
23 11

Article 04.1.2
Journal of Integer Sequences, Vol. 7 (2004),2

3

6

1

47

Meanders and Motzkin Words

A. Panayotopoulos and P. Tsikouras
Deptartment of Informatics

University of Pireaus
Karaoli & Dimitriou 80

18534 Pireaus
Greece

antonios@unipi.gr
pgtsik@unipi.gr

Abstract

We study the construction of closed meanders and systems of closed me-

anders, using Motzkin words with four letters. These words are generated by

applying binary operation on the set of Dyck words. The procedure is based

on the various kinds of intersection of the meandric curve with the horizontal

line.

1 Introduction

Among various efforts to study and to generate meanders, Jensen [4] has used se-
quences related to the intervals between the crossing points along the horizontal line,
Franz and Earnshaw [3] have used noncrossing partitions, whereas the authors [8] as
well as Barraud et al. [1] have used planar permutations which follow the meandric
curve.

This paper refers to the study and construction of closed meanders and systems
of closed meanders, using Motzkin words.

The following definitions and notation refer to notions that are necessary for the
development of the paper.
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A word u ∈ {a, ā}∗ is called a Dyck word if |u|a = |u|ā and for every factorization
u = pq we have |p|a ≥ |p|ā where |u|a, |p|a (resp. |u|ā, |p|ā) denote the number of
occurrences of a (resp. ā) in the words u,p.

A word w ∈ {a, ā, x, y}∗ is called a Motzkin word if |w|a = |w|ā and for every
factorization w = pq we have |p|a ≥ |p|ā, or equivalently if the word obtained by
deleting every occurence of x, y from w is a Dyck word of {a, ā}∗.

Let D2n denote the set of all Dyck words of length 2n. It is well known that the
cardinality of D2n equals to the Catalan number Cn = 1

n+1

(
2n

n

)
(A000108); Panay-

otopoulos and Sapounakis [6] have presented a construction of D2n.
Let u = u1u2 · · · u2n with u ∈ D2n. Two indices i, j such that i < j, ui = a, uj = ā

are called conjugates with respect to u if j is the smallest element of {i+1, i+2, . . . , 2n}
for which the subword uiui+1 · · · uj is a Dyck word.

There exists a bijection between D2n and N2n, since for each u ∈ D2n we can
determine its corresponding nested set Su ∈ N2n as follows : {i, j} ∈ Su if and only
if i, j are conjugate indices with respect to u.

For example, the nested set {{1, 6}, {2, 5}, {3, 4}, {7, 8}, {9, 10}} corresponds to
the Dyck word u = a a a ā ā ā a ā a ā.

We also recall that if we denote by dom S all the elements of N ∗ that belong to
some pair of a nested set of pairs S, we say that two nested set S1, S2 are matching
if dom S1 = dom S2 and dom A = dom B, A ⊆ S1, B ⊆ S2 imply that either
A = B = ∅ or dom A = dom S1.

Furthermore, we call B ⊆ dom S complete if for every a ∈ B with {a, b} ∈ S, we
have b ∈ B. We write S/B = {{a, b} ∈ S : a ∈ B}. For every two nested sets S1, S2

with dom S1 = dom S2 that are not matching, there exists a partition B1, B2, . . . , Bk

of dom S1 with Bi complete, such that the sets S1/Bi, S2/Bi, i ∈ [k] are matching;
we then call S1, S2 k-matching [7].

Geometrically, if we draw two matching nested sets, one above and the other
underneath the horizontal axis, they form a simple, closed curve, whereas two k-
matching nested sets create k such curves; (see Figures 1 and 2).

In section 2 we define the m-Motzkin words. To each such word corresponds a
pair of nested sets which are either matching or k-matching. The set of m-Motzkin
words is partitioned into classes of either two or four elements.

In section 3 we prove that there exists a bijection between the set of closed me-
anders and the set of m-Motzkin words which correspond to matching nested sets.
Using this bijection, we can generate closed meanders from m-Motzkin words.

In section 4 we extend the above results to systems of meanders and we present a
recursive generation of these systems.
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2 m-Motzkin words

For every pair u = u1u2 · · · u2n, u
′ = u′

1u
′
2 · · · u

′
2n of elements of D2n, we define u◦u′

to be the word w = w1w2 · · ·w2n, with

wi =





a, if ui = u′
i = a;

ā, if ui = u′
i = ā;

b, if ui = a, u′
i = ā;

b̄, if ui = ā, u′
i = a.

For example, from u = a a a ā ā ā a ā a ā and u′ = a ā a a ā a ā a ā ā we
obtain u◦u′ = a b a b̄ ā b̄ b b̄ b ā.

We write Ŵ2n = {w : w = u◦u′, u, u′ ∈ D2n}.

Proposition 2.1 If w ∈ Ŵ2n then w is a Motzkin word of {a, ā, b, b̄}∗, with |w |b = |w |b̄.

Proof : Let I1 = {i ∈ [2n] : ui = u′
i = a}, I2 = {i ∈ [2n] : ui = a, u′

i = ā},
I3 = {i ∈ [2n] : ui = ā, u′

i = a}, I4 = {i ∈ [2n] : ui = u′
i = ā}.

Given that u, u′ ∈ D2n we have that: |I1|+ |I2| = |I3|+ |I4| and |I1|+ |I3| = |I2|+ |I4|;
so we get |I3| = |I2| and |I1| = |I4|, i.e. |w|b = |w|b̄ and |w|a = |w|ā.

Let now z be the word that we obtain by deleting every occurrence of b, b̄ in w.
Obviously |z|a = |w|a = |w|ā = |z|ā. In order to show that z is a Dyck word,

we must also have |s|a ≥ |s|ā, for every factorization z = st. This is true, since if
|s|a < |s|ā, for some such factorization, then for at least one of the words u, u′ we
would have a factorization pq with |p|a < |p|ā, contradicting the assumption that both
u and u′ are Dyck words. ¤

We call the elements of Ŵ2n meandric Motzkin words (or m-Motzkin words) of
length 2n.

Let now w = w1w2 · · ·w2n, with w ∈ Ŵ2n. From w we obtain two words r =
r1r2 · · · r2n, r

′ = r′1r
′
2 · · · r

′
2n of {a, ā}∗, with

ri =

{
a, if wi = a or b;
ā, if wi = ā or b̄,

r′i =

{
a, if wi = a or b̄;
ā, if wi = ā or b.

We call r and r′ relatives of w.
Practically, in order to obtain r we change each occurrence of b, b̄ of w into a, ā

respectively, whereas in order to obtain r′ we change b, b̄ into ā, a respectively.

Proposition 2.2 Let w ∈ Ŵ2n with w = u◦u′, u, u′ ∈ D2n and let r , r ′ be its rela-
tives. Then r = u and r ′ = u ′.
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Proof : Let wi = a (resp. ā). Then ri = a = ui and r′i = a = u′
i (resp. ri = ā = ui

and r′i = ā = u′
i). Let now wi = b (resp. b̄). Then ri = a = ui and r′i = ā = u′

i (resp.
ri = ā = ui and r′i = a = u′

i).
So, we realize that in every case the elements of r and u as well as the elements

of r′ and u′ coincide, giving the required result. ¤

From the bijection between the sets D2n×D2n and Ŵ2n that we have established,
we obviously get the following relation :

|Ŵ2n | = (Cn)
2 .

Notice that from the word u◦u′ we immediately obtain the word u′◦u, by inter-
changing the letters b and b̄. So, in order to generate the set Ŵ2n it is actually enough
to construct half of its elements.

So, by the above procedure we also create for each w ∈ Ŵ2n two nested sets Sw, S
′
w

on [2n] corresponding to the words r, r′ ∈ D2n.

We denote with W2n (resp W k
2n) the set of al the words w ∈ Ŵ2n for which Sw, S

′
w

are matching (resp. k-matching).
For example, the word w = a b a b̄ ā b̄ b b̄ b ā is an m-Motzkin word, for which

we have r = a a a ā ā ā a ā a ā and r′ = a ā a a ā a ā a ā ā.
The corresponding nested sets Sw = {{1, 6}, {2, 5}, {3, 4}, {7, 8}, {9, 10}} and

S ′
w = {{1, 2},{3, 10}, {4, 5}, {6, 7}, {8, 9}} are matching.
Similarly, the word w = a a b b̄ ā b̄ a ā b ā is a m-Motzkin word, for which we

have r = a a a ā ā ā a ā a ā and r′ = a a ā a ā a a ā ā ā. The corresponding nested
sets

Sw = {{1, 6}, {2, 5}, {3, 4}, {7, 8}, {9, 10}}

and
S ′
w = {{1, 10}, {2, 3}, {4, 5}, {6, 9}, {7, 8}}

are 3-matching, with B1 = {1, 6, 9, 10}, B2 = {2, 3, 4, 5} and B3 = {7, 8}, thus
determining the matching nested sets :
Sw/B1 = {{1, 6}, {9, 10}}, Sw/B2 = {{2, 5}, {3, 4}}, Sw/B3 = {{7, 8}}
S ′
w/B1 = {{1, 10}, {6, 9}}, S

′
w/B2 = {{2, 3}, {4, 5}}, S

′
w/B3 = {{7, 8}}.

It is easy to obtain the following result.

Proposition 2.3 If w ∈ W k
2n then there exist k subwords wj ∈ W2sj

, j = 1, 2, . . . , k
with s1 + s2 + · · ·+ sk = n which can be recognized in w.

For example, in the word w = a a b b̄ ā b̄ a ā b ā ∈ W 3
10, we recognize the

subwords w1 = w1w6w9w10 = a b̄ b ā ∈ W4, w
2 = w2w3w4w5 = a b b̄ ā ∈ W4 and

w3 = w7w8 = a ā ∈W2.
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We continue by introducing three internal operations in the set Ŵ2n:
For w ∈ Ŵ2n, we define the words w \, w− and w+ as follows:

w \

i = w̄2n+1−i (where ¯̄wj = wj)

w−
i =





wi, if wi ∈ {a, ā};
b, if wi = b̄;
b̄, if wi = b,

w+
i =





ā, if w2n+1−i = a;
a, if w2n+1−i = ā;
w2n+1−i, if w2n+1−i ∈ {b, b̄},

for every i ∈ [2n]. We may call these operations mirror, overturn and mirror-overturn
respectively.

For example, if w = a b a b̄ ā b̄ b b̄ b ā then w \ = a b̄ b b̄ b a b ā b̄ ā, w− =
a b̄ a b ā b b̄ b b̄ ā and w+ = a b b̄ b b̄ a b̄ ā b ā.

It is obvious that for any w ∈ Ŵ2n, the words w \, w− and w+ also belong to Ŵ2n.
We have that w \ = w (resp. w+ = w) iff w+ = w− (resp. w− = w \) as well as that
w− 6= w and w+ 6= w \. We thus obtain the following result.

Proposition 2.4 The set Ŵ2n can be partitioned into classes of either two or four
elements.

Let A2n = {w ∈ Ŵ2n : w2 = a, w2n−1 = ā} and B2n = {w ∈ Ŵ2n : w2 = b̄}. By
the previous properties of w \, w− and w+ we have the following proposition.

Proposition 2.5 i) If w ∈ A2n, then w \, w−, w+ ∈ A2n.
ii) If w /∈ A2n, then at least one of the words w, w \, w−, w+ belongs to B2n.

From the previous results it is clear that in order to construct Ŵ2n it is enough
to have A2n and B2n. In order now to generate each element w = u � u′ of A2n (resp.
B2n), it is enough to consider only the words u = u1u2 · · · u2n, u′ = u′

1u
′
2 · · · u

′
2n of

D2n with u2 = u′
2 = a and u2n−1 = u′

2n−1 = ā (resp. u2 = ā, u′
2 = a).

3 Meanders

We recall that a closed meander of order n is a closed self avoiding curve, crossing an
infinite horizontal line 2n times (A005315).

Let M2n be the set of all closed meanders of order n.
As opposed to previous papers [1], [8], the study of meanders will follow here the

order of the crossings of the horizontal line rather than the meandric curve itself.
It is clear that if µ ∈ M2n, the lines above (resp. underneath) the horizontal line

uniquely define a nested set Uµ (resp. Lµ) on [2n] with Uµ, Lµ being matching and
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Figure 1: A closed meander of order 5

conversely two matching nested sets Uµ and Lµ uniquely define the meander µ. This
allows us to actually identify a meander µ ∈ M2n to a pair (Uµ,Lµ) of nested sets of
[2n].

For example, for the closed meander µ of Figure 1 we have:
Uµ = {{1, 6}, {2, 5}, {3, 4}, {7, 8}, {9, 10}},
Lµ = {{1, 2}, {3, 10}, {4, 5}, {6, 7}, {8, 9}}.

To each meander of M2n corresponds a unique word of W2n. Intuitively, this corre-
spondence becomes obvious when we assign the letters a, ā, b, b̄ to the various kinds of
intersection opening, closing, proceeding upwards, proceeding downwards respectively,
occurring along the horizontal line.

So, the word w = a b a b̄ ā b̄ b b̄ b ā corresponds to the closed meander of
Figure 1.

In order to develop formally these ideas we need the following result, obtained by
considering all the possible orderings for the elements i, j, h of the pairs {i, j} ∈ Uµ

and {i, h} ∈ Lµ.
To every µ ∈M2n corresponds a unique word w ∈W2n, with

wi =





a, if i < j, h;
ā, if h, j < i;
b, if h < i < j;
b̄, if j < i < h,

where {i, j} ∈ Uµ , {i, h} ∈ Lµ.
So, from the nested sets Uµ, Lµ of the previous example we create again the word

w = a b a b̄ ā b̄ b b̄ b ā.
Conversely, to every word w ∈ W2n with Sw, S

′
w matching, corresponds a unique

meander µ ∈M2n with Uµ = Sw, Lµ = S ′
w.

From the above, we have the following result.

Proposition 3.1 There exists a bijection between the sets M2n and W2n.
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In order to determine Uµ and Lµ (and hence construct the meander µ ∈M2n) we
use the notion of conjugate indices of a Dyck word. So, given a word w ∈ W2n, we
create its relatives r, r′ and we find the conjugate indices of these Dyck words, which
indicate the pairs of Uµ and Lµ respectively.

We recall that a pair {a, b} of a nested set S is called short pair if there is no
c ∈ dom S with either a < c < b or b < c < a, [7]. We have the following result.

Proposition 3.2 Each digram aā, ab̄, bā, bb̄ (resp. aā, ab, b̄ā, b̄b) of a word w ∈ W2n

corresponds to a short pair of Uµ (resp. Lµ) in the associated meander µ.

So, we can also determine the meander µ ∈ M2n by repetitively contracting the
given word w ∈ W2n, using each time propositions 3.1 and 3.2.

So for w = a b a b̄ ā b̄ b b̄ b ā, we have:

w = a b a b̄ ā b̄ b b̄ b ā

1 2 3 4 5 6 7 8 9 10

a b ā b̄

1 2 5 6

a b̄

1 6
giving Uµ = {{1, 6}, {2, 5}, {3, 4}, {7, 8}, {9, 10}}.

Similarly, we have

w = a b a b̄ ā b̄ b b̄ b ā

1 2 3 4 5 6 7 8 9 10

a ā

3 10
giving Lµ = {{1, 2}, {3, 10}, {4, 5}, {6, 7}, {8, 9}}.

We thus finally get the meander µ of Figure 1 again.

Let µ ∈ M2n and w ∈ W2n its corresponding word. If we draw the meanders µ \,
µ−, µ+ that correspond to the words w \, w−, w+ we realize that the above operations
define meanders symmetric to the meander µ that corresponds to w, with respect to
a vertical axis, to the horizontal line and to their intersection respectively.

It is easy to check that:
{i, j} ∈ Uµ \ iff {2n+ 1− i, 2n+ 1− j} ∈ Uµ,
{i, j} ∈ Lµ \ , iff {2n+ 1− i, 2n+ 1− j} ∈ Lµ,
Uµ− = Lµ, Lµ− = Uµ,
Uµ+ = Lµ \ , Lµ+ = Uµ \ .

Hence, according to Proposition 2.4 we have the following result.
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Proposition 3.3 The set M2n can be partitioned into classes of either two or four
elements.

4 Systems of meanders

We can extend the definition of closed meanders to systems of closed meanders with k
components (or k-meanders) by allowing configurations with k disconnected meanders
[5]. We will denote the set of all k-meanders of order n with M k

2n, k ∈ {2, 3, . . . , n}.

Figure 2: A 3-meander of order 5

Obviously, like in the case of meanders, a k-meander ν also determines the corre-
sponding nested sets Uν , Lν that are now k-matching.

For example, for the 3-meander ν of Figure 2 we have:
Uν = {{1, 6}, {2, 5}, {3, 4}, {7, 8}, {9, 10}}
Lν = {{1, 10}, {2, 3}, {4, 5}, {6, 9}, {7, 8}}.

We can still assign the letters a, ā, b, b̄ to the various kinds of intersection, thus
creating the corresponding word of W k

2n.
So, the word w = a a b b̄ ā b̄ a ā b ā corresponds to the 3-meander of Figure 2.
It is easy to check that if we refer to meanders of M k

2n instead of M2n, to W k
2n

instead of W2n and to k-matching instead of matching nested sets, we can apply
propositions 3.1, 3.2 and 3.3 to k-meanders.

So, similarly to proposition 3.1, there exists a bijection between the sets M k
2n and

W k
2n, i.e., to every ν ∈ M k

2n corresponds a unique word w ∈ W k
2n obtained by the

formula for wi.
Conversely, to every w ∈ W k

2n with Sw, S
′
w k-matching, corresponds a unique

system of meanders ν ∈M k
2n with Uν = Sw, Lν = S ′

w.
P. Di Francesco et al. [2] have given formulae for the cardinality of M k

2n, for
k = n−3, n−2, n−1, whereas for k = n we have |Mn

2n| = C2n, given that W n
2n = D2n.

Similarly to proposition 3.2, we can now determine the system of meanders ν ∈
Mk

2n from the word w ∈W k
2n.
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Let now S be a member of the set N2n of the nested sets of pairs on [2n]; let
{a, d}, {b, c} ∈ S with a < b < c < d and such that for every {e, f} ∈ S with
e < b < f we have e ≤ a; then {a, d} (resp. {b, c}) is called father (resp. child) of
{b, c} (resp. {a, d}). We call two elements {i, j}, {k, l} of S brothers if the have the
same father, or if they have no father.

We define two operations in N2n as follows:
If {b, c} and its father {a, d} belong to S ∈ N2n with a < b < c < d, then σ(S; a, b)

is the set obtained if we replace the pairs {a, d} and {b, c} with the pairs {a, b} and
{c, d}. It is obvious that σ(S; a, b) ∈ N2n and that {a, b} and {c, d} are brothers in
σ(S; a, b).

If {a, b}, {c, d} are brothers in S ∈ N2n, with a < b < c < d, then τ(S; a, c) is the
set obtained if we replace the pairs {a, b} and {c, d} with the pair {a, d} and {b, c}.
It is obvious that τ(S; a, c) ∈ N2n and that {a, d} is the father of {b, c} in τ(S; a, c).

The above definitions imply that if {a, d} is the father of {b, c} in the set S ∈ N2n,
then τ(σ(S; a, b); a, c) = S, whereas if {a, b}, {c, d} are brothers, then

σ(τ(S; a, c); a, b) = S.

We also have the following result.

Proposition 4.1 Let ν ∈ M k
2n. If the father {a, d} and the child {b, c} (resp. the

brothers {a, b}, {c, d}) of Uν belong to the same component of ν then the set U =
σ(Uν ; a, b) (resp. U = τ(Uν ; a, c)) and Lν are (k + 1)-matching, thus defining a
meander ξ ∈Mk+1

2n , whereas if they belong to different components of ν, then ξ belongs
to Mk−1

2n .

It is obvious that the above result still holds if we interchange L with U .

Proposition 4.1 is important since it enables us to recursively construct the sets
Mk

2n, k = j + 1, j + 2, . . . , n if the set M j
2n is known for some j ∈ [n− 1].

For example, if µ ∈M10 is the meander of Figure 1, we have that the sets Uν = Uµ

and Lν = τ(Lµ; 6, 8) = {{1, 2}, {3, 10}, {4, 5}, {6, 9}, {7, 8}} determine a meander
ν ∈M 2

10; a second application of proposition 4.1 gives Uξ = Uν and

Lξ = τ(Lν ; 1, 3) = {{1, 10}, {2, 3}, {4, 5}, {6, 9}, {7, 8}}

which determine the meander ξ ∈M 3
10 of Figure 2.
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