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Abstract

We give bijective proofs of parity theorems for four related statistics on partitions
of finite sets. A consequence of our results is a combinatorial proof of a congruence
between Stirling numbers and binomial coefficients.

1 Introduction

The notational conventions of this paper are as follows: N := {0,1,2,...}, P:={1,2,...},
0] := @, and [n] := {1,...,n} for n € P. Empty sums take the value 0 and empty products
the value 1, with 0° := 1. The binomial coefficient (Z) is equal to zero if k£ is a negative
integer or if 0 < n < k.

Let II(n, k) denote the set of all partitions of [n] with k& blocks and II(n) the set of all
partitions of [n]. Associate to each m € Il(n, k) the ordered partition (E1,..., Ey) of [n]
comprising the same blocks as 7, arranged in increasing order of their smallest elements, and
define statistics w, w, w*, and w by

k
w(m) = Z(i —1)(|E;| - 1), (1.1)
() :Zz(\m — 1) =w(x)+n—k, (1.2)
k
w*(m) = Z@|E,| =w(m)+n+ (S), (1.3)
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and

w(r) = Z(i —1)|E;| = w(r) + (’;) (1.4)
Consider the generating functions (see [[l], [F, [0], and [d))

Sq(mk) = Z ¢, (1.5)

well(n,k)

Sen, k)= Y q" = g"FS,(n, k), (1.6)
well(n,k)

* k n &

S k)= Y ™ = g5, (n k), (1.7)

well(n,k)
and

Synk) = S ¢"™ = ¢G5, (n, k). (1.8)

well(n,k)

~ A

Summing the ¢-Stirling numbers S,(n, k), Sy(n, k), S;(n, k), and S,(n, k) over k yields the
respective g-Bell numbers B,(n), By(n), Bj(n), and By(n). These polynomials reduce to
the classical Stirling and Bell numbers when ¢ = 1. Wagner [[] evaluates the foregoing

polynomials when ¢ = —1 using algebraic techniques and raises the question of finding
bijective proofs.
We now describe a combinatorial method for evaluating these polynomials when ¢ = —1.

More generally, let A be a finite set of discrete structures and I : A — N, with generating

function
G(I,Aq) =) ¢"D =) {oeA: 1) =k}d" (1.9)
seA k

Of course, G(I,A;1) = |Al. IfA; == {6 € A: I(0) =i (mod 2)}, then G(I,A;—-1) =
|Ag| — |Aq]. Our strategy for finding G(I,A;—1) will be to identify a subset A* of A
contained completely within Ag or A; and then to define an I-parity changing involution on
A — A*. The subset A* thus captures both the sign and magnitude of G(I,A;—1). In the
present setting, A will either be II(n) or II(n, k) and I, one of the aforementioned partition
statistics.

In § [, we give bijective proofs establishing B,(n) and Eq(n) as well as the four ¢-
Stirling numbers when ¢ = —1. In § [, a bijection yielding B*,(n) and B_1(n) is given. A
consequence of our results is a combinatorial proof requested by Stanley of the congruence
[, p. 46]

S(n, k) = (n B TLLkZQIi N 1) (mod 2), 0<k<n, (1.10)

where S(n, k) = |m(n, k)| denotes the Stirling number of the second kind.



2 The First Bijection

Throughout, we’ll represent 7 € II(n) by (Ey, Es,...), the unique ordered partition of [n]
comprising the same blocks as 7, arranged in increasing order of their smallest elements. Let
FO = Fl = 1, with Fn = anl + Fn72 if n 2 2.

Theorem 2.1. For alln € N,

B_i(n) = Y S_i(n,k) = F,. (2.1)
k=0

Proof. Let II;(n) := {r € II(n) : @(7) =i (mod 2)} so that B_y(n) = [Iy(n)| — |TI1(n)].
To prove (7)), we'll identify a subset II(n) of IIy(n) such that |[II(n)| = F, along with a
w-parity changing involution of II(n) — ﬁ(n)

The set II(n) consists of those partitions 7 = (Ey, Es,...) whose blocks satisfy the two
conditions:

each block of odd index comprises a set of consecutive integers; (2.2a)
each block of even index is a singleton. (2.2b)
Now |[I(n)| = F,, as |TI(n)| is seen to satisfy the Fibonacci recurrence, upon considering

whether or not {n} is a block. For if {n} is not a block and n—2 belongs to an odd-numbered
(respectively, even-numbered) block of 7 € TI(n), then {n—1,n} constitutes a proper subset
of (respectively, all of) the last block of =.

Suppose now that m = (E, Fs, ...) belongs to II(n) — II(n) and that 4, is the smallest
of the integers ¢ for which Ey;_ fails to satisfy (R2a]) or Ey; fails to satisfy (2:2[). Let M
be the largest member of Ey; 1 U Ey;,. If M belongs to Esy;,_1, move it to Fy;,, while if M
belongs to Fy;,, move it to Eg;,_1 (note that if |Ey;,| = 1, then necessarily M € Fy;,_1). The
resulting map is a parity changing involution of II(n) — II(n). O

Below, we illustrate the fixed point set TI(n) and the pairings of TI(n) — II(n) when n = 4,
wherein the first two members of each row are paired.

Mo (n) — II(n) I (n) I(n)

{1,2,4}, {3} {1,2}, {3,4} {1,2,3,4}
{1,3,4}, {2} {1,3}, {2,4} {1,2,3}, {4}

{1}, {2,3,4} {1,4}, {2,3} {1}, {2}, {3.4}
{1,3}, {2}, {4} {1}, {2,3}, {4} {1,2}, {3}, {4}
{1,4}, {2}, {3} {1}, {2,4}, {3} {1} {2}, {3}, {4}

Note that the above bijection preserves the number of blocks of 7 € II(n). We'll use its
restriction to II(n, k) to prove

Theorem 2.2. For alln € N,

S_i(n,k) = <n a }fiiﬂ a 1>, 0<k<n. (2.3)



Proof. Let II;(n, k) := IL;(n) N I(n, k) for i = 0,1, I(n, k) := I(n) N II(n, k), and 7 =
(Ey,...,Ey) € I(n, k). If k is even, identify each pair of blocks (Fa;_1, Es), 1 < i < k/2,
with summands x; in a composition xy + -+ + x3/2 = n, where each x; > 2. If £k is odd,
identify (E1, Es), . (Ek 2, Ep—1), (E)) with summands z; in @1 4 - - - + Z(g41)2 = n Where

>2forl1 <1< k L and T(k+1)/2 = 1. The cardinality of H(n k) is then given by the right
hand side of (P-J), and the restriction of the prior bijection to II(n, k) — II(n, k) is again an

involution, and inherits the parity changing property, which proves (P.J). |
From (PJ) along with ([C0), ([77), and ([.J), we have
S 1(nk) = (— )M("‘k’“ﬁ‘l), 0<k<n, (2.4)
S* (n k) = (—1) (&) (” - TE’“ﬁ - 1), 0<k<n, (2.5)
and

n—k

The bijection establishing (P3) clearly applies to (2-9)—(-0) as well.
Let S(n,k) = |II(n, k)| denote the Stirling number of the second kind. The bijection of
Theorem [.7 also proves combinatorially that

S(n, k) = (n a ﬁkﬂ B 1) (mod 2),  0<k<n, (2.7)

S_i(n, k) = (—1)) (” - k2] - 1), 0<k<n (2.6)

since off of a set of cardinality ("_ Eff ij_l), each partition m € II(n, k) is paired with another
of opposite w-parity. This furnishes an answer to a question raised by Stanley [[I] p. 46].
Let FF3=—1, F 5 =1, and F_; = 0. We conclude this section by proving

Theorem 2.3. For alln € N,
B_i(n):=Y S_i(nk)=(-1)""'F,_s. (2.8)
k=0

Proof. Let n > 3, II(n) be as in the proof of Theorem P-I|, and II(n) C II(n) consist of
those partitions with an odd number of blocks and whose last block is a singleton. First,
ITI(n)| = |[I(n—3)| = F,_3 as the removal of n —2, n— 1, and n from 7 € II(n) is seen to be
a bijection between II(n) and II(n—3). Since w(r) = w(7)+n— k and since every 7 € II(n)
has an even w(r) value and an odd number of blocks, the @-parity of each = € II(n) is
opposite the parity of n. Thus, ﬂ(n) agrees with the right hand side of (P-§) in both sign
and magnitude.

The ww-parity changing involution of Theorem P-1] defined on II(n) — II(n) also changes
the 1-parity. We now extend this involution to II(n) — II(n) as follows: if the last block
of m € TI(n) — II(n) is {n}, merge it with the penultimate block; if the last block is not a
singleton, take n from this block and form the singleton {n}. The resulting extension is a
w-parity changing involution of II(n) — ﬂ(n) O



3 A Second Bijection

The Bell numbers B*,(n) are quite different from the numbers B_,(n) and B_;(n), as
demonstrated by the following theorem.

Theorem 3.1. For alln € N,

n 1, ifn=0 (mod3);
B*y(n):=> S%(nk)=4 -1, ifn=1 (mod 3); (3.1)
k=0 0, ifn=2 (mod3).

Proof. Let II;(n) := {7 € IlI(n) : w*(r) =i (mod 2)} and II*(n) consist of those partitions
m = (F1, Es,...) whose blocks satisfy

By ={3i—2,3i — 1}, FEy={3i} for1<i<|n/3]. (3.2)

Then IT*(n) is a singleton contained in IIy(n) if n = 0 (mod 3) or contained in II;(n) if n =1
(mod 3). If n =2 (mod 3), II*(n) is a doubleton containing two partitions of opposite w*-
parity, which we pair.

Suppose now that 7 = (Ey, Fs,...) € II(n) — II*(n) and that iy is the smallest index for
which condition (B2) fails to hold. Let ny = 3ip — 2, ny = 3ip — 1, ng = 3ip and Vi = Ey;,_1,
Vo = By, V3 = Eai11 (the latter two if they occur). Consider the following four disjoint
cases concerning the relative positions of the n; within the V;:

(I) ny € Vo, ng € V3, and [Vo U V3] > 3;

(II) Either (a) or (b) holds where (a) Vo = {ns} and V5 = {ns},
(b) No, N3 € ‘/17

(III) ny € Vo and ng € V4 U Vy;

(IV) N9 € Vi, N3 6‘/2, and |‘/1U‘/2| > 4.

Within each case, we pair partitions of opposite parity as shown below, leaving the other
blocks undisturbed:

(1> ‘/2:{”27"'7M}7%:{n?)?"'}H‘/z:{n%"'}’%:{n&'”’M}?Where
M is the largest member of V5, U Vi;

(11> ‘/1:{7111,...},‘/2:{712},‘/3:{713}H‘/lz{nl,HQ,ng,...};
(i) Vi ={ni,ns,... }, Vo={no,...} o Vi={ny,...}, Vo ={ng,ns,... };

(iv) Vi ={ni,ne,..., N}, Vo ={ns,...} @ Vi={ny,ns,...}, Vo ={ns,..., N},
where N is the largest member of Vi U V5.

The resulting map is a parity changing involution of II(n) — II*(n), which implies (B1]). O

Below, we illustrate the fixed point set I1*(n) along with the pairings of II(n) — I1*(n)
when n = 4.

Mo (n) Iy (n) — 1" (n) IT"(n)
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{1,2,3,4} {1,4}, {2}, {3} {1,2}, {3}, {4}
{1,2}, {3,4} {1,2,4}, {3}

{1,3}, {2,4} {1}, {2,3,4}

{1,4}, {2,3} {1,3,4}, {2}

{1}, {2,3}, {4} {1,3}, {2}, {4}

{1}, {2,4}, {3} {1}, {2}, {3,4}

{1}, {2}, {31, {4} {1,2,3}, {4}

Note that the bijection above, like the one used for Theorem P-J, does not always preserve
the number of blocks and hence has no meaningful restriction to II(n, k), unlike the bijection

of Theorem P-]].

Remark. In [f]], Ehrlich evaluates o(n) := — Zﬂen(n)(—l)o‘(”), where a(m) == ). 44 |Ei| for
m = (Ey, Es,...) € II(n). The bijection of Theorem P-]] establishing B*,(n) also provides
an alternative to Ehrlich’s iterative argument establishing his o(n) since

o(n) =— Z (—1)BLl+Esl+|Bs |-

7=(E1,Ea,...)€ll(n)
- Z (_1)\E1\+2|E2|+3|E3|+-~
=(E1,E2,... )EH(?’L)

= —BZ,(n).

Since S¢(n, k) = ¢ "S:(n, k),

and so by (B.),
(=)™, ifn=0 (mod 3);
B_i(n) =< (=1)"" ifn=1 (mod 3); (3.3)
0, ifn=2 (mod 3),
with the above bijection clearly showing this. The preceding also supplies a combinatorial
proof that B(n), the n® Bell number, is even if and only if n = 2 (mod 3) since every

partition of [n] is paired with another of opposite w*-parity when n = 2 (mod 3) and since
all partitions are so paired except for one otherwise (cf. Ehrlich [f], p. 512]).
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