
23 11

Article 05.2.8
Journal of Integer Sequences, Vol. 8 (2005),2

3

6

1

47

On the Density of Languages

Representing Finite Set Partitions 1

Nelma Moreira and Rogério Reis
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Abstract

We present a family of regular languages representing partitions of a set of n el-
ements in less or equal c parts. The density of those languages is given by partial
sums of Stirling numbers of second kind for which we obtain explicit formulas. We
also determine the limit frequency of those languages. This work was motivated by
computational representations of the configurations of some numerical games.

1 The languages Lc

Consider a game where natural numbers are to be placed, by increasing order, in a fixed
number of columns, subject to some specific constraints. In these games column order is
irrelevant. Numbering the columns, game configurations can be seen as sequences of column
numbers where the successive integers are placed. For instance, the string

11213

stands for a configuration where 1, 2, 4 were placed in the first column, 3 was placed in
the second and 5 was placed in the third. Because column order is irrelevant, and to have
a unique representation for each configuration, it is not allowed to place an integer in the

1Work partially funded by Fundação para a Ciência e Tecnologia (FCT) and Program POSI.
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kth column if the (k − 1)th is still empty, for any k > 1. Blanchard and al. [BHR04] and
Reis and al. [RMP04] used this kind of representation to study the possible configurations
of sum-free games.

Given c columns, let Nc = {1, . . . , c}. We are interested in studying the set of game
configurations as strings in (Nc)

?, i.e., in the set of finite sequences of elements of Nc. Game
configurations can be characterised by the following language Lc ⊂ (Nc)

?:

Lc = {a1a2 · · · ak ∈ (Nc)
? | ∀i ∈ Nk, ai ≤ max{a1, . . . , ai−1}+ 1}.

For c = 4, there are only 15 strings in L4 of length 4, instead of the total possible 256 in
(N4)

4:
1111 1112 1121 1122 1123
1211 1212 1213 1221 1222
1223 1231 1232 1233 1234

Given a finite set Σ, a regular expression (r.e.) α over Σ represents a (regular) language
L(α) ⊆ Σ? and is inductively defined by: ∅ is a r.e and L(∅) = ∅; ε (empty string) is a r.e and
L(ε) = {ε}; a ∈ Σ is a r.e and L(a) = {a}; if α1 and α2 are r.e., α1+α2, α1α2 and α?

1 are r.e.,
respectively with L(α1 +α2) = L(α1)∪L(α2), L(α1α2) = L(α1)L(α2) and L(α1

?) = L(α1)
? ,

where we assume the usual precedence of the operators (see [HMU00]). A regular expression
α is unambiguous if for each w ∈ L(α) there is only one path through α that matches w.

Theorem 1.1. For all c ≥ 1, Lc is a regular language.

Proof. For c = 1, we have L1 = L(11?). We define by induction on c, a family of regular
expressions:

α1 = 11?, (1)

αc = αc−1 +
c
∏

j=1

j(1 + · · ·+ j)?. (2)

It is trivial to see that

αc =
c
∑

i=1

i
∏

j=1

j(1 + · · ·+ j)?. (3)

For instance, α4 is

11? + 11?2(1 + 2)? + 11?2(1 + 2)?3(1 + 2 + 3)? + 11?2(1 + 2)?3(1 + 2 + 3)?4(1 + 2 + 3 + 4)?.

It is also obvious that L(αc−1) ⊆ L(αc), for c > 1. For any c ≥ 1, we prove that

Lc = L(αc).

Lc ⊇ L(αc): If x ∈ L(αc) it is obvious that x ∈ Lc.

Lc ⊆ L(αc): By induction on the length of x ∈ Lc: If |x| = 1 then x ∈ L(α1) ⊆ L(αc).
Suppose that for any string x of length ≤ n, x ∈ L(αc). Let |x| = n + 1 and x = ya,
where a ∈ Nc and y ∈ L(αc). Let c

′ = max{ai | ai ∈ y}. If c′ = c, obviously x ∈ L(αc).
If c′ < c, then y ∈ L(αc′), and x ∈ L(αc′+1) ⊆ L(αc).
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2 Counting the strings of Lc

The density of a language L over a finite set Σ, ρL(n), is the number of strings of length n

that are in L, i.e.,

ρL(n) = |L ∩ Σn|.

In particular, the density of Lc is

ρLc
(n) = |Lc ∩ Nn

c |.

Using generating functions we can determine a closed form for ρLc
(n). Recall that, a

(ordinary) generating function for a sequence {an} is a formal series (see [GKP94])

G(z) =
∞
∑

i=0

anz
n.

If A(z) and B(z) are generating functions for the density functions of the languages rep-
resented by unambiguous regular expressions A and B, and A + B, AB and A? are also

unambiguous r.e., we have that A(z) + B(z), A(z)B(z) and
1

1− A(z)
, are the generating

functions for the density functions of the corresponding languages (see [SF96], page 378).
As αc are unambiguous regular expressions, from (3), we obtain the following generating

function for {ρLc
(n)}:

Tc(z) =
c
∑

i=1

i
∏

j=1

z

(1− jz)
=

c
∑

i=1

zi

∏i

j=1 (1− jz)
.

Notice that

Si(z) =
zi

∏i

j=1 (1− jz)

are the generating functions for the Stirling numbers of second kind

S(n, i) =
1

i!

i−1
∑

j=0

(−1)j
(

i

j

)

(i− j)n,

which are, for each n, the number of ways of partitioning a set of n elements into i nonempty
sets (see [GKP94] and A008277).

Then, a closed form for the density of Lc, ρLc
(n), is given by

ρLc
(n) =

c
∑

i=1

S(n, i), (4)

i.e., a partial sum of Stirling numbers of second kind.
In Table 1 we present the values of ρLc

(n), for c = 1..8 and n = 1..13. For some
sequences, we also indicate the corresponding number in Sloane’s On-Line Encyclopedia
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of Integer Sequences [Slo03]. The closed forms were calculated using the Maple computer
algebra system [Hec03].

From expression (4), it is also easy to see that

Theorem 2.1.

lim
c→∞

ρLc
(n) = Bn,

where Bn are the Bell numbers, i.e., for each n, the number of ways a set of n elements can

be partitioned into nonempty subsets.

Proof. Bell numbers, Bn, can be defined by the sum

Bn =
n
∑

i=1

S(n, i).

And, as S(n, i) = 0 for i > n, we have

lim
c→∞

ρLc
(n) =

n
∑

i=1

S(n, i) + lim
c→∞

c
∑

i=n+1

S(n, i) = Bn.

In Table 1, for each c ≥ 1, the subsequence for n ≤ c coincides with the first c elements
of Bn (A000110).

Moreover, we can express ρLc
(n), and then the partial sums of Stirling numbers of second

kind, as a generic linear combination of nth powers of k, for k ∈ Nc. Let S
j(n, i) denote the

jth term in the summation of a Stirling number S(n, i), i.e.,

Sj(n, i) =
1

i!
(−1)j

(

i

j

)

(i− j)n.

Lemma 2.1. For all n and 0 ≤ i ≤ n,

S0(n, i) = −S1(n, i+ 1). (5)

Proof.

S1(n, i+ 1) =
1

(i+ 1)!
(−1)

(

i+ 1

1

)

in = (−1)
1

i!
in = −S0(n, i).

Applying (5) in the summation (4) of ρLc
(n), each term S(n, i) simplifies the subterm

S1(n, i) with the subterm S0(n, i− 1), for i ≥ 2. We obtain

ρL1
(n) = S0(n, 1),

ρL2
(n) = S0(n, 2),

ρLc
(n) = S0(n, c) +

c
∑

i=3

i−1
∑

j=2

Sj(n, i), for c > 2;

=
cn

c!
+

c
∑

i=3

i−1
∑

j=2

Sj(n, i), for c > 2.
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c ρLc(n) OEIS

1 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

2
1

2
2n

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, . . .

3
1

6
3n +

1

2

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, . . . A007051

4
1

24
4n +

1

4
2n +

1

3

1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, 175275, 700075, 2798251, . . . A007581

5
1

120
5n +

1

12
3n +

1

6
2n +

3

8

1, 2, 5, 15, 52, 202, 855, 3845, 18002, 86472, 422005, 2079475, 10306752, . . . A056272

6
1

720
6n +

1

48
4n +

1

18
3n +

3

16
2n +

11

30

1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, . . . A056273

7
1

5040
7n +

1

240
5n +

1

72
4n +

1

16
3n +

11

60
2n +

53

144

1, 2, 5, 15, 52, 203, 877, 4139, 21110, 115179, 665479, 4030523, 25343488, . . . A099262

8
1

40320
8n +

1

1440
6n +

1

360
5n +

1

64
4n +

11

180
3n +

53

288
2n +

103

280

1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115929, 677359, 4189550, 27243100, . . . A099263

Table 1: Density functions of Lc, for c = 1..8.
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If the sums are rearranged such that i = k + j, we have

ρLc
(n) =

cn

c!
+

c−2
∑

k=1

c−k
∑

j=2

Sj(n, k + j), (6)

where

Sj(n, k + j) =
kn

(k + j)!
(−1)j

(

k + j

j

)

(7)

=
kn

k!j!
(−1)j. (8)

Replacing (8) into equation (6) we get

ρLc
(n) =

cn

c!
+

c−2
∑

k=1

kn

k!

(

c−k
∑

j=2

(−1)j

j!

)

. (9)

In equation (9), the coefficients of kn, 1 ≤ k ≤ c, can be calculated using the following
recurrence relation:

γ1
1 = 1;

γc
1 = γc−1

1 +
(−1)c−1

(c− 1)!
, for c > 1;

γc
k =

γc−1
k−1

k
, for c > 1 and 2 ≤ k ≤ c.

And, we have

Theorem 2.2. For all c ≥ 1,

ρLc
(n) =

c
∑

k=1

γc
kk

n. (10)

From the expression (10), the closed forms in Table 1 are easily derived.
Finally, we can obtain the limit frequency of Lc in (Nc)

?. Since

ρ(Nc)?(n) = cn,

and limn→∞

(

k
c

)n
= 0, for 1 ≤ k ≤ c− 2, we have

Theorem 2.3. For all c ≥ 1,

lim
n→∞

ρLc
(n)

ρ(Nc)?(n)
=

1

c!
.

6



3 A bijection between strings of Lc and partitions of

finite sets

The connection between the density of Lc and Stirling numbers of second kind is not acci-
dental. Each string of Lc with length n corresponds to a partition of Nn with no more than
c parts. This correspondence can be made explicit as follows.

Let a1a2 · · · an be a string of Lc. This string corresponds to the partition {Aj}j∈Nc′
of Nn

with c′ = max{a1, . . . , an}, such that for each i ∈ Nn, i ∈ Aai
. For example, the string 1123

corresponds to the partition {{1, 2}, {3}, {4}} of N4 into 3 parts.
This defines a bijection. That each string corresponds to a unique partition is obvious.

Given a partition {Aj}j∈Nc′
of Nn with c′ ≤ c, we can construct the string b1 · · · bn, such that

for i ∈ Nn, bi = j if i ∈ Aj. For the partition {{1, 2}, {3}, {4}}, we obtain 1123.

4 Counting the strings of Lc of length equal or less than

a certain value

Although strings of Lc of arbitrary length represent game configurations, for computational
reasons2 we consider all game configurations with the same length, padding with zeros the
positions of integers not yet in one of the c columns. In this way, we obtain the languages
L0

c = Lc{0
?}. So, determining the number of strings of length equal or less than n that are

in Lc is tantamount to determining the density of L0
c , i.e.,

ρL0
c
(n) = |L0

c ∩ ({0} ∪ Nc)
n|.

As seen in Section 2, and because Lc{0
?} = L(αc0

?), the generating function T ′c(z) of ρL0
c
(n)

can be obtained as the product of a generating function for ρLc
(n), Tc(z), by a generating

function for ρ{0}?(n), e.g.,
1

1− z
. Thus, the generating function for {ρL0

c
(n)} is

T ′c(z) = Tc(z)
1

1− z
=

c
∑

i=1

zi

(1− z)
∏i

j=1 (1− jz)

and a closed form for ρL0
c
(n) is (as expected)

ρL0
c
(n) =

n
∑

m=1

c
∑

i=1

S(m, i), (11)

where m starts at 1 because S(m, i) = 0, for i > m.

2The data structures used in the programs are arrays of fixed length.
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Using expression (9) in (11) we have

ρL0
1
(n) = n;

ρL0
2
(n) = 2n − 1;

ρL0
c
(n) =

n
∑

m=1

(

cm

c!
+

c−2
∑

k=1

km

k!

c−k
∑

j=2

(−1)j

j!

)

, for c > 2;

=
cn+1 − c

(c− 1)c!
+ n

c−1
∑

j=2

(−1)j

j!
+

c−2
∑

k=2

kn+1 − k

(k − 1)k!

(

c−k
∑

j=2

(−1)j

j!

)

=
cn − 1

(c− 1)(c− 1)!
+ n

c−1
∑

j=2

(−1)j

j!
+

c−2
∑

k=2

kn − 1

(k − 1)(k − 1)!

(

c−k
∑

j=2

(−1)j

j!

)

.

If we use the equation (10), we have

Theorem 4.1. For all c ≥ 1,

ρL0
c
(n) = nγc

1 +
c
∑

k=2

γc
k(k

n+1 − k)

k − 1
.

Proof.

ρL0
c
(n) =

n
∑

m=1

c
∑

k=1

γc
kk

m =
c
∑

k=1

γc
k

n
∑

m=1

km = nγc
1 +

c
∑

k=2

γc
k(k

n+1 − k)

k − 1
.

In the Table 2 we present the values of ρL0
c
(n), for c = 1..8 and n = 1..13. As before, the

limiting sequence as c→∞ is the sequence of partial sums of Bell numbers.
Finally, we determine the limit frequency of L0

c in (Nc)
?{0}?. Notice that

ρ(Nc)?{0}?(n) =
cn+1 − 1

c− 1
,

as it is a sum of the first n terms of a geometric progression of ratio c.
We have,

Theorem 4.2. For all c ≥ 1,

lim
n→∞

ρL0
c
(n)

ρ(Nc)?{0}?(n)
=

1

c!
.
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c ρL0
c
(n) OEIS

1 n

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . .

2 2n − 1

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, . . . A000225

3
1

4
3n +

1

2
n−

1

4

1, 3, 8, 22, 63, 185, 550, 1644, 4925, 14767, 44292, 132866, 398587, . . . A047926

4
1

18
4n +

1

2
2n +

1

3
n−

5

9

1, 3, 8, 23, 74, 261, 976, 3771, 14822, 58769, 234044, 934119, 3732370, . . .

5
1

96
5n +

1

8
3n +

1

3
2n +

3

8
n−

15

32

1, 3, 8, 23, 75, 277, 1132, 4977, 22979, 109451, 531456, 2610931, 12917683, . . . A099265

6
1

600
6n +

1

36
4n +

1

12
3n +

3

8
2n +

11

30
n−

439

900

1, 3, 8, 23, 75, 278, 1154, 5265, 25913, 135212, 736704, 4139831, 23767895, . . . A099266

7
1

4320
7n +

1

192
5n +

1

54
4n +

3

32
3n +

11

30
2n +

53

144
n−

31

64

1, 3, 8, 23, 75, 278, 1155, 5294, 26404, 141583, 807062, 4837585, 30181073, . . .

8
1

35280
8n +

1

1200
6n +

1

288
5n +

1

48
4n +

11

120
3n +

53

144
2n +

103

280
n−

57023

117600

1, 3, 8, 23, 75, 278, 1155, 5295, 26441, 142370, 819729, 5009279, 32252379, . . .

Table 2: Density functions of L0
c , for c = 1..8.
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Proof.

lim
n→∞

ρL0
c
(n)

ρ(Nc)?{0}?(n)
= lim

n→∞





(cn+1 − c)(c− 1)

(c− 1)c!(cn+1 − 1)
+

n(c− 1)

cn+1 − 1

c−1
∑

j=2

(−1)j

j!





+ lim
n→∞





c−2
∑

k=2

(kn+1 − k)(c− 1)

(k − 1)k!(cn+1 − 1)





c−k
∑

j=2

(−1)j

j!









=
1

c!

(

lim
n→∞

1

1− 1
cn+1

− lim
n→∞

c

cn+1 − 1

)

+
c−1
∑

j=2

(−1)j

j!
lim

n→∞

(

n(c− 1)

cn+1 − 1

)

+
c−2
∑

k=2

(c− 1)

(k − 1)(k − 1)!

c−k
∑

j=2

(−1)j

j!
lim

n→∞

(

(k
c
)n

c− 1
cn

−
1

cn+1 − 1

)

=
1

c!
.

5 Conclusion

In this note we presented a family of regular languages representing finite set partitions and
studied their densities. Although it is well-known that the number of partitions of a set of n
elements into no more than c nonempty sets is given by partial sums of Stirling numbers of
second kind, we determined explicit formulas for their closed forms, as linear combinations
of kn, for k ∈ Nc. We also determined the limit frequency of those languages, which gives
an estimate of the space saved with those representations.
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