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Abstract

In this paper, we study the sum of iterates of the Euler function.

1 Introduction

For every positive integer n we put φ(n) for the Euler function of n. If k ≥ 1 we put φ(k)(n)
for the kth iterate of the Euler function evaluated in n and κ(n) for the smallest positive
integer n such that φ(κ(n))(n) = 1. Let

F (n) =

κ(n)
∑

k=1

φ(k)(n).

Positive integers n such that F (n) = n are called perfect totients and were introduced in [10]
and studied also in [6] and [12]. Let M be the set of all perfect totients. This set contains
all powers of 3 so it is certainly infinite. In the recent paper [12] it was shown that M is of
asymptotic density zero. More precisely, if we write M(x) = M∩ [1, x], then it was shown
in Theorem 2.2 in [12] – a little bit more than – that the estimate

#M(x) ≤ x

(log x)1+o(1)
(1)

holds as x → ∞. The above estimate (1) is too weak to allow one to decide whether the
sum

∑

m∈M

1

m
(2)
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is finite. Here, we prove a stronger upper bound on #M(x) than (1) which in particular
implies that the sum of the series (2) is convergent.

Theorem 1. The estimate
#M(x) ≤ x

(log x)2+o(1)
(3)

holds as x → ∞.

It was also shown in [12] that the inequality

|F (n) − n| > (log n)ln 2+o(1) (4)

holds on a set of positive integers n of asymptotic density 1. Here, we improve this to:

Theorem 2. Let ε(x) be any function defined on the positive real numbers x with values
in the positive real numbers which is decreasing for large x and limx→∞ ε(x) = 0. Then the
inequality

n − F (n) > ε(n)n (5)

holds on a set of positive integers n of asymptotic density 1.

Let U(x) = {F (n) ≤ x}. In [12], it was shown that #U(x) ≫ (log x)2 and it was asked
to show that log(#U(x))/ log log x tends to infinity with x. We prove:

Theorem 3. The estimate

log (#U(x)) ≫ (log log x)2

log log log log x
(6)

holds for all positive integers x.

Throughout this paper, we use log x = max{ln x, 1}, where ln is the natural logarithm.
Further, if k ≥ 1, we write logk x for the kth fold iterate of the function log. We omit the
subscript when k = 1. We use the Vinogradov symbols ≪, ≫ and ≍, as well as the Landau
symbols O and o with their regular meanings. The constants of convergence implied by them
may depend on some fixed parameters such as K (see Section 2.1). For a positive integer
n, we use P (n) for its largest prime factor with the convention that P (1) = 1, ω(n) for the
number of distinct prime factors of n and ν2(n) for the 2-adic order of n; i.e., the largest
non-negative integer k such that 2k | n. We use p, q and r to denote prime numbers and
c0, c1, . . . to denote positive constants which are absolute.

2 Proof of Theorem 1

The proof of inequality (1) in [12] is based on the fact that if we put V(x) = {φ(n) ≤ x}, then
#V(x) ≤ x/(log x)1+o(1) (see [4] and [8]) together with the observation that if n ∈ M(x),
then n = v + F (v) for some v ∈ V(x) (namely, v = φ(n)).

For our proof of Theorem 1, we take a different approach and we exploit the numbers
ν2(φ

(2)(n)) and ν2(φ
(3)(n)) for n ∈ M(x). Before we start, we record a result which might

be of independent interest.
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2.1 An auxiliary result

Let K > 0 be any fixed constant. Put

N (K,x) = {n ≤ x : ν2(φ
(2)(n)) ≤ K log2 x}.

Lemma 4. (i) The estimate
∑

n∈N (K,x)

1

n
= (log x)o(1)

holds as x → ∞.

(ii) Let π(K,x) = #{p ≤ x : p − 1 ∈ N (K,x)}. Then

π(K,x) ≤ x

(log x)2+o(1)

holds as x → ∞.

Proof. (i) Put L = 10 log2 x. Let N1 be the set of n ∈ N (K,x) with ω(n) ≥ L and note that

S1 =
∑

n∈N1

1

n
≤

∑

n≤x
ω(n)≥L

1

n
≤

∑

k≥L

∑

n≤x
ω(n)=k

1

n
≤

∑

k≥L

1

k!

(

∑

pα≤x

1

pα

)k

≤
∑

k≥L

1

k!
(log2 x + c0)

k ≪
∑

k≥L

(

e log2 x + ec0

k

)k

≤
∑

k≥L

(

e log2 x + ec0

L

)k

≪
(

e log2 x + ec0

L

)L

≪ 1. (7)

In the above inequalities, we used the multinomial formula, the unique factorization, the
estimate k! ≫ (k/e)k which follows from Stirling’s formula, as well as the known fact that
the estimate

∑

p≤x

∑

α≥1

1

pα
≤ log2 x + c0

holds for all x with some absolute constant c0.

Put y = (log x)2 and let N2 be the subset of n ∈ N (K,x) having two distinct prime
factors p and q such that gcd(p − 1, q − 1) is a multiple of some prime r > y. Writing
n = pqm for some positive integer m, we see that the sum S2 of the reciprocals of n ∈ N2

satisfies

S2 =
∑

n∈N2

1

n
≤

∑

y<r≤x

∑

p≤x, q≤x
r | gcd(p−1,q−1)

∑

m≤x/pq

1

pqm

≤
∑

y<r≤x

1

2









∑

p≤x
p≡1 (mod r)

1

p









2
(

∑

m≤x

1

m

)

≪ log x(log2 x)2
∑

y<r

1

r2

≪ log x(log2 x)2

y log y
=

log2 x

log x
≪ 1, (8)
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where we used the known estimate

∑

p≤t
p≡1 (mod b)

1

p
≪ log2 t

φ(b)

which holds uniformly for 1 ≤ b ≤ t (see Lemma 1 of [1] or the inequality (3.1) in [3]), as
well as the fact that

∑

t≤p

1

p2
≪ 1

t log t

which follows by partial summation from the Prime Number Theorem.
Now we deal with the numbers n ∈ N3 = N (K,x)\(N1 ∪ N2). Let z be such that

log2 z = log2 x/ log3 x. For a positive integer n and a real number t write ω>t(n) for the
number of distinct prime factors p > t of n. Let n ∈ N3 and write it as n = abc, where

(i) all prime factors of a are ≤ z;

(ii) all prime factors p of b are > z but ω>y(p − 1) < log2 p/(log3 p)2;

(iii) all prime factors p of c are > z and ω>y(p − 1) ≥ log2 p/(log3 p)2.

Note that if p | c, then

ω>y(p − 1) ≥ log2 p

(log3 p)2
≥ log2 z

(log3 z)2
>

log2 x

(log3 x)3

for large x. Further, for t > 2 we have that ω>t(n) ≤ ν2(φ(n)). Furthermore, since n 6∈ N2,
we have that

∑

p | c

ω>y(p − 1) ≤
∑

p |n

ωy(p − 1) = ω>y





∏

p |n

(p − 1)





≤ ν2



φ





∏

p |n

(p − 1)







 ≤ ν2(φ
(2)(n)) ≤ K log2 x.

We thus get that

ω(c)
log2 x

(log3 x)3
<

∑

p | c

ω>y(p − 1) ≤ K log2 x,

therefore
ω(c) < K(log3 x)3.

Let A, B and C be the subsets of all possible values of a, b and c, respectively. Thus,

S3 =
∑

n∈N3

1

n
≤ ABC, (9)
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where

A =
∑

a∈A

1

a
, B =

∑

b∈B

1

b
and C =

∑

c∈C

1

c
. (10)

Since the union of Ni for i = 1, 2 and 3 covers N (K,x) it follows, by estimates (7), (8), (9)
and (10), that in order to establish (i) it suffices to show that

max{A,B,C} ≤ (log x)o(1) as x → ∞. (11)

Clearly A ⊂ {a ≤ x : P (a) ≤ z} and C ⊂ {c ≤ x : ω(c) ≤ K(log3 x)3}. Hence,

A ≤
∏

p≤z

(

∑

α≥0

1

pα

)

≤ exp

(

∑

p≤z

∑

α≥1

1

pα

)

≤ exp(log2 z + c0)

≪ log z = (log x)1/ log3 x = (log x)o(1) as x → ∞, (12)

while by an argument similar to the one used to bound S1 (see estimate (7)), we get

C ≤
∑

k≤K(log3 x)3

∑

c≤x
ω(c)=k

1

c
≤

∑

k≤K(log3 x)3

(

e log2 x + ec0

k

)k

≪ (log3 x)3(e log2 x + ec0)
K(log3 x)3

= (log x)O((log3 x)4/ log2 x) = (log x)o(1) as x → ∞. (13)

For B, let f(t) = (log t)3 log3 t and note that

f(z) = exp(3 log2 z log3 z) > exp(2 log2 z log3 x) = exp(2 log2 x) = (log x)2

= y for large x,

therefore all the primes p dividing b ∈ B belong to the set

P = {p : ω>f(p) < log2 p/(log3 p)2}

for large values of x. We show that

∑

p∈P

1

p
= O(1). (14)

Note that once the above estimate (14) is proved, then

B =
∑

b∈B

1

b
≤

∏

p∈P

(

∑

α≥0

1

pα

)

≤ exp

(

∑

p∈P

∑

α≥1

1

pα

)

= exp(O(1)) = O(1),

which together with estimates (12) and (13) implies estimate (11) and completes the proof
of (i).
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Thus, it remains to prove estimate (14). For this, let t > 0 and put P(t) = P ∩ [1, t]. We
estimate the counting function #P(t) of P . Let p ∈ P(t). Let P1 = {p ≤ t : P (p − 1) ≤
t1/ log2 t}. By results from [2] (see also Chapter III.5 of [13]), it follows that

#P1(t) ≤ t exp(−(1 + o(1)) log2 t log3 t) = o

(

t

(log t)2

)

as t → ∞. (15)

For p ∈ P2 = P(t)\P1, we write p − 1 = qℓ, where q = P (p − 1) and ℓ is some positive
integer. Fix ℓ. Then q ≤ t/ℓ is such that both linear forms q and qℓ + 1 are primes. By
Brun’s sieve (see, for example, Theorem 2.3 in [5]), the number of such primes q is

≪ t

ℓ(log(t/ℓ))2

(

ℓ

φ(ℓ)

)2

≤ t(log2 t)4

ℓ(log t)2
,

where we used the minimal order φ(ℓ)/ℓ ≫ 1/ log2 t of the Euler function in the interval [1, t]
as well as the fact that

log

(

t

ℓ

)

≥ log q ≥ log(t1/ log2 t) =
log t

log2 t
.

Since ℓ is a divisor of p − 1, we get that if we write ℓ = ℓ1ℓ2, where P (ℓ1) ≤ f(t) and every
prime factor of ℓ2 is > f(t), then

ω(ℓ2) = ω>f(t)(p − 1) ≤ ω<f(p)(p − 1) ≤ log2 p

(log3 p)2
≤ log2 t

(log3 t)2

for large t. Hence, summing up over all possible ℓ’s we get

#P2(t) ≤
t(log2 t)4

(log t)2
L1L2, (16)

where

L1 =
∑

P (ℓ1)≤f(t)

1

ℓ1

and L2 =
∑

ℓ2≤t
ω(ℓ2)≤log2 t/(log3 t)2

1

ℓ2

. (17)

Clearly, by the argument used to bound A (see (12)), we have

L1 =
∑

P (ℓ1)≤f(t)

1

ℓ1

≤ exp





∑

p≤f(t)

∑

α≥1

1

pα



 ≤ exp (log2 f(t) + c0)

= exp(log3 t + log4 t + c0 + log 3) ≪ log2 t log3 t, (18)

while by the argument used to bound S1 (see (7)) or C (see (13)) we have

L2 ≤
∑

ω(ℓ2)≤log2 t/(log3 t)2

1

ℓ2

≤
∑

k≤log2 t/(log3 t)2

(

e log2 t + ec0

k

)k

≪ log2 t(e log2 t + ec0)
log2 t/(log3 t)2 = exp(O(log2 t/ log3 t))

= (log t)o(1) as t → ∞. (19)
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Now estimates (18), (19) and (16) show that

#P2 ≤
t

(log t)2+o(1)
as t → ∞, (20)

and since Pi with i = 1 and 2 cover P(t), we get, by estimates (15) and (20), that

#P(t) ≤ #P1 + #P2 ≤
t

(log t)2+o(1)
as t → ∞. (21)

Estimate (14) follows now from the above estimate (21) by partial summation, which com-
pletes the proof of (i).

(ii) Let R(K,x) = {p ≤ x : p − 1 ∈ N (K,x)}. Let y = x1/ log2 x and R1 = {p ≤
x : P (p − 1) ≤ y}. Estimate (15) shows that

#R1 ≤ x exp(−(1 + o(1)) log2 x log3 x) = o

(

x

(log x)2

)

as x → ∞. (22)

For p ∈ R2 = R(K,x)\R1, we write p − 1 = qℓ, where q = P (p − 1). The argument used in
the proof of (i) to bound P2 shows that for a fixed ℓ the number of choices for q ≤ x/ℓ is

≪ x(log2 x)4

ℓ(log x)2
.

Upon noticing that ℓ | p − 1 implies that ℓ ∈ N (K,x), we get, by using (i), that

#R2 ≤
x(log2 x)4

(log x)2

∑

ℓ∈N (K,x)

1

ℓ
=

x

(log x)2+o(1)
as x → ∞. (23)

Since
π(K,x) ≤ #R1 + #R2,

(ii) follows from estimates (22) and (23).

2.2 The Proof of Theorem 1

We start by sieving off a few sets of positive integers n ≤ x of cardinalities O(x/(log x)2).
We ignore the following positive integers n ≤ x:

(i) positive integers n ≤ x with P (n) ≤ y = x1/ log2 x. By the results from [2] or Theorem
XX in [13] we get, as in the estimates of #P1 or #R1 in Lemma 4, that the number
of such n does not exceed

x exp(−(1 + o(1)) log2 x log3 x) = o

(

x

(log x)2

)

as x → ∞.
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(ii) positive integers n ≤ x for which there exists a prime q > (log x)2 such that q2 | n. It
is clear that the number of such positive integers does not exceed

∑

(log x)2<q≤x1/2

x

q2
≪ x

(log x)2 log3 x
= o

(

x

(log x)2

)

as x → ∞.

(iii) positive integers n ≤ x not satisfying (i) and (ii) above such that if we put z = y1/ log2 x,
then n = Pm, where P = P (n), and P (p − 1) < z. Fix the number m. Since
log P/ log z ≥ log P/ log z ≥ log2 x, it follows again by the results from [2] or Theorem
XX in [13], that the number of possible values for P is

≤ x

m
exp(−(1 + o(1)) log2 log3 x) = o

(

x

m(log x)3

)

as x → ∞

and uniformly in m ≤ x/P ≤ x/y. Thus, summing up over all the possible values of
m ≤ x, we get that the total number of such integers n does not exceed

x

(log x)3

∑

m≤x

1

m
≪ x

(log x)2

if x is sufficiently large.

(iv) positive integers n ≤ x not satisfying (i)–(iii) such that q2 | P −1 for some q ≥ (log x)3,
where P = P (n). Write again n = Pm. For fixed values of m and q, the number of
such choices for P ≤ x/m, even neglecting the fact that it is prime, is at most x/mq2.
This shows that the totality of such integers n does not exceed

∑

m≤x/y

∑

(log x)3≤q≤(x/m)1/2

x

mq2
≤ x

(

∑

m≤x

1

m

)





∑

(log x)3≤q

1

q2





≪ x log x

∫ ∞

(log x)3

dt

t2
= O

(

x

(log x)2

)

as x → ∞.

(v) positive integers n ≤ x not of the form (i)–(iv) such that if we write again n = Pm,
where P = P (n), then there exists a prime q > (log x)2 with the property that q |
gcd(P − 1, φ(m)). Since n is not like in (ii), it follows that q2 does not divide n. Thus,
there must exist a prime factor r of m such that q | r − 1. Fixing q, r and P , we get
that the number of n ≤ x which are multiples of Pr does not exceed x/Pr. Hence, the
totality of such integers n does not exceed

∑

(log x)2≤q≤x1/2

∑

q | gcd(P−1,r−1)
Pr≤x

x

Pr
≤ x

∑

(log x)2≤q≤x1/2

1

2









∑

p≡1 (mod q)
p≤x

1

p









2

≪ x(log2 x)2
∑

(log x)2≤q≤x1/2

1

q2
≪ x log2 x

(log x)2
.
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(vi) positive integers n not of the form (i)–(v) such that if we write n = Pm with P =
P (n) > P (m), then m ≡ −1 (mod 2M), where M = ⌊5 log2 x⌋. For each such fixed m,
the number of possible choices for P ≤ x/m is

π
( x

m

)

≤ x

m log(x/m)
≤ x

m log y
=

x log2 x

m log x
.

Summing up over all the m ≤ x of the form m = 2Mλ− 1 for some λ ≥ 1, we get that
the totality of such n does not exceed

x log2 x

log x

∑

1≤λ≤x/2M

1

2Mλ − 1
≪ x log2 x

2M log x

∑

1≤λ≤x

1

λ

≪ x log2 x

2M
≪ x log2 x

(log x)5 log 2
= o

(

x

(log x)2

)

as x → ∞.

From now on, we work with the set M′ of the perfect totients n ≤ x not satisfying any
of the conditions (i)–(vi) above. Note that if n > 2, then F (n) is always odd. Hence, n is
odd.

Let M1 be the subset of n ∈ M′ such that ν2(φ
(2)(n)) ≥ 2M . We now make the

observation that if m is an even number, then ν2(φ(m)) ≥ ν2(m) except when m is a power
of 2. Further, note that if φ(ℓ)(m) is a power of 2, then φ(ℓ+i)(m) is also a power of 2 for all
i ≥ 0. Thus, letting κ1(n) be the largest positive integer ℓ ≥ 2 such that φ(ℓ)(n) is not a
power of 2, from the above remark we get that for n ∈ M1 we have

2M ≤ ν2(φ
(2)(n)) ≤ ν2(φ

(3)(n)) ≤ . . . ≤ ν2(φ
(κ1(n)+1)(n)).

Writing φ(κ1(n)+1)(n) = 2β with some β ≥ 2M , we get

κ(n)
∑

k=κ1(n)+1

φ(k)(n) =

β
∑

i=0

2i = 2β+1 − 1.

Since n is a perfect totient, we get the following congruence

n − φ(n) + 1 = 1 +

κ(n)
∑

k=2

φ(k)(n) = 1 +

κ1(n)
∑

k=2

φℓ(n) +

κ(n)
∑

k=κ1(n)+1

φ(k)(n)

=

κ1(n)
∑

ℓ=2

φ(k)(n) + 2β+1 ≡ 0 (mod 22M). (24)

Write n = Pm, where P > max{P (m), y} for large x because n is neither as in (i) nor as in
(ii). So

n − φ(n) + 1 = Pm − (P − 1)φ(m) + 1 = P (m − φ(m)) + (φ(m) + 1).
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Note that m > 2 if x is large enough. Indeed, since n is odd we get that if m ≤ 2, then
m = 1 and n = P , therefore

P ≥ φ(P ) + φ(φ(P )) = P − 1 + φ(P − 1),

leading to 1 ≥ φ(P − 1); thus, P ≤ 3, which is impossible for large x since P > y. Since
m > 2, we get that m − φ(m) > 0 and φ(m) + 1 is odd. Thus, for fixed odd m > 1 the
congruence

P (m − φ(m)) + φ(m) + 1 ≡ 0 (mod 22M)

puts P into a certain residue class am modulo 22M . Since P ≤ x/m, it follows that the
number of possibilities for P is π(x/m; 22M , am). By a result of Montgomery and Vaughan
[11], we know that

π(x/m; 22M , am) ≤ 2x

mφ(22M) log(x/m22M)
. (25)

Note that
x

m22M
≥ y

(log x)10 ln 2
> y1/2 (26)

if x is sufficiently large. Hence, inequalities (25) and (26) lead to

π(x/m; 22M , am) ≪ x

m22M log y
≪ x log2 x

m(log x)1+10 ln 2
. (27)

Summing up over all the possible choices for m we get that

#M1 ≤
∑

m≤x/y

π(x/m; 22M , am) ≪ x log2 x

(log x)1+10 ln 2

∑

m≤x/y

1

m

≪ x log2 x

(log x)10 ln 2
= o

(

x

(log x)2

)

as x → ∞. (28)

Now let M2 be the subset of n ∈ M′\M1 such that ν2(φ
(3)(n)) < 4M . Let n = mP .

Since n 6∈ M1, it follows that ν2(φ
(2)(m)) ≤ ν2(φ

(2)(n)) < 2M . In particular, m ∈ N (10, x).
Further, since

log2(x/m) ≥ log2 y ≥ (log2 x)/2

holds for large x and all m < x/y, we get

ν2(φ
(2)(P − 1)) ≤ ν2(φ

(3)(n)) < 4M ≤ 20 log2 x ≤ 40 log2(x/m).

Thus, P ∈ N (40, x/m). Fixing m, it follows by Lemma 4 (ii) that the number of possibilities
for P is

≤ x

m(log(x/m))2+o(1)
≤ x

m(log y)2+o(1)
≤ x

m(log x)2+o(1)
as x → ∞

uniformly in m ≤ x/y. Summing up over all m ∈ N (10, x) and using Lemma 4 (i), we get
that

#M2 ≤
x

(log x)2+o(1)

∑

m∈N (10,x)

1

m
≤ x

(log x)2+o(1)
as x → ∞. (29)
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From now on, we look at positive integers in M3 = M′\(M1∪M2). Note that if n ∈ M3

then 4M ≤ ν2(φ
(3)(n)).

For n ∈ M3, we write n = Pm, where P = P (n) > P (m), and P − 1 = Qℓ, where
Q = P (P − 1). Note that we again have m ∈ N (10, x). Observe also that Q > z because
n is not like in (iii). Since z > (log x)3 > (log x)2 for large x and n is not like in (iv) or
(v), we get that Q does not divide φ(m)ℓ. Let d be the largest divisor of P − 1 which
is divisible only by primes dividing φ(m). Thus, P (d) < (log x)2 and d is a divisor of ℓ.
Write ℓ = ds. From now on we fix m, the number d which consists only of prime factors
of φ(m) smaller than (log x)2, and the number s which is coprime to dφ(m). Notice that
φ(n) = (P − 1)φ(m) = Qsdφ(m), every prime factor of d divides φ(m), and Qs is coprime
to φ(m). Thus, φ(φ(n)) = (Q − 1)φ(s)dφ(φ(m)).

An argument identical to the one used to derive congruence (24) gives

n − φ(n) − φ(φ(n)) + 1 ≡ 0 (mod 24M)

for n ∈ M3. Note that

n − φ(n) − φ(φ(n)) + 1

= P (m − φ(m)) + (φ(m) + 1) − (Q − 1)φ(s)dφ(φ(m))

= (Qsd + 1)(m − φ(m)) + (φ(m) + 1) − (Q − 1)φ(s)dφ(φ(m))

= Q(sd(m − φ(m)) − φ(s)dφ(φ(m))) + (m − φ(m)) + (φ(m) + 1)

+φ(s)dφ(φ(m))

= Q(sd(m − φ(m)) − φ(s)dφ(φ(m))) + (m + 1 + φ(s)dφ(φ(m))).

Put

Cm,d,s = sd(m − φ(m)) − φ(s)dφ(φ(m)) and Dm,d,s = m + 1 + φ(s)dφ(φ(m)).

Observe that Cm,d,s 6= 0 for large x. Indeed, if Cm,d,s = 0, we then get

n − φ(n) − φ(φ(n)) + 1 = m + 1 + φ(s)dφ(φ(m))

= m + 1 + sd(m − φ(m))

≤ m + (P − 1)
m

Q
≤ mP

y
+

mP

z

≤ 2mP

z
. (30)

However, since n ∈ M(x), we get that

n − φ(n) − φ(φ(n)) + 1 ≥ φ(φ(φ(n))) ≫ n

(log2 x)3
=

mP

(log2 x)3
. (31)

The last inequality above follows from applying the minimal order of the Euler function in
the interval [1, x] three times as

φ(3)(n)

n
≫ φ(2)(n)

n log2 x
≫ φ(n)

n(log2 x)2
≫ 1

(log2 x)3

11



for n ≤ x. Comparing estimates (30) and (31), we get that

2mP

z
≫ mP

(log2 x)3
,

leading to z ≪ (log2 x)3, which is impossible for large x.

Hence, Cm,d,s 6= 0 and

Cm,d,sQ + Dm,d,s ≡ 0 (mod 24M). (32)

Let M4 be the subset of M3 such that 22M divides both Cm,d,s and Dm,d,s. Then 22M divides
also Cm,d,s + Dm,d,s = sd(m − φ(m)) + m + 1. Note that m − φ(m) is odd because m > 1 is
odd. Further, since n is not like in (vi), it follows that if we write m+1 = 2αm1 where m1 is
odd, then α ≤ M . Since sd(m−φ(m))+m+1 is a multiple of 22M , we get that sd = 2αs1d1,
where s1 and d1 are both odd. Further note that if m > 3, then φ(φ(m)) is even, therefore
d = 2αd1 and s = s1. If m = 3, then φ(φ(m)) = 1, therefore d = 1 and s = 2αs1. Fixing m
and d (hence, also α and d1) the congruence sd(m − φ(m)) + m + 1 ≡ 0 (mod 22M) leads
to s1d1(m− φ(m)) + m1 ≡ 0 (mod 22M−α). Hence, s1 belongs to a certain odd residue class
bm,d modulo 2M . We assume that bm,d is the smallest positive integer in this class. Since
P − 1 = 2αd1s1Q, P ≤ x/m and both P and Q are primes, it follows, by Brun’s method
(see again Theorem 2.3 in [5]), that the number of possibilities for Q ≤ x/(m2αs1d1) when
m, d1 and s1 are fixed is

≪ x

mφ(2αs1d1)(log(x/msd))2

Since x/msd ≥ Q ≥ z, we get, by using again the minimal order of the Euler function in the
interval [1, x], that the above number is bounded from above by

≪ x log2 x

msd(log z)2
≤ x(log2 x)5

m2αs1d1(log x)2
≪ x(log2 x)5

ms1d1(log x)2
.

Note that α is uniquely determined by m alone. Summing up first over all m ≤ x/y and
in N (10, x), then over all odd d1 | φ(m) such that P (d1) ≤ (log x)2, and finally over those
s1 ≤ x/(2αzmd1) with s1 ≡ bm,d (mod 2M), we get

#M4 ≪ x(log2 x)5

(log x)2

∑

m≤x/y
m∈N (5,x)

1

m

∑

d1 |φ(m)
P (d1)≤(log x)2

1

d1

∑

0≤λ≤x/(2M+αms1d1)

1

bm,d + λ2M

≤ x(log2 x)5

(log x)2









∑

m∈N (10,x)

1

m

∑

d1≡1 (mod 2)
p | d1=>p |φ(m)

1

d1









(

1 +
1

2M

∑

1≤λ≤x

1

λ

)

≤ x(log2 x)5

(log x)2





∑

m∈N (10,x)

1

m

φ(m)

φ(φ(m))





(

1 + O

(

log x

2M

))

≪ x(log2 x)6

(log x)2

∑

m∈N (10,x)

1

m
≤ x

(log x)2+o(1)
as x → ∞, (33)
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where in the above inequalities we used the obvious fact that if m is a positive integer then

∑

d≥1
p | d=>p |m

1

d
=

∏

p |m

(

∑

α≥0

1

pα

)

=
∏

p |m

(

1 − 1

p

)−1

=
m

φ(m)
, (34)

the inequality φ(m)/φ(φ(m)) ≪ log2 x which follows from the minimal order of the Euler
function in the interval [1, x], as well as Lemma 4 (i).

Finally, let M5 = M3\M4. If n ∈ M5, then n = Pm, P = P (n) > P (m), P − 1 = Qsd,
and γ = ν2(gcd(Cm,d,s, Dm,d,s)) < M . Let C ′ = Cm,d,s/2

γ and D′ = Dm,d,s/2
γ . Congruence

(32) shows that C ′Q + D′ ≡ 0 (mod 2M), therefore Q is in a certain residue class em,d,s

modulo 2M . Assume that em,d,s is the smallest positive integer in this congruence class. Then
Q = 2Mλ + em,d,s ≤ x/(mds) is a prime such that P = sdQ + 1 = 2Msdλ + (sdem,d,s + 1) is
also a prime. By Brun’s method again, the number of such possibilities for fixed m, d and
s is

≪ x

mds2M(log(x/(mds2M)))2

(

φ(sdem,d,s(sdem,d,s + 1))

sdem,d,s(sdem,d,s + 1)

)2

.

Using again the minimal order of the Euler function in the interval [1, x] as well as the fact
that

x

mds2M
≥ Q

2M
≥ z

2M
≥ z1/2

for large x, we get that the above number is at most

≪ x(log2 x)2

mds2M(log z)2
≪ x(log2 x)6

mds2M(log x)2
.

Summing up the above inequality over all the choices of m ≤ x/y in N (10, x), d a divisor of
φ(m) with P (d) ≤ (log x)2, and s ≤ x/(zmd) coprime to φ(m), we get that

#M5 ≪ x(log2 x)6

2M(log x)2

∑

m≤x/y
m∈N (10,x)

1

m

∑

d≥1
p | d=>p |φ(m)

1

d

∑

s≤x/(zmd)

1

s

≪ x(log2 x)6

2M log x

∑

m∈N (10,x)

1

m

φ(m)

φ(φ(m))
≪ x(log2 x)7

2M log x

∑

m∈N (10,x)

1

m

≪ x

(log x)1+10 ln 2+o(1)
= o

(

x

(log x)2

)

as x → ∞. (35)

In the above estimates, we used again identity (34), the minimal order of the Euler function
in the interval [1, x] as well as Lemma 4 (i). Since M4 and M5 cover M3, we get from
estimates (33) and (35) that

#M3 = o

(

x

(log x)2

)

as x → ∞. (36)

which together with the estimates (28), (29) and (i)–(vi) completes the proof of Theorem
1.
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3 Proof of Theorem 2

Let x be a large positive real number. Since ε(x) decreases and tends to infinity arbi-
trarily slowly, we may assume that ε(x) ≥ 2/ log3 x for if not we may replace ε(x) by
max{ε(x), 2/ log3 x}. It was shown in [7] that there exists a positive constant c1 such that
for all n ≤ x except o(x) of them φ(n) is a multiple of all the primes p ≤ c1 log2 x/ log3 x.
Thus,

φ(2)(n) ≤ e−γ(1 + o(1))
φ(n)

log3 x
as x → ∞

with o(x) exceptions n. Here, γ is the Euler constant. Since φ(m) ≤ m/2 whenever m is
even, we get that

κ(n)
∑

k=2

φ(k)(n) ≤ φ(2)(n)

κ(n)
∑

k=2

1

2k−2
< 2φ(2)(n) <

2n

log3 x

holds for all n ≤ x with o(x) exceptions as x → ∞. We thus get that

n − F (n) ≥ (n − φ(n)) − 2n

log3 x
.

Since n − φ(n) counts the number of positive integers k ≤ n which are not coprime to n,
it follows that n − φ(n) ≥ n/p(n) where p(n) is the smallest prime factor of n. Since the
number of n ≤ x for which p(n) > (2ε(x))−1 is O(x/ log((2ε(x))−1)) = o(x) as x → ∞, we
get that p(n) ≤ (2ε(x))−1 with o(x) exceptions as x → ∞. Thus, except for o(x) such n ≤ x,
we have

n − F (n) ≥ n

p(n)
− 2n

log3 x
≥ 2n

(

ε(x) − 1

log3 x

)

≥ ε(x)n.

Since n log n ≥ x holds for all n ≤ x with O(x/ log x) = o(x) exceptions and ε(x) is decreas-
ing, we get that the inequality

n − F (n) ≥ ε(n log n)n

holds on a set of n of asymptotic density 1, which implies the desired conclusion since the
function ε(x) is arbitrary, subject to the conditions that it is decreasing for large x and tends
to zero when x tends to infinity.

4 Proof of Theorem 3

We let x be large and put s = c2 log2 x log3 x/ log4 x where c2 > 0 is some absolute constant
to be chosen later. Let L = ⌊√log x⌋ and consider the set of integers

W = {
∏

p≤s

pαp : αp ∈ [L, 2L] for all p ≤ s}.

Let M =
∏

p≤s p. If n ∈ W then

n ≤ M2L ≤ exp((2 + o(1))sL) = exp(O((log x)1/2 log2 x log3 x)) = xo(1)
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as x → ∞, therefore

F (n) =
∑

k≥1

φ(k)(n) ≤ φ(n)
∑

k≥1

1

2k−1
≤ 2n = xo(1) as x → ∞.

In particular F (W) ⊂ U(x) holds for large x. Note also that

#W ≥ (L + 1)π(s) = exp((1 + o(1))s log L/ log s),

therefore

log(#W) ≫ s log L

log s
≫ (log2 x)2

log4 x
.

From the above considerations, it follows that Theorem 3 will follow provided that we can
show that if c2 > 0 is suitably chosen and x is large, then F restricted to W is one-to-one.

We take a closer look at F (n) for n ∈ W. Note that as long as M | φ(k)(n), we have that
φ(k+1)(n) = (φ(M)/M)φ(k)(n). Since clearly M | φ(k)(n) for all k ≤ L − 1, it follows that if
we put δ = M/φ(M), then

φ(k)(n) =
φ(n)

δk−1
=

n

δk

holds for all k = 1, 2, . . . , L. Thus, for n ∈ W we have

F (n) =
∑

k≤L

φ(k)(n) +
∑

k>L

φ(k)(n) = n

L
∑

k=1

δ−k + O

(

φ(L+1)(n)
∑

j≥0

1

2j

)

= n

(

1 − δ−(L+1)

1 − δ−1

)

+ O
( n

δL

)

= n

(

1

1 − δ−1
+ O

(

1

δL

))

. (37)

Note that δ =
∏

p≤s(1 − 1/p)−1 ≍ log s. Suppose now that F (n1) = F (n2) for two distinct
integers n1, n2 in W . From the above relation (37) we get that

1

1 − δ−1
(n1 − n2) = O

(

n1 + n2

δL

)

and since δ → ∞ when x → ∞, we get that 1/2 < n1/n2 < 2 holds when x is sufficiently
large. We now get that

|n1n
−1
2 − 1| ≪ δ−L. (38)

Note that n1n
−1
2 6= 1 is a rational number of the form

∏

p≤s pδp with some integer exponents
δp ∈ [−L,L]. Using a linear form in logarithms due to Matveev (see Corollary 2.3 of [9]), we
get that

log |n1n
−1
2 − 1| ≥ −c

π(s)
3 Ω log L, (39)

where
Ω =

∏

p≤s

log p ≤ (log s)π(s).

Taking logarithms in estimate (38) and using (39), we get

L log δ ≤ (c3 log s)π(s) log L,
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therefore
√

log x ≤ (c3 log s)π(s)(log2 x)2.

Taking logarithms again we get

(log2 x)/2 − log3 x ≤ π(s) log2 s + O(1) ≤ (1 + o(1))
s log2 s

log s
+ O(1).

Recalling the definition of s, we see that if we choose c2 = 1/3, then the above inequality is
impossible for large enough values of x. This completes the proof of Theorem 3.
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