first result. For the second result,

IPFn−1(n) =
∑

π∈Sn−1
n

IPFn−1(n, π) = 1 +
n−1
∑

j=1

2n−j−1 = 2n−1.

In principle this same technique can be used to compute IPFn−k(n, π) and IPFn−k(n)
for any fixed k, though the case analysis and computations become rather complicated. We
note that one can prove IPFn−1(n) = 2n−1 more directly by observing that (C1, . . . , Cn) will
be an (n− 1)-interval parking function if and only if Cn = [2, n] and Ci is [1, n− 1] or [2, n]
for all other i.

Before proving Corollary 6, we give an enumeration result for permutations in S2
n with a

given number of ascents. We adopt the convention
〈

0
k

〉

= 0 for k > 0,
〈

0
0

〉

= 1, and
〈

n

−1

〉

= 0.

Lemma 14. For all n and k with n ≥ 1 and 0 ≤ k ≤ n−1, let S+
n,k be the set of permutations

of size n which have πn−1 < πn and which have exactly k ascents. If P (n, k) := |S+
n,k|, then

P (n, k) = (n− k)

〈

n− 1

k − 1

〉

.

We note that this result is implicitly proven in [5], but for completeness we include the
full proof here. To prove this, we recall the following recurrence for Eulerian numbers, which
is valid for all n, k ≥ 1 [3].

〈

n

k

〉

= (k + 1)

〈

n− 1

k

〉

+ (n− k)

〈

n− 1

k − 1

〉

. (2)

10

Proof. The result is true for k = 0, so assume that we have proven the result up to k ≥ 1.
For any fixed k the result is true for n = 1, so assume the result has been proven up to
n ≥ 2. To help us prove the result, we define S−

n,k to be the set of permutations which have

πn−1 > πn and which have exactly k ascents. Define M(n, k) := |S−

n,k|. By construction we
have

P (n, k) +M(n, k) =

〈

n

k

〉

. (3)

Define the map φ : S+
n,k → Sn−1 by sending π ∈ S+

n,k to the word obtained by removing the
letter 1 from π and then decreasing the value of each letter by 1. For example, φ(32514) =
2143. We wish to determine the image of φ. Let π be a permutation in S+

n,k, and let i denote
the position of 1 in π. Note that i 6= n since π ends with an ascent. If πi−1 < πi+1 with
1 < i < n, then φ(π) will continue to have k ascents and end with an ascent, so φ(π) ∈ S+

n−1,k.

If i = 1 or πi−1 > πi+1 with 1 < i < n− 1, then φ(π) ∈ S+
n−1,k−1. If i = n− 1 and πn−2 > πn,

then φ(π) ∈ S−

n−1,k−1.
It remains to show how many times each element of the image is mapped to by φ. If

π ∈ S+
n−1,k, then 1 can be inserted into π in k ways to obtain an element of S+

n,k (it can be

placed between any of the k ascents πi < πi+1). If π ∈ S+
n−1,k−1, then 1 can be inserted into

π in n − k ways (it can be placed at the beginning of π or between any of the n − 1 − k
descents πi > πi+1). If π ∈ S−

n−1,k, then 1 must be inserted in between πn−1 > πn in order
to have the word end with an ascent. With this and the inductive hypothesis, we conclude
that

P (n, k) = kP (n− 1, k) + (n− k)P (n− 1, k − 1) +M(n− 1, k − 1)

= k(n− k − 1)

〈

n− 2

k − 1

〉

+ (n− k)2
〈

n− 2

k − 2

〉

+M(n− 1, k − 1). (4)

By using (3), the inductive hypothesis, and (2); we find

M(n− 1, k − 1) =

〈

n− 1

k − 1

〉

− P (n− 1, k − 1)

=

〈

n− 1

k − 1

〉

− (n− k)

〈

n− 2

k − 2

〉

= k

〈

n− 2

k − 1

〉

.

Plugging this into (4) and using (2) gives

P (n, k) = (n− k)

(

k

〈

n− 2

k − 1

〉

+ (n− k)

〈

n− 2

k − 2

〉)

= (n− k)

〈

n− 1

k − 1

〉

,

as desired.

11

Proof of Corollary 6. By Theorem 2 we have, after evaluating terms which are automatically
1,

IPF2(n, π) =
n−1
∏

i=2

min{ai(π), 2}.

Note that ai(π) ≥ 2 if and only if πi−1 < πi. There are exactly asc(π) − 1 different i with
2 ≤ i < n satisfying this, where we subtract 1 since π ∈ S2

n implies that there is always an
ascent at position n− 1. We conclude the first result.

For the second result, we sum IPF2(n, π) over all π ∈ S2
n. Each term contributes 2asc(π)−1,

so we conclude the result by Lemma 14 after noting that
〈

n−1
−1

〉

= 0.

Corollary 6 shows that, for n ≥ 2, IPF2(n) is equal to A053525, the number of connected
threshold graphs on n vertices. This can be proven bijectively from essentially the same
proof as in [5], but for brevity we omit the details. The formulas for k = 3 A327761 and
k = n−2 A327794 seem complicated (though in principle the latter can be put into a closed
form).

Before proving our enumeration results for interval parking functions, we first directly
enumerate the number of parking functions with a given outcome. In what follows we
treat parking functions as subset parking functions (C1, . . . , Cn) where Ci = [ci, n] for some
1 ≤ ci ≤ n. Define a partial parking function (C1, . . . , Cm) analogous to how we defined
L-partial parking functions. We immediately have the following.

Lemma 15. Let 1 ≤ m ≤ n and π ∈ Sn. C is a parking function with outcome π if and only

if (C1, . . . , Cm) is a partial interval parking function with outcome π(m) for all m.

We also have an analog of Lemma 12.

Lemma 16. Let 1 ≤ m ≤ n and π ∈ Sn. Let (C1, . . . , Cm−1) be a partial parking function

with outcome π(m−1) and let p = π−1
m . Then (C1, . . . , Cm) is a partial parking function with

outcome π(m) if and only if Cm = [r, n] with p− ap(π) + 1 ≤ r ≤ p.

Proof. Assume (C1, . . . , Cm) is such a partial parking function with Cm = [r, n] for some r.
We need r ≤ p so that this set contains j. Further, we require every x ∈ [r, p] to satisfy
πx < m, otherwise p will not be the smallest element of Cm \ {π−1

i : i < m}, which would
contradict (C1, . . . , Cm) having outcome π(m). By definition this will not be the case if
r < p− ap(π) + 1, so r ≥ p− ap(π) + 1. We conclude that r satisfies the desired inequalities.

Conversely, assume Cm = [r, n] has r satisfying these inequalities. Because p−ap(π)+1 ≥
1 we have Cm ⊆ [n]. Again by definition of ap(π) these inequalities imply that p is the smallest
element of Cm \ {π−1

i : i < m}, so this gives the desired partial parking function.

Proposition 17.

PF(n, π) =
n
∏

i=1

ai(π).

12

https://oeis.org/A053525
https://oeis.org/A327761
https://oeis.org/A327794

Proof. Assume one has chosen C1, . . . , Ci−1 so that (C1, . . . , Ci−1) is a partial parking func-
tion with outcome π(i−1). There are aπ−1

i

(π) choices for Ci to make (C1, . . . , Ci) a partial

parking function with outcome π(i) by Lemma 16. Every parking is obtained this way by
Lemma 15, so taking the product over all these values and reindexing gives the desired
result.

We use Theorem 13 to prove Theorem 3, and to do so we require the following lemma.

Lemma 18. For any n ≥ 1 and π ∈ Sn,
n
∑

k=1

bi(π, k) = ai(π)(n− i+ 1).

Proof. Throughout this proof we use that the “otherwise” case in the definition of bi(π, k)
can be written as n− i+ 1 + ai(π)−max{ai(π), k}.

We first consider the case ai(π) ≤ n−i and split the sum into two parts. For ai(π) < n−i
we have

n−i
∑

k=1

bi(π, k) =
n−i
∑

k=1

min(ai(π), k) =

ai(π)
∑

k=1

k +
n−i
∑

k=ai(π)+1

ai(π)

=

(

ai(π) + 1

2

)

+ (n− i− ai(π))ai(π). (5)

If ai(π) = n− i the same formula holds by essentially the same reasoning.
If k > n− i+ ai(π) we have bi(π, k) = 0, so the rest of the sum is

n−i+ai(π)
∑

k=n−i+1

bi(π, k) = (n− i+ ai(π) + 1)ai(π)−

n−i+ai(π)
∑

k=n−i+1

max{ai(π), k}

= (n− i+ ai(π) + 1)ai(π)−

n−i+ai(π)
∑

k=n−i+1

k, (6)

where we used our assumption ai(π) ≤ n − i < k in this last equality. Using the identity
∑x+y

k=x+1 k = xy +
(

y+1
2

)

, we conclude that (6) equals

(ai(π) + 1)ai(π)−

(

ai(π) + 1

2

)

.

Adding this to (5) gives the desired result.
Now assume ai(π) ≥ n− i+ 1. In this case we have

n−i
∑

k=1

bi(π, k) =
n−i
∑

k=1

min(ai(π), k) =
n−i
∑

k=1

k

=

(

n− i+ 1

2

)

. (7)

13

The rest of the sum is

n−i+ai(π)
∑

k=n−i+1

bi(π, k) = (n− i+ ai(π) + 1)ai(π)−

n−i+ai(π)
∑

k=n−i+1

max{ai(π), k}

= (n− i+ ai(π) + 1)ai(π)− ai(π)(ai(π)− n+ i)−

n−i+ai(π)
∑

k=1+ai(π)

k

= (2n− 2i+ 1)ai(π)−

(

n− i+ 1

2

)

− ai(π)(n− i). (8)

Adding (7) and (8) gives the desired result.

Proof of Theorem 3. Observe that interval parking functions are exactly K-interval parking
functions with Ki = [n] for all i, so by Theorem 13, Lemma 18, and Proposition 17; we have

IPF(n, π) =
n
∏

i=1

ai(π)(n− i+ 1) = n!
n
∏

i=1

ai(π) = n! · PF(n, π).

Using (1), we find

IPF(n) =
∑

π∈Sn

IPF(n, π) = n!
∑

π∈Sn

PF(n, π) = n! · PF(n) = n! · (n+ 1)n−1.

4 Acknowledgments

The author was fortunate to have many fruitful discussions about this topic at the Graduate
Research Workshop in Combinatorics. In particular we would like to thank Emma Chris-
tensen, Ryan DeMuse, Sean English, Jeremy Martin, Puck Rombach, Mike Ross, and Mei
Yin.

This material is based upon work supported by the National Science Foundation Grad-
uate Research Fellowship under Grant No. DGE-1650112. This work was completed in part
at the 2019 Graduate Research Workshop in Combinatorics, which was supported in part by
NSF grant #1923238, NSA grant #H98230-18-1-0017, a generous award from the Combina-
torics Foundation, and Simons Foundation Collaboration Grants #426971 (to M. Ferrara),
#316262 (to S. Hartke) and #315347 (to J. Martin).

References

[1] A. Christensen, P. Harris, Z. Jones, M. Loving, A. Rodriguez, J. Rennie, and G. Kirby,
A generalization of parking functions allowing backward movement, preprint, 2019,
https://arxiv.org/abs/1908.07658.

14

https://arxiv.org/abs/1908.07658

[2] E. Christensen, R. Demuse, J. Martin, and M. Yin. Personal communications, 2019.

[3] R. Graham, D. Knuth, O. Patashnik, and S. Liu, Concrete Mathematics: a Foundation

for Computer Science, Addison-Wesley, 1989.

[4] A. Postnikov and B. Shapiro, Trees, parking functions, syzygies, and deformations of
monomial ideals, Trans. Amer. Math. Soc. 356 (2004), 3109–3142.

[5] S. Spiro, Counting threshold graphs with Eulerian numbers, preprint, 2019, https://
arxiv.org/abs/1909.06518.

[6] R. Stanley, Hyperplane arrangements, interval orders, and trees, Proc. Natl. Acad. Sci.
USA 93 (1996), 2620–2625.

[7] R. Stanley, Parking functions and noncrossing partitions, Electron. J. Combin. 4 (1997),
#R20.

[8] C. Yan, On the enumeration of generalized parking functions, Congr. Numer. 147 (2000),
201–210.

[9] C. Yan, Parking functions, in Handbook of Enumerative Combinatorics, Chapman and
Hall/CRC, 2015, pp. 859–918.

2010 Mathematics Subject Classification: Primary 05A15; Secondary 05A19.
Keywords: parking function, subset parking function, threshold graph, permutation.

(Concerned with sequences A053525, A327761, and A327794.)

Received September 26 2019; revised versions received October 12 2019; October 15 2019.
Published in Journal of Integer Sequences, October 15 2019.

Return to Journal of Integer Sequences home page.

15

https://arxiv.org/abs/1909.06518
https://arxiv.org/abs/1909.06518
https://oeis.org/A053525
https://oeis.org/A327761
https://oeis.org/A327794
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Subset results
	Interval results
	Acknowledgments

