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Abstract

This paper deals with the enumeration of k-colored Motzkin words according to

various parameters, such as the length, the number of rises, the length of the initial

rise and the number of prime components.

1 Introduction

There exists an extended literature on Dyck and Motzkin paths and their relationship with
many other combinatorial objects [7, 10, 11, 15, 16, 19, 21]. It is well known that the
sets of Dyck paths of length 2n and Motzkin paths of length n are enumerated by the
Catalan numbers Cn (A000108) and the Motzkin numbersMn (A001006), respectively. More
generally, there is great interest in k-colored Motzkin paths [2], which have horizontal steps
colored by means of k colors.

This paper deals with the set of k-colored Motzkin words (or equivalently paths) and
with some subsets of it, defined by various parameters.

In section 2, some basic definitions and notations referring to the sets Mk and Mc
k of

(k-colored) Motzkin and c-Motzkin words respectively are given.
In section 3, using the generating functions Fk and Gk of Mk and Mc

k respectively,
according to the parameters “length”, “number of rises” and “length of the initial rise”,
the cardinalities of several subsets of Mk are evaluated. Furthermore, using the Lagrange
inversion formula, the coefficients of the powers of Fk are determined.
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Finally, in section 4, the decomposition of the elements ofMc
k to prime words is studied.

The generating function Gk of Mc
k according to the three previous parameters and to the

parameter “number of prime components” is determined. This is used to show that the
number of all u ∈ Mc

k with s prime components and length of the initial rise equal to m is
equal to the number of all u ∈ Mc

k with m prime components and length of the initial rise
equal to s.

2 Preliminaries

Throughout this paper, let E be an alphabet with k + 2 letters, where k ∈
�

and a, ā are
two given elements of E. For k 6= 0, the elements of the set E\{a, ā} = {β1, β2, . . . , βk} are
called colors of E. The number of occurrences of the letter x ∈ E in the word u is denoted
by |u|x, the length of u by l(u), and the number of rises of u by r(u).

We denote by E∗ the set which contains all the words with letters in E as well as the
empty word ε. A word u ∈ E∗ is called k-colored Motzkin word if |u|a = |u|ā and for every
factorization u = wv we have |w|ā ≤ |w|a.

A Motzkin path of length n is a lattice path of
� 2 running from (0, 0) to (n, 0) that

never passes below the x-axis and whose permitted steps are the up diagonal step (1, 1),
the down diagonal step (1,−1) and the horizontal step (1, 0), called rise, fall and level step,
respectively. If the level steps are labelled by k colors we obtain the k-colored Motzkin paths.

It is clear that each k-colored Motzkin path is coded by a k-colored Motzkin word u =
u1u2 · · · un ∈ E∗ so that every rise (resp., fall) corresponds to the letter a (resp., ā) and every
colored level corresponds to a certain color of E; see Fig. 1.

u = a a β1 ā a ā ā β1 a β2 a a ā ā ā β1 a β2 ā

Figure 1: A 2-colored Motzkin path and its corresponding Motzkin word

We denote by Mk,n (resp., Mk,n,r) the set of all u ∈ Mk with l(u) = n (resp., l(u) = n
and r(u) = r) and we set µk,n = |Mk,n| (resp., µk,n,r = |Mk,n,r|).

It is well known that if k = 0, 1 we obtain the sets of Dyck and Motzkin words, respec-
tively. The 2-colored Motzkin words have been studied in [9]. More precisely, we have:

µ0,n =

{

Cn
2
, if n is even;

0, if n is odd,
µ1,n = Mn, µ2,n = Cn+1.

The 3-colored Motzkin paths correspond to the tree-like polyhexes defined by Harary
[13], as we will see in the next section.
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Let u = u1u2 · · · un ∈ Mk,n. Two indices i, j ∈ [n] = {1, 2, . . . , n} with i < j are called
conjugates with respect to u if and only if j is the smallest number in {i + 1, i + 2, . . . , n}
for which the segment uiui+1 · · · uj of u is a k-colored Motzkin word.

A word u ∈ Mk,n is called (k-colored) c-Motzkin word if and only if every i ∈ [n] with
ui /∈ {a, ā}, lies between two conjugate indices. It is clear that the c-Motzkin words code
exactly those k-colored paths that have no level steps on the x-axis; see Fig. 2.

u = a β1 a ā ā a β1 β2 a β1 a a ā ā ā β1 β2 β2 ā a β1 β1 ā

Figure 2: A 2-colored Motzkin path and its corresponding c-Motzkin word

The c-Motzkin words have been introduced and studied in the case k = 1, [18].
In the following sections we will refer to the sets Mc

k,n = Mc
k ∩ Mk,n and Mc

k,n,r =
Mc

k ∩Mk,n,r with cardinalities µc
k,n and µc

k,n,r, respectively.

3 Enumeration of sets of k-colored Motzkin words

In this section we evaluate the cardinal number of several subsets of Mk defined by various
parameters. We first need the following definition.

The initial rise of a non-empty word u = u1u2 · · · un ∈ Mk with u1 = a is the segment
u1u2 · · · uj where uν = a for every ν ∈ [j] and uj+1 6= a. If u = ε or u1 6= a, the initial rise of
u is the empty word. We denote by p(u) the length of the initial rise of u.

Let Fk and Gk be the generating functions ofMk andMc
k, respectively, according to the

parameters l, r, p (coded by x, y, z), i.e.,

Fk(x, y, z) =
∑

u∈Mk

xl(u)yr(u)zp(u)

and
Gk(x, y, z) =

∑

u∈Mc
k

xl(u)yr(u)zp(u).

Proposition 3.1 The generating functions Fk, Gk are given by the formulae

Fk(x, y, z) =
1 + kxFk(x, y)

1− x2yzFk(x, y)
(1)

and

Gk(x, y, z) =
1

1− x2yzFk(x, y)
, (2)
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where the generating function Fk(x, y) = Fk(x, y, 1) satisfies the equation

x2yF 2
k (x, y) + (kx− 1)Fk(x, y) + 1 = 0 (3)

and hence

Fk(x, y) =
1− kx−

√

(1− kx)2 − 4x2y

2x2y
. (4)

Proof : We can easily verify that for k 6= 0 each nonempty u ∈Mk can be uniquely written in
either of the forms u = βνv for some v ∈Mk and ν ∈ [k], or u = awāv for some v, w ∈Mk,
where indices 1, l(w) + 2 are conjugates with respect to u.

Obviously, since in the first case p(u) = 0, r(u) = r(v) and in the second case r(u) =
r(w) + r(v) + 1, p(u) = p(w) + 1, we obtain that

Fk(x, y, z) = 1 +
k

∑

ν=1

∑

v

xl(βνv)yr(v) +
∑

w,v

xl(w)+l(v)+2yr(w)+r(v)+1zp(w)+1

= 1 + kxFk(x, y) + x2yzFk(x, y, z)Fk(x, y).

Thus,

Fk(x, y, z) =
1 + kxFk(x, y)

1− x2yzFk(x, y)
.

Moreover, applying the above equality for z = 1 we deduce that

x2yF 2
k (x, y) + (kx− 1)Fk(x, y) + 1 = 0.

The proof of (1) for k = 0 follows as above with some simple modifications.
The proof of (2) is similar and it is omitted. 2

Remark The generating function Fk can be obtained as an application of a continued
fraction result [12]. More precisely if we apply theorem 1 of [12] by counting the rises by xy,
the falls by x and the level steps by kx we conclude that

Fk(x, y) =
1

1− kx−
x2y

1− kx−
x2y

1− kx−
x2y

· · ·

which easily leads to equation (3).

Example We compute the number of k-colored c-Motzkin words of length n, for k = 1 and
k = 2, using the generating functions C(x) and M(x) of Catalan and Motzkin numbers,
respectively. For this we use formula (2) for the generating function Gk(x) = Gk(x, 1, 1) of
Mc

k according to the length.

4



1) For k = 1, we have that

G1(x) =
1

1− x2F1(x)
=

1

1− x2M(x)
=

1 + xM(x)

1 + x

= (
∞
∑

n=0

(−1)nxn)(
∞
∑

n=0

γnx
n)

=
∞
∑

n=0

(
n
∑

i=0

(−1)iγn−i)x
n,

where

γn =

{

Mn−1, if n ≥ 1;

0, if n = 0.

Thus,

µc
1,n =

n
∑

i=0

(−1)iγn−i =
n−2
∑

i=0

(−1)iMn−i−1,

for every n ≥ 2.
We note that from the above formula we deduce that for every n ≥ 2,

µc
1,n + µc

1,n−1 = Mn−1

which implies that the number of c-Motzkin paths of length n is equal to the number of
Motzkin paths of length n− 1 with at least one level step on the x-axis [14].

2) For k = 2 and since

F2(x) =
∞
∑

n=0

µ2,nx
n =

∞
∑

n=0

Cn+1x
n =

1

x
[C(x)− 1] = C2(x),

we obtain that

G2(x) =
1

1− x2C2(x)
.

So, the generating function G2(x) coincides with the generating function of Fine numbers
fn [8] and hence we conclude that µc

2,n = fn.

In the following result we give recursive formulae for the sequences µk,n,r and µk,n.

Proposition 3.2 For every k, ν, n, r ∈
�
with r ≤ [n

2
] we have that

µk+ν,n,r =
n
∑

m=2r

(

n

m

)

µk,m,rν
n−m =

n
∑

m=2r

(

n

m

)

µν,m,rk
n−m (5)

and

µk+ν,n =
n
∑

m=0

(

n

m

)

µk,mν
n−m =

n
∑

m=0

(

n

m

)

µν,mk
n−m. (6)
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Proof : From relation (4) we easily obtain that

Fk+ν(x, y) =
Fk(

x
1−νx

, y)

1− νx
=
Fn(

x
1−kx

, y)

1− kx

for every k, ν ∈
�
.

On the other hand, we have that

Fk(
x

1−νx
, y)

1− νx
=

∞
∑

m=0

[m
2
]

∑

r=0

µk,m,rx
myr

1

(1− νx)m+1

=
∞
∑

m=0

[m
2
]

∑

r=0

µk,m,rx
myr

∞
∑

j=0

(

−m− 1

j

)

(−νx)j

=
∞
∑

m=0

[m
2
]

∑

r=0

∞
∑

j=0

µk,m,r

(

m+ j

j

)

νjxj+myr

=
∞
∑

n=0

[n
2
]

∑

r=0

[ n
∑

m=2r

µk,m,r

(

n

m

)

νn−m

]

xnyr.

It follows that

µk+ν,n,r =
n
∑

m=2r

(

n

m

)

µk,m,rν
n−m.

Moreover, using the above relations we obtain that

µk+ν,n =

[n
2
]

∑

r=0

µk+ν,n,r =
n
∑

m=0

(

n

m

)

νn−m

[m
2
]

∑

r=0

µk,m,r =
n
∑

m=0

(

n

m

)

µk,mν
n−m.

The proofs of the second parts of relations (5) and (6) are similar and they are omitted. 2

Remark 1 Since

µ0,m,r =

{

Cr, if m = 2r;

0, if m 6= 2r

and

µ0,m =

{

Cm
2
, if m is even;

0, if m is odd,

setting ν = 0 in relations (5) and (6) we obtain that

µk,n,r =

(

n

2r

)

Crk
n−2r =

1

n+ 1

(

n+ 1

r + 1, r, n− 2r

)

kn−2r (7)

and

µk,n =

[n
2
]

∑

r=0

(

n

2r

)

Crk
n−2r (8)

6



which give (for k = 1) the well-known corresponding relations for Motzkin words [1].
Furthermore, for k = 2, relation (8) gives the well-known relation of Touchard

Cn+1 =

[n
2
]

∑

r=0

(

n

2r

)

2n−2rCr.

Remark 2 From relation (6) we can easily deduce relations

µk+1,n =
n
∑

m=0

(

n

m

)

µk,m (9)

and

µk+1,n+1 =
n
∑

m=0

(

n

m

)

(µk,m + µk,m+1). (10)

It is easy to check that from the above two relations, for k = 0 and k = 1, relations (1),
(2), (3) and (4) of [10] follow.

Remark 3 Applying relation (9) for k = 2, we obtain the number of all 3-colored Motzkin
words of length n:

µ3,n =
n
∑

m=0

(

n

m

)

Cm+1.

This number also gives the cardinality of the set of all tree-like polyhexes with n + 1
hexagons (A002212) (for detailed definitions see [13]), which can be coded by the 3-colored
Motzkin words in the following, recursive way:

If the polyhex consists of the root hexagon ABCDEF only (with root edge AB), then
the corresponding 3-colored Motzkin word is ε. If the polyhex consists of n + 1 hexagons,
then we have the following cases: If the only points of ABCDE with degree 3 are C,D (D,E
or E,F , respectively) then the corresponding u ∈ M3,n is β1w (β2w or β3w, respectively),
where the word w ∈M3,n−1 corresponds to the polyhex with n hexagons and root edge CD
(DE or EF , respectively) that we obtain if we delete the points of the root hexagon that
have degree 2, as well as the edges incident with these points; see Fig. 3 a,b,c.

B A B A B A B A

F F
F FC

C C
C

EE E EDDD Dw

w

w w w1 2

u = β1w u = β2w u = β3w u = aw1āw2

a b c d

Figure 3: The recursive coding of polyhexes
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If on the other hand the only points of the root hexagon with degree 3 are C,D,E, F
then the corresponding u ∈ M3,n is the word aw1āw2, where w1 (resp., w2) is the 3-colored
Motzkin word which corresponds to the polyhex with less than n-hexagons and root edge
CD (resp., EF ) that we obtain if we delete the points A,B as well as the edges AB, BC,
DE and FA; see Fig. 3 d.

We continue by evaluating the coefficients of the powers of Fk(x, y).

Proposition 3.3 The coefficients of F s
k (x, y), with s ∈

�
∗, are given by the formula

[xnyr]F s
k =

s

n+ s

(

n+ s

s+ r, r, n− 2r

)

kn−2r, (11)

where n, r ∈
�
, with r ≤ [n

2
].

Proof : We define the function H(x) = xFk(x, y). It follows easily by equation (3) that

H(x) = x[yH2(x) + kH(x) + 1].

Thus, if we set P (λ) = yλ2 + kλ + 1 we obtain that H(x) = xP (H(x)) and P (0) = 1.
Using Lagrange inversion formula [20] we obtain

[xn]Hs =
1

n
[λn−1]{sλs−1(P (λ))n}.

Moreover, we have

s

n
λs−1(P (λ))n =

s

n
λs−1

n
∑

i=0

(

n

i

)

λi(yλ+ k)i

=
s

n
λs−1

n
∑

i=0

(

n

i

)

λi
i

∑

ν=0

(

i

ν

)

yνλνki−ν

=
s

n

2n
∑

m=0

[m
2
]

∑

ν=(m−n)+

(

n

m− ν

)(

m− ν

ν

)

km−2νyνλm+s−1,

where (m− n)+ = max{0,m− n}.
Thus, for m = n− s we deduce that

[xn]Hs =
s

n

[n−s
2

]
∑

ν=0

(

n

n− s− ν

)(

n− s− ν

ν

)

kn−s−2νyν

for every n ≥ s.
Finally, applying the above equality for n+ s instead of s and setting ν = r, we conclude

that

[xnyr]F s
k =

s

n+ s

(

n+ s

n− r

)(

n− r

r

)

kn−2r

=
s

n+ s

(

n+ s

s+ r, r, n− 2r

)

kn−2r.
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2

We note that relation (7) is a special case of relation (11), for s = 1.

We use the last proposition in order to prove the following result:

Proposition 3.4 The number of all u ∈Mc
k,n,r that have initial rise of length s is equal to

[xnyrzs]Gk =
s

n− s

(

n− s

r, r − s, n− 2r

)

kn−2r,

where 1 ≤ s ≤ r ≤ [n
2
].

Proof : By relation (2) and proposition 3.3 we obtain that

[xnyrzs]Gk = [xnyrzs]{
∞
∑

s=0

x2sysF s
k (x, y)z

s}

= [xnyr]{x2sysF s
k (x, y)}

= [xn−2syr−s]F s
k

=
s

n− s

(

n− s

r, r − s, n− 2r

)

kn−2r.

2

Using proposition 3.1 and the same arguments as in the proof of proposition 3.4 we obtain
the following result:

Proposition 3.5 The number of all u ∈Mk,n,r that have initial rise of length s is equal to

[xnyrzs]Fk =
ns− rs+ n+ s− 2r

(n− s)(n− s+ 1)

(

n− s+ 1

r + 1, r − s, n− 2r

)

kn−2r,

where 1 ≤ s ≤ r ≤ [n
2
].

Notice that if n = 2r then both propositions 3.4 and 3.5 give the number of Dyck words
with prescribed height of the first peak [6].

4 Decomposition into prime words

A non-empty word u ∈ Mc
k is called prime if and only if it is not the product of two non-

empty c-Motzkin words. It is clear that the k-colored Motzkin paths coded by a prime word
are the paths whose only intersections with the x-axis are their initial and final points. It is
evident that the word u ∈Mk is prime if and only if the indices 1, l(u) are conjugates with
respect to u.

The following result, known for Dyck [17] and c-Motzkin [18] words is naturally extended
to k-colored c-Motzkin words.
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Proposition 4.1 Every u ∈Mc
k is uniquely decomposed into a product of prime words.

It is clear that the words u ∈ Mc
k,n which are decomposed into s prime words (compo-

nents) are the ones whose corresponding k-colored Motzkin paths meet the x-axis at exactly
s− 1 points, in addition to the points (0, 0) and (n, 0).

In this section, among others, the number of all u ∈Mc
k,n with a fixed number of prime

components is evaluated. This is a well-known result in the case of k = 0 (i.e., for Dyck
words, [7, 17]) and it is extended here for arbitrary k. For this, we consider one more
parameter d of Mc

k, defined by the number of prime components. Let Gk be the generating
function of Mc

k according to the parameters l, r, p, d (coded by x, y, z, φ), i.e.,

Gk(x, y, z, φ) =
∑

u

xl(u)yr(u)zp(u)φd(u).

Proposition 4.2 The generating function Gk(x, y, z, φ) is given by the formula

Gk(x, y, z, φ) = 1 +
x2yzφ(1 + kxFk(x, y))

(1− x2yzFk(x, y))(1− x2yφFk(x, y))
.

Proof : Every non-empty u ∈ Mc
k can be uniquely written in the form u = awāv, where

w ∈ Mk, v ∈ M
c
k, r(u) = r(w) + r(v) + 1, p(u) = p(w) + 1 and d(u) = d(v) + 1. Thus, by

proposition 3.1 follows that

Gk(x, y, z, φ) = 1 +
∑

w,v

xl(w)+l(v)+2yr(w)+r(v)+1zp(w)+1φd(w)+1

= 1 + x2yzφ(
∑

w

xl(w)yr(w)zp(w))(
∑

v

xl(v)yr(v)φd(v))

= 1 + x2yzφFk(x, y, z)Gk(x, y, 1, φ)

= 1 + x2yzφ
1 + kxFk(x, y)

1− x2yzFk(x, y)
Gk(x, y, 1, φ).

Further, applying the previous equality for z = 1 and using relation (3) we conclude that

Gk(x, y, 1, φ) =
1

1− x2yφFk(x, y)

which implies the required formula. 2

Remark Since Gk(x, y, 1, φ) = Gk(x, y, z, 1), we obtain that the parameters p and d are
equidistributed. This is a well-known result for Dyck paths, i.e., for the case k = 0, see
[4, 5, 6, 7].

Furthermore, since Gk(x, y, z, φ) = Gk(x, y, φ, z) we obtain the following result.

Proposition 4.3 The number of all u ∈Mc
k,n,r with s prime components and length of the

initial rise equal to m, is equal to the number of all u ∈ Mc
k,n,r with m prime components

and length of the initial rise equal to s.
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Proposition 4.3 can also be proved directly, by constructing an involution of Mc
k as

follows:
We first define the mapping

φ : {u ∈Mc
k : p(u) ≥ 2} → {u ∈Mc

k : d(u) ≥ 2}

such that if u = aawāvāz with w, v ∈Mk, z ∈M
c
k, l(w)+3 conjugate of 2 and l(w)+l(v)+4

conjugate of 1, then φ(u) = awāavāz. Obviously, φ is a bijection. Next we define the
mapping

θ :Mc
k →Mc

k

with θ(u) = φp(u)−d(u)(u), for every u ∈ Mc
k; (here φ

j stands for φ ◦ · · · ◦ φ). This mapping
is well defined, with l(θ(u)) = l(u) and r(θ(u)) = r(u).

It is easy to check, by induction on the number ν(u) = |p(u)− d(u)| that p(θ(u)) = d(u)
and d(θ(u)) = p(u) for every u ∈Mc

k. It follows that θ is the required involution of Mc
k.

In order to construct θ(u) from u ∈ Mc
k, we note that if p(u) = d(u) then θ(u) = u. If

p(u) > d(u), we delete the first ν(u) a’s of u and we insert one a after each ā of u which
corresponds to a conjugate of 2, 3, . . . , ν(u) + 1. Finally, if p(u) < d(u), we add ν(u) a’s
in the beginning of u, whereas we delete the initial a from each one of the 2nd, 3rd, . . .,
(ν(u) + 1)st prime component of u.

For example, for
u = a a a a a β1 ā ā a ā ā β2 a ā ā ā a β2 a ā ā a β1 ā ∈Mc

2,24

we obtain

θ(u) = a a a β1 ā ā a ā ā a β2 a ā ā a ā a β2 a ā ā a β1 ā ∈Mc
2,24.

This is illustrated by the corresponding 2-colored paths of u and θ(u) in Fig. 4.

Figure 4: The 2-colored Motzkin paths corresponding to u and θ(u)

Remark From propositions 3.4 and 4.3 follows that the number of all u ∈ Mc
k,n,r with s

prime components is equal to

s

n− s

(

n− s

r, r − s, n− 2r

)

kn−2r,

11



where 1 ≤ s ≤ r ≤ [n
2
].

This extends a well-known result on Dyck words (i.e., for k = 0) [7, 17], to k-colored
c-Motzkin words for arbitrary k.

Furthermore, by summing the above numbers for all s ∈ [r] we easily obtain that the
number of all k-colored c-Motzkin words of length n, with r rises is given by the formula

µc
k,n,r =

1

n− r + 1

(

n

r

)(

n− r − 1

r − 1

)

kn−2r.

This formula has been proved for k = 1 in a different way [18].
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