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Abstract

We show that the number of ternary words of length n avoiding abelian cubes grows

faster than rn, where r = 21/24.

1 Introduction

The study of words avoiding repetitions is an area of combinatorics on words reaching back
to at least the turn of the century and the work of Thue. A word of the form xx, x some
non-empty word, is called a square. A word of the form xxx, x some non-empty word, is
called a cube. A word containing no squares (cubes) is called square-free (cube-free).

1This author’s research was supported by an NSERC operating grant.

1

mailto:aberkane@iml.univ-mrs.fr
mailto:currie@uwinnipeg.ca
mailto:nrampersad@math.uwaterloo.ca


The longest square-free words over the 2-letter alphabet {a, b} are aba and bab. Neverthe-
less, in 1906 Thue showed that over a 3-letter alphabet, there are arbitrarily long square-free
words [17]. Thue also showed that there are arbitrarily long cube-free words over a 2-letter
alphabet.

How many square-free words over {a, b, c} are there? An exact answer remains elusive.
Let c(n) be the number of ternary square-free words of length n. In 1997 [15] it was still of
interest even to calculate c(46). A recent article [13] gives values to c(110). Exponential
upper and lower bounds on c(n) have been steadily improved in a series of articles by
various authors [4, 3, 2, 10, 13, 19]. The current best lower bound, given in [19], is c(n) ≥
110n/42 = (1.118419 . . .)n. According to Grimm [13], an exponential upper bound has base

8416550317984
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108 = 1.317277 . . .
In algebraic problems, commutativity is usually a simplifying assumption. However, for

word repetitions, the commutative problems have been hard to crack. An abelian square is
a word x1x2 where x2 can be obtained from x1 by rearranging letters. The study of abelian
squares was initiated by Erdos [11], who asked whether an infinite sequence over a finite
alphabet existed which was square-free in an abelian sense; no two adjacent blocks were to
be permutations of one another. Not only 1234 1234 is forbidden in such a sequence, but
also 1234 2134, since 1234 and 2134 are permutations of each other. A sequence avoiding
squares in this abelian sense was discovered by Evdokimov [12], but he used an alphabet of
25 letters. The alphabet size was reduced to 5 letters by Pleasants [16], and not until 1992,
to a 4-letter alphabet by Keränen [14]. One checks that on a 3-letter alphabet there are only
finite strings which are square-free in this abelian sense, so that Keränen’s result is optimal.
Dekking [9] showed that the smallest alphabet on which cubes were avoidable in this abelian
sense had 3 symbols, while 2 symbols were necessary and sufficient to avoid fourth powers
in the abelian sense.

Carpi [5, 6] showed that the number of words over {0, 1, 2, 3} avoiding abelian squares
grows exponentially with length. Recently one of the authors [7] showed that the number
of binary words avoiding abelian fourth powers grows exponentially with length. In the
following article we “finish off” the abelian growth problems by solving the following problem
from [8]:

Problem 1.1 Show that the number of abelian cube-free ternary words grows exponentially
with length.

The number of ternary words avoiding abelian cubes for n = 0, 1, . . . 13 is

1, 3, 9, 24, 66, 180, 468, 1206, 3150, 7998, 20124, 50520, 124044, 303906

and is sequence A096168 in the Encyclopedia of Integer Sequences.

2 Preliminaries

We say that x ∼ y for words x and y if the number of occurrences each letter is identical in
x and in y. For example, 123342 ∼ 321342. We say that word w encounters an abelian cube

if w has a subword x1x2x3 with xi ∼ xi+1, i = 1, 2, x1 6= ε.
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We use Z to denote the set of integers, and Rn to denote the set of 1× n matrices (i.e.,
row vectors) with entries in ring R.

A multi-valued substitution is a function h : Σ∗ → P(T ∗) where P(T ∗) is the set of
subsets of T ∗. Let v ∈ Σ∗, v = v1v2v3 . . . vk, vi ∈ Σ, i = 1, 2, . . . , k. We say that word w
is an image of word v under multi-valued substitution h if we can write w = w1w2w3 . . . wk

where wi ∈ h(vi), i = 1, 2, 3, . . . , k. We write w ∈ h(v). In the case that Σ = T , we call h a
multi-valued substitution on Σ.

Fix a natural number m, and let Σ be the alphabet {0, 1, . . . ,m − 1}. If w is a word ,
we define f(w) = [|w|0, |w|1, . . . , |w|m−1]. In other words, f(w) is a row vector which counts
the occurrences of 0, 1, . . . ,m − 1 in w, and for w, v ∈ Σ∗ we have w ∼ v exactly when
f(w) = f(v). Suppose that h is a multi-valued substitution on Σ such that for each i ∈ Σ
we have f(u) = f(v) whenever u, v ∈ h(i). In this case we say that h is single-valued up to

permutation. Let the incidence matrix M of h be the m×m matrix with ith row f(v), any
v ∈ h(i). We observe that if w is an image of v under h, then f(w) = f(v)M .

Now fix m = 3 and Σ = Σ. Consider the multi-valued substitution h on Σ given by

h(0) = {001002}

h(1) = {110112}

h(2) = {002212, 122002}

The corresponding matrix M is thus





4 1 1
1 4 1
2 1 3





Remark 2.1 Let v ∈ Z3. It is an exercise in linear algebra to check that uM = v has a
solution u ∈ Z3 if and only if

v





1
13
19



 ∈ 36Z1.

Let L = {w : uwv ∈ hn(0) for some positive integer n, some words u, v}. Thus L is the
set of words contained in some image of 0 under iterations of h. Set L is closed under h, and
each word of L is a subword of a word of h(L). If w ∈ L then for some letters a, b ∈ Σ we
have awb ∈ L. We will prove

Theorem 2.2 (Main Theorem) Set L contains no abelian cubes.

Remark 2.3 It is not the case that h is abelian cube-free. That is, words of h(u) may
contain abelian cubes, even u does not. For example,

001002110112001002110112 ∈ h(0101), but 0101

contains no abelian cubes, while 0010 021101120010021 10112 contains an abelian cube, since
02110 ∼ 11200 ∼ 10021.
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3 Templates and Parents

A template is a 6-tuple [a, b, c, d, v1, v2] where a, b, c, d ∈ {ε, 0, 1, 2} and v1, v2 ∈ Z3. We say
that a word w realizes template [a, b, c, d, v1, v2] if we can write w = aX1bX2cX3d where
f(X2)− f(X1) = v1, f(X3)− f(X2) = v2.

Remark 3.1 Suppose that X ∈ L, |X| ≥ 5. We can write X = a′′Y b′ where

• for some Z ∈ L, Y ∈ h(Z)

• for some A,B ∈ {0, 1, 2, ε}, there exist words a′, b′′ such that a′a′′ ∈ h(A), b′b′′ ∈ h(B).

Let t1 = [a, b, c, d, v1, v2] and t2 = [A,B,C,D,w1, w2] be templates. We say that t2 is a
parent of t1 if A,D 6= ε, and for some words a′, a′′, b′, b′′, c′, c′′, d′, d′′ we have a′aa′′ ∈ h(A),
b′bb′′ ∈ h(B), c′cc′′ ∈ h(C), d′dd′′ ∈ h(D), while

v1 − f(b′′c′) + f(a′′b′) = w1M

v2 − f(c′′d′) + f(b′′c′) = w2M.

Given a template t1, we may calculate all its parents. The set of candidates for A,B,C,D
and hence for a′, a′′, b′, b′′, c′, c′′, d′, d′′ is finite, and may be searched exhaustively. Since M is
invertible, a choice of values for a′, a′′, b′, b′′, c′, c′′, d′, d′′, together with given values v1 and v2,
determines w1 and w2. Note that not all computed values for w1, w2 are in Z3, some templates
have no parents. For example, an exhaustive search shows that [2, 1, 0, 1, [0, 0, 0], [0, 0, 0]] has
no parents.

Lemma 3.2 Let t1 = [a, b, c, d, v1, v2] and t2 = [A,B,C,D,w1, w2] be templates, with t2 a

parent of t1. Suppose that some word u2 ∈ L realizes t2. Then some subword u1 of a word

of h(u2) realizes t1. The word u1 is in L.

Proof: Of course if u1 is a subword of a word of h(u2), and u2 is in L, then u1 is in L.
Write u2 = AZ1BZ2CZ3DZ4 where f(Z2) − f(Z1) = w1, f(Z3) − f(Z2) = w2. Since

t2 is a parent of t1, find words a′, a′′, b′, b′′, c′, c′′, d′, d′′ so that a′aa′′ ∈ h(A), b′bb′′ ∈ h(B),
c′cc′′ ∈ h(C), d′dd′′ ∈ h(D), and

v1 − f(b′′c′) + f(a′′b′) = w1M

v2 − f(c′′d′) + f(b′′c′) = w2M.

Choose any words Y1, Y2, Y3 with Yi ∈ h(Zi). This means that

a′aa′′Y1b
′bb′′Y2c

′cc′′Y3d
′dd′′ ∈ h(AZ1BZ2CZ3D).

Let u1 = aa′′Y1b
′bb′′Y2c

′cc′′Y3d
′d. Then u1 realizes t1, which is verified by letting X1 = a′′Y1b

′,
X2 = b′′Y1c

′, X3 = c′′Y1d
′. We see that u1 = aX1bX2cX3d, and

f(X2)− f(X1) = f(b′′Y1c
′)− f(a′′Y1b

′)

= f(b′′c′)− f(a′′b′) + f(Y2)− f(Y1)

= f(b′′c′)− f(a′′b′) + f(Z2)M − f(Z1)M

= f(b′′c′)− f(a′′b′) + (f(Z2)− f(Z1))M

= f(b′′c′)− f(a′′b′) + w1M

= v1.
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Similarly, f(X3)− f(X2) = v2. Thus u1 realizes t1, as desired .2

Lemma 3.3 Let t1 = [a, b, c, d, v1, v2] be a template. Suppose that some word u1 ∈ L realizes

t1, with |u1| > 17. Suppose further that

[−1] ≤ v1





1
1
1



 , v2





1
1
1



 , (v1 + v2)





1
1
1



 ≤ [1].

Then there is a template t2 = [A,B,C,D,w1, w2], A,B 6= ε which is a parent of t1, and a

word u2 ∈ L which realizes t2.

Proof: Clearly, u2 will be shorter than u1.
Write u1 = aX1bX2cX3d where f(X2)− f(X1) = v1, f(X3)− f(X2) = v2. The condition

on v1, v2 and v1 + v2 implies that |X1| − 1 ≤ |X2|, |X3| ≤ |X1|+ 1. Thus

17 ≤ |u1|

= |aX1bX2cX3d|

= |a|+ |X1|+ |b|+ |X2|+ |c|+ |X3|+ |d|

≤ 3|X1|+ 2, i = 1, 2, 3.

We deduce that |X1| ≥ 5. Similarly, |X2|, |X3| ≥ 5. Rewriting X1 = a′′Y1b
′, etc, we find

there must be a word a′u1d
′′ ∈ h(L) with

a′u1d
′′ = a′aX1bX2cX3dd

′′

= a′aa′′Y1b
′bb′′Y2c

′cc′′Y3d
′dd′′

∈ h(u2)

for some word
u2 = AZ1BZ2CZ3D ∈ L

satisfying

Yi ∈ h(Zi), i = 1, 2, 3

A,B,C,D ∈ {ε, 0, 1, 2}

b′bb′′ ∈ h(B)

c′cc′′ ∈ h(C)

aa′′ is a suffix of an element of h(A)

d′d is a prefix of an element of h(D).

If a solution u2 of these conditions has A = ε, then by force, aa′′ = ε. Since ε is also
a suffix of h(0), another solution û2 exists, differing from u2 only by changing A to 0. We
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may therefore assume that A 6= ε. Similarly, assume D 6= ε. Given a solution u2 of our
conditions, let w1 = f(Z2)− f(Z1), w2 = f(Z3)− f(Z2). As in the previous lemma,

v1 − f(b′′c′) + f(a′′b′) = w1M

v2 − f(c′′d′) + f(b′′c′) = w2M.

It follows that t2 = [A,B,C,D,w1, w2] is a parent of t1, realized by a word u2 ∈ L.2

A template t = [a, b, c, d, v1, v2] implies a cube if either

f(a)− f(b) = v1 and f(b)− f(c) = v2 OR f(b)− f(c) = v1 and f(c)− f(d) = v2.

Suppose that u realizes t = [a, b, c, d, v1, v2], and t implies a cube. Write u = aX1bX2cX3d
where v1 = f(X2)−f(X1), v2 = f(X3)−f(X2). We suppose that f(a)−f(b) = v1 and f(b)−
f(c) = v2. (The other case is similar.) In this case, u contains the abelian cube aX1bX2cX3.
We have f(aX1) − f(bX2) = f(a) − f(b) − (f(X2) − f(X1)) = v1 − v1 = [0, 0, 0]. Thus
aX1 ∼ bX2. Similarly, bX2 ∼ cX3, aX1bX2cX3 is an abelian cube, as claimed.

A set T of templates is closed if whenever t1 ∈ T and t2 is a parent of t1, then t2 ∈ L if
t2 does not imply a cube.

Let tc = [ε, ε, ε, ε, [0, 0, 0], [0, 0, 0]]. An abelian cube realizes tc. To show that L is abelian
cube-free, we start by finding a closed set Tc of templates containing tc, and checking that
whenever t = [a, b, c, d, v1, v2] ∈ Tc, then

[−1] ≤ v1





1
1
1



 , v2





1
1
1



 , (v1 + v2)





1
1
1



 ≤ [1].

Suppose now that u1 is the shortest word of L realizing a template t1 of Tc. If |u1| ≥ 17,
by Lemma 3.3, a parent t2 of t1 is realized by a word u2 ∈ L which is shorter than u1. The
minimality of |u1| implies that t2 /∈ Tc. Since Tc is closed, this means that t2 implies a cube.
It follows that u2 realizes tc ∈ Tc. This is a contradiction. Thus |u1| < 17.

We then generate the set of all words of L of length 16. A finite search shows that none
of these words realizes a template in Tc. It follows that no word u1 can exist, so that L is
abelian cube-free.

4 Computations

Given a template t, the MAPLE procedure parents in Appendix 1 generates all of t’s parents
which do not imply a cube. Given a set seed of templates, the procedure grow generates the
set closure, the smallest closed set containing seed. A Pentium 4 running MAPLE 7 at
2.53 GHz ran grow on tc = [ε, ε, ε, ε, [0, 0, 0], [0, 0, 0]] in 4.6 seconds. We find that |Tc| = 103.
The output Tc is also observed to have the property that if t = [a, b, c, d, v1, v2] ∈ Tc, then

[−1] ≤ v1





1
1
1



 , v2





1
1
1



 , (v1 + v2)





1
1
1



 ≤ [1].
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(We thus observe a posteori both that Tc is finite, and that its various v1, v2 have this
desirable property.) Another observation is that the only t ∈ Tc for which any of a, b, c, d is
ε is t = tc.

Since images of letters under h have length 6, we see that any word w of L with |w| = 16
is a subword of h(a1a2a3a4) for some word a1a2a3a4 ∈ L with the a1, a2, a3, a4 letters. We see
in turn, that a1a2a3a4 will be a subword of h({00, 01, 02, 10, 11, 12, 20, 21, 22}), and thus of
h(112001002122), since each of 00, 01, 02, 10, 11, 12, 20, 21, 22 is a subword of 112001002122.
Word 112001002122 is itself a subword of a word in h(102).

We obtain the set all of words of length 16 in L as follows:

1. Apply h to {112001002122} to obtain a set imageSet

2. Collect all subwords of length 4 from the words of imageSet to give a set length4Words.
We find that length4Words, and hence L, contains exactly 27 words of length 4.

3. Apply h to length4Words to obtain imageSet4. There are 80 words in this set.

4. Build testSet by collecting all subwords of length 16 from the words of the resulting
imageSet4. We thus find that there are 278 words of length 16 in L.

For each template t in Tc and each word w of length 16 in L, viz., for each w ∈ testSet,
we verify that no subword of w realizes t. This is done in two stages:

1. For w ∈ testSet and t ∈ Tc − {tc}, we verify that no subword of w realizes t us-
ing procedure occurs. (The procedure occurs takes advantage of the fact that if
[a, b, c, d, v1, v2] ∈ Tc − {tc}, then a, b, c, d 6= ε.)

2. For w ∈ testSet, we verify that no subword of w realizes tc using procedure cubeOccurs.

The total time for these verifications is 60.4 seconds. The computations establish the Main
Theorem.

5 Exponential Growth

Let w be the prefix of a word of hω(0) such that |w| = n. We can write w ∈ h(v)p where v is
a prefix of a word of hω(0), and |p| ≤ 5. By our Main Theorem, every word in h(v)p avoids
abelian cubes. Since each image of a letter under h contains a 2, |v|2 ≥ (|v| − 5)/6. Since
h(2) contains 2 words, we see that h(v), and hence h(v)p contains at least 2(|v|−5)/6 words.
Also, n = |w| = |h(v)p| ≤ 6|v| + 5. Then 2(|v|−5)/6 ≥ 2((n−5)/6−5)/6 = 2−35/362n/36. It follows
that h(v)p contains at least crn abelian cube-free words of length n, where c = 2−35/36 and
r = 21/36.

The base 21/36 may be sharpened. By a slight variation on Theorem 8.4.6 in [1], letter
frequencies in hω(0) can be obtained from the normalized eigenvector of the incidence matrix
M corresponding to the dominant eigenvalue. (By Perron-Frobenius theory, this eigenvalue
has multiplicity 1 and its corresponding eigenvector is non-negative.) We find that for M
the dominant eigenvalue is 6 and the corresponding normalized eigenvector is [5/12,1/3,1/4].
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This means that the asymptotic frequency of 2’s is 1/4. Using |v|2 ∼ |v|/4 in the previous
paragraph would show the number of abelian cube-free words of length n over {0, 1, 2} to be
Ω(2n/24), rather than Ω(2n/36).

Theorem 5.1 (Second Main Theorem) The number of abelian cube-free words of length

n over {0, 1, 2} is Ω(2n/24).
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Appendix: Code

A MAPLE worksheet with all code referred to in this paper is available from

www.uwinnipeg.ca/~currie/AbelianCubes.mws

Here are the most important pieces:
The following MAPLE code sets up an array split which is used by parents:

For a letter a, split[a]={[f(a’),f(a"),alpha]:h(alpha)=a’aa"}.

Here 3 stands for the empty/missing letter \epsilon. We let

split[3]={[f(a’),f(a"),alpha]:h(alpha)=a’a"}. We represent these

sets by lists.}

>split[0]:=[[[0,0,0],[3,1,1],0],[[1,0,0],[2,1,1],0],

[[2,1,0],[1,0,1],0],[[3,1,0],[0,0,1],0],[[0,2,0],[0,2,1],1],

[[0,0,0],[1,1,3],2],[[1,0,0],[0,1,3],2],[[0,1,2],[1,0,1],2],

[[1,1,2],[0,0,1],2]];

>split[1]:=[[[2,0,0],[2,0,1],0],[[0,0,0],[1,3,1],1],

[[0,1,0],[1,2,1],1],[[1,2,0],[0,1,1],1],[[1,3,0],[0,0,1],1],

[[2,0,2],[0,0,1],2],[[0,0,0],[2,0,3],2]];

>split[2]:=[[[2,0,1],[0,1,1],2],[[4,1,0],[0,0,0],0],

[[1,4,0],[0,0,0],1],[[2,0,0],[0,1,2],2],[[2,1,2],[0,0,0],2],

[[0,1,0],[2,0,2],2],[[0,1,1],[2,0,1],2]];}

>split[3]:=[[[0,0,0],[0,0,0],3],[[1,2,0],[0,2,1],1],

[[0,0,0],[0,0,0],3],[[0,0,0],[4,1,1],0],[[1,0,0],[3,1,1],0],

[[2,0,0],[2,1,1],0],[[2,1,0],[2,0,1],0],[[3,1,0],[1,0,1],0],

[[4,1,0],[0,0,1],0],[[0,0,0],[1,4,1],1],[[0,1,0],[1,3,1],1],

[[0,2,0],[1,2,1],1],[[1,3,0],[0,1,1],1],[[1,4,0],[0,0,1],1],

[[0,0,0],[2,1,3],2],[[1,0,0],[1,1,3],2],[[2,0,0],[0,1,3],2],

[[2,0,1],[0,1,2],2],[[2,0,2],[0,1,1],2],[[2,1,2],[0,0,1],2],

[[0,1,0],[2,0,3],2],[[0,1,1],[2,0,2],2],[[0,1,2],[2,0,1],2],

[[1,1,2],[1,0,1],2]];
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Given a template t, the MAPLE procedure parents generates all of t’s parents which do
not imply a cube.

> parents:=proc(template)

Given a template t1 = [a, b, c, d, v1, v2], the following

procedure finds the set of all parents of t. We rewrite u1 =

aX1bX2Cx3d as u1=aa"Y1b’bb"Y2c’cc"Y3d’d in all possible ways. (We

use the symbol ’3’ for the empty/missing letter \epsilon, so if b

= 3, then aX1bX2cX3d = aX1X2cX3d, for example.) For a given way of

rewriting u1, we should have

v1-f(b"c’) + f(a"b’) = f(Y2)-f(Y1),

v2-f(c"d’) + f(b"c’) = f(Y3) -f(Y2)

To find potential parents, we let a’, a" range over possible

‘‘splits" of h(a), etc, and test whether each of v1 - f(b"c’) +

f(a"b’) and v2 - f(c"d’) + f(b"c’) is an integer combination of

parikh vectors of h(0), h(1), h(2). In this case we solve

(wi)M=f(Y(i+1))-f(Yi). The parent is then t2 = [A,B,C,D,w1,w2]

where h(A)=a’aa", etc. The values of A, B, C, D are available as

the third component of the ‘‘split" array. We suppress parents

which imply cubes.

> a:=template[1];b:=template[2];c:=template[3];

> d:=template[4];v1:=template[5];v2:=template[6];

> parentSet:={};

> for A in split[a] do for B in split[b] do for C in split[c] do

> for D in split[d] do

> if not((A[3]=3) or (D[3]=3)) then

>> As:=A[2];Bp:=B[1];Bs:=B[2];Cp:=C[1];Cs:=C[2];Dp:=D[1];

> if (

> ((v1[1]+As[1]+Bp[1]-Bs[1]-Cp[1]+13*(v1[2]+As[2]+Bp[2]-Bs[2]-Cp[2])

> +19*(v1[3]+As[3]+Bp[3]-Bs[3]-Cp[3]) )mod 36 = 0) and

> ((v2[1]+Bs[1]+Cp[1]-Cs[1]-Dp[1]+13*(v2[2]+Bs[2]+Cp[2]-Cs[2]-Dp[2])

> +19*(v2[3]+Bs[3]+Cp[3]-Cs[3]-Dp[3]) )mod 36 = 0) ) then

To speed up this procedure, some linear algebra is done ‘‘long

hand". The above condition is that v1[1,13,19]^T ,v1[1,13,19]^T

are in 36Z^3. The following computation is wi = ( f(Y(i+1))-f(Yi)

)M^{-1}:

> w1:=[11/36*(v1[1]+As[1]+Bp[1]-Bs[1]-Cp[1])-1/36*(v1[2]+

> As[2]+Bp[2]-Bs[2]-Cp[2])-7/36*(v1[3]+As[3]+Bp[3]-Bs[3]-

> Cp[3]),-1/18*(v1[1]+As[1]+Bp[1]-Bs[1]-Cp[1])+5/18*(v1[2]+

> As[2]+Bp[2]-Bs[2]-Cp[2])-1/18*(v1[3]+As[3]+Bp[3]-Bs[3]-

> Cp[3]),-1/12*(v1[1]+As[1]+Bp[1]-Bs[1]-Cp[1])-1/12*(v1[2]+
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> As[2]+Bp[2]-Bs[2]-Cp[2])+5/12*(v1[3]+As[3]+Bp[3]-Bs[3]-

> Cp[3])];

> w2:=[11/36*(v2[1]+Bs[1]+Cp[1]-Cs[1]-Dp[1])-1/36*(v2[2]+

> Bs[2]+Cp[2]-Cs[2]-Dp[2])-7/36*(v2[3]+Bs[3]+Cp[3]-Cs[3]-

> Dp[3]),-1/18*(v2[1]+Bs[1]+Cp[1]-Cs[1]-Dp[1])+5/18*(v2[2]+

> Bs[2]+Cp[2]-Cs[2]-Dp[2])-1/18*(v2[3]+Bs[3]+Cp[3]-Cs[3]-

> Dp[3]),-1/12*(v2[1]+Bs[1]+Cp[1]-Cs[1]-Dp[1])-1/12*(v2[2]+

> Bs[2]+Cp[2]-Cs[2]-Dp[2])+5/12*(v2[3]+Bs[3]+Cp[3]-Cs[3]-

> Dp[3])];

We will ignore parents which imply cubes

> check1:=[0,0,0]; check1[A[3]+1]:=1;

> check2:=[0,0,0]; if not(B[3]=3) then

> check2[B[3]+1]:=1 fi;

> check3:=[0,0,0]; if not(C[3]=3) then

> check3[C[3]+1]:=1 fi;

> check4:=[0,0,0]; check4[D[3]+1]:=1;

> diff1:=check1-check2;

Here ’diff1’ is f(A) - f(B), for deciding if t2 implies a cube

> diff2:=check2-check3;

> diff3:=check3-check4;

> cube:=((w1=diff1)and(w2=diff2)) or

> ((w1=diff2)and(w2=diff3));

> if not(cube) then

> parentSet:=parentSet union

> {[A[3],B[3],C[3],D[3],w1,w2]};

> fi;

> fi;

> fi;

> od;od;od;od;

> return(parentSet);

> end;

Given a set seed of templates, the procedure grow generates the set closure, the smallest
closed set containing seed:

> grow:=proc(T)

> seed:=T; closure:={};

> while not(seed={}) do

> for t in seed do

> closure:=closure union {t};

> candidatesForNewParents:=parents(t);
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> seed:=(seed union candidatesForNewParents) minus

> closure;

> od

> od;

> return(closure);

> end;

For t ∈ Tc − {tc}, and w ∈ testSet, we verify that no subword of w realizes t using
procedure occurs:

> occurs:=proc(template,aWord)

Notice that in the set Tc returned by procedure ‘‘grow", there are

no templates other than tc for which a,b,c or d are 3. In this

procedure, we will therefore assume a,b,c,d are letters. A

separate check for tc (which uses empty letters) is in another

procedure. The current procedure takes [a,b,c,d,v1,v2] and a word

and looks for an occurrence of the pattern aX1bX2cX3d in the word.

Again, the ‘‘totals" of v1, v2 and v1+v2 have absolute values at

most 1. We search using ‘‘for loops" on length(X1), length(X2),

length(X3). We have |aWord| >= 4 + |X1| +|X2| +|X3|

>= 4 + 3|X1| -2, so that |X1| <= (|aWord| - 2)/3.

> a:=template[1];b:=template[2];c:=template[3];d:=template[4];

> v1:=template[5];v2:=template[6];L:=length(aWord);

> for L1 from 0 to (L-2)/3 do

> for L2 from max(0,L1-1) to L1+1 do

> for L3 from max(0,L1-1,L2-1) to min(L1+1,L2+1) do

> for iStart from 1 to L-(L1+L2+L3+3) do

> if (

> (numString(a)=substring(aWord,iStart..iStart))

> and (numString(b)=substring(aWord,iStart+L1+1..iStart+L1+1))

> and (numString(c)=substring(aWord,iStart+L1+L2+2..iStart+L1+L2+2))

> and (numString(d)=substring(aWord,iStart+L1+L2+L3+3..iStart+L1+L2

> +L3+3)))

> then

> X1:=substring(aWord,iStart+1..iStart+L1);

> X2:=substring(aWord,iStart+L1+2..iStart+L1+L2+1);

> X3:=substring(aWord,iStart+L1+L2+3..iStart+L1+L2+L3+2);

> if ((f(X2)-f(X1)=v1) and (f(X3)-f(X2)=v2)) then

> return(true)

> fi

> fi

> od

> od

> od

> od;
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> return(false)

> end;

For w ∈ testSet, we verify that no subword of w realizes tc using procedure cubeOccurs:

> cubeOccurs:=proc(aWord)

> L:=length(aWord);

> for L1 from 1 to L/3 do

> for iStart from 1 to L-3*L1+1 do

> X1:=substring(aWord,iStart..iStart+L1-1);

> X2:=substring(aWord,iStart+L1..iStart+2*L1-1);

> X3:=substring(aWord,iStart+2*L1..iStart+3*L1-1);

> if ((f(X1)=f(X2)) and (f(X3)=f(X2))) then

> return(true)

> fi

> od

> od;

> return(false)

> end;
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