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Abstract

Let g, h be solutions of a linear recurrence relation of length 2. We show that under some
mild assumptions the greatest common divisor of g(n) and h(n) is periodic as a function of
n and compute its mean value.

1. PROBLEMS AND RESULTS

Let a, b be coprime integers, b # 0, and consider the recurrence relation

f(n+2)=af(n+1)+bf(n), n € Ny. (1)
Let g, h : Ng — Z be solutions of ([]) with
lg(n)| + [h(n)] >0 (2)

for all n € Ny. We define the ged function ¢(n) = ged(g(n), h(n)) and consider two problems.
Problem 1. Under which conditions on g and h is the function ¢(n) periodic?
Problem 2. If t(n) is periodic, what is the mean value of t(n)?

We first need a

Definition. We call a function f : Ny — 7Z periodic and ¢ € N a period of f, iff there exists
some ng € Ny such that f(n) = f(n+q) for all n > ng. If one can choose ng = 0, f is called
simply periodic.
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In this note we prove the following two theorems.

Theorem 1. Let g,h : Ng — Z be solutions of (1) satisfying (3), and assume that ¢ :=
g()R(0) — g(0)h(1) # 0. Then
(a) the function t(n) is periodic, moreover, if ged(b,c) = 1, it is simply periodic;
(b) every common period of g(n) mod |c| and h(n) mod |c| is a period of t(n);
(c) for all n € Ny we have t(n) |c.
07
)

Theorem 2. Let g, h : Ng — Z be solutions of ([1) satisfying (H), and assume that g(0)
9(1) = 1, ¢ := h(0) # 0 and ged(b,c) = 1. Then the mean value of t(n)equals 3. k((g),
where k(d) := min{n € N:d|g(n)}.

Examples. 1. In the case ¢(0) =0, g(1) =1, h(0) = 2, h(1) = a, McDaniel [[]] has shown,
that t(n) is 1 or 2 for n € N. This follows also from our Theorem 1 (c). If further a = b =1,
we obtain the Fibonacci function (resp., Lucas function). Since g(n) mod 2 and h(n) mod 2
are simply periodic with period 3, we get

[ 2, n=0 (mod 3);
t(”>—{1, Z¢o (Egd?)),

Sl

with mean value 3. This is a well-known result (see e.g., [], [B]).

2. Defining g and h by a = 1,b =2, g(0) = h(0) =1, g(1) = 2, h(1) = 0, we obtain the ged

function
1, n=0
t(n) - { 27 n Z 1

which is periodic, but not simply periodic.
Remarks. 1. The assumption ged(a,b) = 1 in Theorem 1 is necessary, since for every
common divisor d of a and b we have
d" | t(2n), n € N.
If d > 1, t(n) is unbounded, hence not periodic.
2. The ged functions of recurrences of higher order need not be periodic. The companion
polynomial (x — 1)(z — 2)(z — 3) corresponds to
f(n+3)=6f(n+2)—11f(n+1)+6f(n), n € Ny.
It has solutions g(n) = 2"™' — 1 and h(n) = 3" — 1 with ¢ = —2. If p > 5 is a prime, and
n=—1 (mod p — 1), then
t(n) = ged(2"t - 1,3"" —1) =0 (mod p)
and t(n) > p; hence, t(n) is not bounded and a forteriori not periodic.

3. The function ¢(d) does not depend on the period g of ¢(n) mod d. If f(n) is the solution
of () with initial values f(0) = 0, f(1) = 1 (the generalized Fibonacci function), one can
take any period ¢ of f(n) mod d: We have

g(n) = (9(1) —ag(0))f(n) + g(0)f(n+1),  n €Ny,
hence, ¢ is a period of g(n) mod d, and similarly for h(n) mod d, thus ¢ is a period of
t(n) mod d, too.
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4. The mean value M of t(n) depends only on the determinant ¢ of the initial values of g and
h. It is unbounded as a function of m = |¢|, even if g(0) = 0,g(1) = 1, since k(d) < d4“¥

(see [[]) implies
w(m)
o(d) p—1. 9
M= D = || (1+—4p 7)=\3

d|m pillm

5. The assumption ged(b,¢) = 1 in Theorem 2 is necessary, however, there is always some
no such that the function t(n) = t(n + ng) has the same mean value as t(n) and the mean
value formula holds true for ¢.

2. PrROOFS

We first need two lemmas, which are well-known for the classical Fibonacci function (see
H)-

Lemma 1. Let f : Ny — Z be a solution of ([]), and d € N. Then the function n —
f(n) mod d is periodic, and simply periodic if ged(b,d) = 1.

Proof. There are positive integers ny < mg, such that both f(n1) = f(ns) (mod d) and
f(ni+1)= f(ne+1) (mod d). Then ¢ = ny —ny is a period of f(n) mod d, since by ([]),
f(n+q) = f(n) (mod d) for all n > ny. Assume that f(ng + ¢) Z f(no) (mod d), and
choose ng maximal with this property. Then by ([]), we have mod d the congruences

bf(ng) = flno+2)—af(nog+1)
= flno+q+2)—af(no+q+1)
= bf(no+q).
If ged(b, d) = 1, this gives the contradiction f(ng) = f(no + ¢) (mod d). O

Lemma 2. Let f : Ng — Z be the generalized Fibonacci solution of (1), i.e., f(0) =0, f(1) =
1. Then

(a) ged(f(n), f(n +1)) = 1,n € N,
(b) f(m+mn)=fim+1)f ( ) +bf(m)f(n—1),m € No,n € N;
(c) if d,n €N, and k(d) = min{n € N: d| f(n)}, then (d| f(n) < k(d) |n).

Proof. (a). Let p be a prime, and n be the least integer with p | f(n),p| f(n+1); in particular,
n > 1. The equation f(n+1) = af(n)+bf(n—1) implies p|bf(n—1), hence, p|b. Similarly,

f(n) = af(n 1)4+bf(n—2) implies p | af(n—1), thus p|a. This contradicts the assumption
ged(a, b) =

(b). This follows by induction on n.

(¢). Let L:={neNy:d|f(n)}. f m,n € L, we get m+n € L by (b)., and if m > n, we
have f(m) = f(m—n)f(n+1)+bf(m—n—1)f(n), hence, d| f(m—n)f(n+1),som—n € L
by (a). Take n € L and write n = mk(d) +t with 0 < ¢ < k(d). Since t = n — mk(d) € L,
we have t = 0 and L = k(d) - Ny. This proves the last claim. O

Proof of Theorem 1. Let f : Ny — Z be the solution of ([l) with initial values f(0) =
0, f(1) = 1. We have

cf(n) = h(0)g(n) — g(0)h(n),  n €N, (3)
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since both sides solve ([]), and the initial values are 0 and c. Similarly,

cf(n+1) = (ah(0) = h(1))g(n) = (ag(0) — g(1))h(n),  n € N. (4)

Fix n € Ny and let ¢ be a common divisor of g(n) and h(n). Then ¢ |c(f(n), f(n+1)) by (B)
and ([I), hence t | ¢ by Lemma 2 (a) From this we deduce

t(n)|c, for all n € Ny. (5)
By Lemma 1, a common period g of g(n) mod |c| and h(n) mod |¢| exists, so, by ([),
t(n) = ged(g(n), h(n),c) = ged(g(n + q), h(n + q),c) = t(n+q), if n > ne.
This proves Theorem 1. O

Proof of Theorem 2. Set m := |c|, and let ¢ be a period of ¢(n) mod m, which exists by
Lemma 1. Then, since ¢ is simply periodic, the mean value of t(n) is

1
M= - Z t(n),
q 1<n<q

and by Theorem 1 (c), this quantity is equal to %dedg(d)a where {(d) = #{n < q :
ged(t(n),m) = d}. Further, we have

M:é Z ged(t(n),m) = 323 Z 1

1<n<gq s|m 1<n<q
ged(t(n),m)=s

St ={ g n71 ©)

kln

Since

the inner sum can be written as

> Yoo uky =) nulk) Y1

1<n< m 1<n<
s_|t(7_131 k| ged(t(n)/s,m/s) k| s sk t(_nq)

Set d := sk; then

M= 3 () S k)

d|m k|d
We use >, ¢(d) = n together with (H) and see kau(k‘)% = ¢(d). Hence,

M= 2 pldn < q: d] )

d|lm
Since g(0) = 0,¢(1) = 1, we have
h(n) = (h(1) — ah(0))g(n) + h(0)g(n + 1),
and by Lemma 2 (a), we obtain

t(n) = ged(g(n), h(0)g(n + 1)) = ged(g(n), (0)) = ged(g(n), m).



We finally get by Lemma 2 (c) for every d|m

#n<gdlin)}=> 1=Y 1:%00,

1<n<q 1<n<gq
dlg(n) k(d) [ n
and Theorem 2 is proven. O
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