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Abstract

In this paper we consider several statistics on the set of Dyck paths. Enumeration
of Dyck paths according to length and various other parameters has been studied in
several papers. However, the statistic “number of udu’s” has been considered only
recently. We generalize this statistic and derive an explicit formula for the number of
Dyck paths of length 2n according to the statistic “number of uu - - - udu’s” (“number
of udud - - - udu’s”). As a consequence, we derive several known results, as well as many
new results.

1 Introduction

A lattice path of length n is a sequence of points Py, P, ..., P, with n > 1 such that each
point P; belongs to the plane integer lattice and consecutive points P; and P;,; are connected
by a line segment. We will consider lattice paths in Z? whose permitted step types are up-
steps u = (1,1), down-steps d = (1,—1), and horizontal steps h = (1,0). We will focus
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on paths that start from the origin and return to the z-axis, and that never pass below the
z-axis. Let D,, denote the set of such paths, Dyck paths, of length 2n when only up-steps and
down-steps are allowed, and let M,, denote the set of such paths, Motzkin paths of length
n when all the three types are allowed. It is well known that |D,| = C),, = +1 ( ) the n-th

Catalan number (see [, A000108]), having ordinary generating function C(x) = 1_—%43}
which satisfies the relation
vC?*(z) — C(x) — 1 =0, (1)

and |M,,| = M,, the n-th Motzkin number (see [§, A001006]), having ordinary generating
function M (z) = l=z=v1-2c-3°

oo , which satisfies the relation

*M?*(z) + (x — 1)M(z) + 1 = 0. (2)

Let D be any Dyck path and p be any word on alphabet {u,d}. We say that the Dyck path
D occurs p at low level if D can be decomposed as D = D’pR such that D’ is a Dyck path.
Otherwise we say that the Dyck path D occurs p at high level.

The enumeration of Dyck paths according to length and various other parameters has
been studied by several authors [[-[[]. However, the statistic “number of udu’s” has been
considered only recently [[1, .

The paper is organized as follows. In Section 2 we consider the statistic “the number of
uu - - -udu’s” and the statistic “the number of udud - --du’s” in the set of Dyck paths. In
Section 3 we consider these statistics at low and high level in the set of Dyck paths.

2 Enumeration of Dyck paths according to number of
ut - - - udu’s or number of udud - - - udu’s

In this section we enumerate the number of Dyck paths according to the length and either
the number of uw - - - udu’s or the number of udud - - - udu’s.

2.1 Enumeration of Dyck paths according to number of uu - - - udu’s

Let a;(D) be the number of occurrences of yu - - - u,du in the Dyck path D, see Table [I.
~—

Define the ordinary generating function for the number of Dyck paths of length 2n accord-

ing to the statistics ai,a,... as F(2;q1,G2,. ) = X250 2opep, T [ 151 q;”( . To study
the above ordinary generating function we need the following notation

Ap(r5q1,q2, .- .) = Z Z l’an;Y?(D),

n>0 DED,,  j>1

where af(D) = oj|luu---uDdd---d]. These ordinary generating functions satisfy the
k k

following recurrence relations.



n\ay [0 1 2 3 4 5 6| n\ag|0 1 2 3 4 5 6
1 1 1 1

2 1 1 2 2

3 2 2 1 3 4 1

4 4 6 3 1 4 10 3 1

5 9 16 12 4 1 5) 26 12 3 1

6 21 45 40 20 5 1 6 72 41 15 3 1

7 5l 126 135 80 30 6 1|7 206 143 58 18 3 1

Table 1: Number of Dyck paths of length 2n according to the statistics a; and as.

Proposition 2.1 For all k > 0,

Ak('r;QMQ% .- ) = 1+1’<1 —q142 - - 'Qk+1) - $(1 —q192 - - 'Qk+1)Ao($;Q1,Q2, .- )
+$Ak+1<37; Q17Q27~‘-)Ao(f;(hachw--)'

Proof An equation for the generating function Ay (z;q1, g, ..) is obtained from the “first
return decomposition” of a Dyck paths D: D = uPd(@), where P, are Dyck paths. Thus,
the four possibilities of P and () either being empty or nonempty Dyck paths (see Fig-
ure ) give contribution x, x(Ax+1(x;q1, G, - - . , Tq1q2 - Grr1(Ao(z5q1,2, .. .) — 1), and

%LALL@L

Figure 1: First return decomposition of a Dyck path with nonempty Dyck paths.

T(Apr1(z5q1, G2, - ..) — D)(Ao(x;¢q1, qo, .. .) — 1), respectively. Hence, we have the following
recurrence relation

Ak(%QbQ% .- ) =1+ x(l —q142 - - 'Qk+1) - x(l — G192 - "C]k+1)Ao($;€71,CI27 .- )
+.Z'Ak+1($; q17q27"')A0(x;q1aq2a"‘)a

for all £ > 0, as required. O

Theorem 2.1 The generating function F(z;q1,qo,...) satisfies the following equation

F(z;q1,¢0,--) = Y 2" F™(@; 1,40, .- )1+ 2(1 = (201,42, - ) (1 = q1¢2 - Gmy1)).

m>0

Proof We simply use the fact Ag(z;q1,q2,...) = F(x;q1,q2,...) and apply (see Proposi-
tion P.1]) the recurrence relation

Ak($;Q17Q27 .- ) =1+ 575(1 —q192 - - C]k+1)(1 - A0($;Q1,Q27 )
+LL’A[€+1($; q1, 42, - - )Ao(x, q1,42, - - )
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an infinite number of times and in each step we perform some rather tedious algebraic
manipulations. O

Example 2.2 Define 1 = q, g2 = q~ ', and ¢; = 1 for all i > 3. Then Theorem gives
that the ordinary generating function f(x;q) = F(z;q,q¢ ', 1,1,...) satisfies
1
f(q) = ———F— +x(1 — f(z;9)(1 — q).
(#10) = Ty + a0 - S -0

Solving the above equation we get that the ordinary generating function

Zzajn(n —az(D)

n>0 DeED,,

s given by

1+2(14+2)1—q)— V@A +2)(1—q) +1)2 —4z(l + 2(1 — q))2
2x(1 4+ z(1 — q)) ’

In particular, the number of Dyck paths D of length 2n such that ay (D) = as(D) is given by
(see [, A078481])

l+z+2?— /(1 +z+22)?2—4a(l +x)?
22(1 + x) '

Example 2.3 Define qsi—1 = q and qz; = q~* for alli > 1. Then Theorem gives
F(r:q,1/q,¢,1/q,...) = L+ o +2q(F(;9,1/q,0,1/q,...) = 1) + 2*F(2;4,1/g,4, . ..).
Then the Lagrange inversion formula (see [[(]) gives that

> [V N e

n>1 DeED,, n>1 j=0 =0

In particular, the number of Dyck paths D of length 2n with Y ag;1(D) = > ag(D) is

i>0 i>0
— (n—y)( 3j )
= n- ' n—1—j

Example 2.4 Define q; = q for all i > 1. Then Theorem [2.]] gives that

=33 ang @@ = N7 gmem (g g) (14 a(1 — S(a39)(1 - ¢ ),

n>0 DeED, m>0

given by

which is equivalent to S(x;q) = 1+ ST xlqg;gggg) Differentiating the above equation
with respect to q and substituting g = 1 with using the fact that S(x;1) = C(x), the generating

function for the Catalan numbers, gives that
. 2?CH(x) 2n — 1\ ,
3 S b))+ = 2L (M)
n>0 DED;, n>2

In other words, the statistic 3 pcp a1(D)+as(D) + -+ equals ('), for alln > 2 (see [
A002054)).



Denote the ordinary generating function F'(x;qi,qs,...) with g5 = ¢ and ¢; = 1 for all
i #k by Fp(z;q). Fix k> 1, ¢y = ¢ and ¢; = 1 for all i # k. From the definitions it is easy
to see that Fi(z;q) = Fr—1(x;q). Thus, Proposition P]] gives that

Fra(v;q) =1+ 2(1 - q) — 2(1 — ¢) Fo(w;q) + 2 Fy—1 (75 ¢) Fo(w; q),

and
Fi(r;9) =1
rFi(z;q)
for all 7 = 0,1,...,k — 2. To give an explicit formula for Fj(x;q) we need the following
lemma.

Fj+1($; Q) =

Lemma 2.1 Forall j =0,1,...,k—1,
\/EUg(ﬁ)Fo(% q) — Uj—1<ﬁ>
VT [\/EUjA(ﬁ) Fo(w;q) — Uj—a (ﬁ)} ’

where U;(t) is the j-th Chebyshev polynomial of the second kind.

Fj(x;q) =

Proof We proceed by induction on j. The result is true for j = 0. For 5 > 0 we have that
Fiii(z;q) = Fggg(‘i);)l Thus, by the induction hypothesis for j we obtain that the ordinary
generating function Fjiq(z;q) equals

as claimed. O

Now we are ready to give an explicit formula for the ordinary generating function Fy(z; q).



Theorem 2.5 Let

Then the ordinary generating function Fy(z;q) is given by
v(734) <a(ﬂ$; 0)y(z; q))
Bz q) Blasq) )

where U;(t) is the j-th Chebyshev polynomial of the second kind and C(x) is the ordinary
generating function for the Catalan numbers.

Proof The generating function Fy(x;q) satisfies the following equation
Fii(@;q) =1+ 2(1 — q) — z(1 — q)Fo(z; q) + 2 Fj-1(z; 9) Fo(z; 9).
Using Lemma P.J] for j = k — 1 we get
VUi <ﬁ)Fo($§ q) — Uk—2<ﬁ)
VT [\/EUkﬂ(ﬁ) Fo(z;q) — Ums(ﬁ)] .

Substituting the expression for Fi_i(x;¢q) in the above equation and using the recurrence
relation U,,(t) = 2tU,,,—1(t) — Upm—2(t) we obtain

a(z; ) Fy (x5 q) — B(x; q) Fo(w; ) + (x5 q) = 0.

Hence, by solving the above equation we get the desired result. a

Fi1(x;q) =

For example, Theorem P.] for k = 1 gives Fi(x;q) = C <m> (see [A, Equations 2.2
and 2.3]). In particular, Fi(z;0) = C(z/(1 4 «)). This result can be generalized by using

Theorem P.5 with ¢ = 0.

Corollary 2.1 The ordinary generating function for the number of Dyck paths of length 2n
that avoid uw - - - wdu is given by
k

(i) ) () =)
(1+$)Uk<ﬁ) <1+1’)2Uk(ﬁ)

where U;(t) is the j-th Chebyshev polynomial of the second kind and C(z) is the ordinary
generating function for the Catalan numbers.

For instance, the ordinary generating function for the number of Dyck paths of length

2n that avoid uudu is given by —=C <(1_x)f1+x)2> (see [B, A105633]).
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2.2 Enumeration of Dyck paths according to number of ud - - - udu’s

Let 3;(D) be the number of occurrences of udud---udwu in the Dyck path D, see Table [J.
H—/

Clearly, 51(D) = a;1(D). Define the ordinary generating function for the number of Dyck

n\G]0 1 2 3 4 5 6
1 1

2 2

3 4 1

4 11 2 1

5 31 8 2 1

6 92 28 9 2 1

7 283 99 34 10 2 1

Table 2: Number of Dyck paths of length 2n according the statistic 5.

paths of length 2n according to the statistics (1, fs, ... as

Glaiq,g...) = > " [[4""

n>0 DED,,  j>1

To study the above ordinary generating function we need the following notation

Bi(r;q1,q2,-..) = Z Z anq]‘?(D)u

n>0 DED,,  j>1

where ﬁf(D) = 0, (ud- - ud D) . These ordinary generating functions satisfy the following

k
recurrence relations.

Proposition 2.2 For all k > 0,

k+1

koo A
Be(z;q1,q0,.. ) = [T+ [ ¢4 Bo(z;01, 0, - - .) — 1) Bo(w;q1, g, - - )
i=1 =1

+2 B (2 q1, 2, - - ).

Proof An equation for the generating function By (x;q1, qs,...) is obtained from the “first
return decomposition” of a Dyck paths D: D = uPdQ, where P and () are Dyck paths. Then
each Dyck path D that starts with udud . ..ud can be decomposed as either D = udud . . . ud,

—_—— —_——

k k
D = udud ... uduPdQ with P a nonempty Dyck path, or D = udud...udQ (see Figure []

k k+1
for k = 2). Thus, the ordinary generating function By(x;qi, s, ...) is given by



N _= L e

Figure 2: First return decomposition of a Dyck path according the statistic ududu.

k k+1
[1 Qf +x H qu 1(30(373 Q15 G2,---) — 1) Bo(75q1, 42, - - -) + 2By (T;01, G2, - - ),
i=1

for all £ > 0, as required. O

Theorem 2.6 The generating function G(x;q1,qs, - ..) is given by

I2m>0 z™ Hm+1 el )
)

m T+l m+1—i
1+x2m20$ |

where C(x) is the generating function for the Catalan numbers.

G(x;q17Q27"') =C (

Proof We simply use the fact that By(z;q1, g2, . ..) = G(x;q1, qo, .. .) and apply the recur-
rence relation

k
Bk(l";éh,%, . ) = H C.I ‘o H qk+1 Z(Bo(ﬂf; q1,42, - - ) - 1)30(93;611,@2, . )
i=1
+$Bk+1(l’, q1, q2a .. )

an infinite number of times and in each step we perform some rather tedious algebraic
manipulations. a

Example 2.7 Let qsi_1 = q and qa; = ¢ * for all i > 1. Then Theorem gives that
3 3 s o (4122)
14+
n>0 DeD,

which s equivalent to

n_ B1(D)—Bz(D)+-- T Z+1 n—1-j
> " =1+ 2" > G 7

n>0 DeD,, n>1 i=0 7=0
In particular, the ordinary generating function for the number of Dyck paths D of length 2n

with
> Baic1(D) =Y Bu(D) (3)

i>1 i>1

is given by C(xz/(1 4+ x)) = M(x), that is, the number of Dyck paths D of length 2n with ()
1s given by M, the n-th Mozkin number.



Example 2.8 Let q; = q for all i > 1. Then, similar to Example [0, we obtain from
Theorem that

n—2

S (Gi(D) + (D 2(23”)

DeD,,
for alln > 2.

Denote the ordinary generating function G(z;q1,¢qs,...) with ¢, = g and ¢; = 1 for all
i # k by Gi(z;q). For example, if ¢ = ¢ and ¢; = 1, 7 = 2,3,..., then Theorem P.{ gives

Gi(ziq) =C (ﬁ
all 7 # k, then Theorem gives an explicit formula for the ordinary generating function
Gr(z:q).

Corollary 2.2 The ordinary generating function for the Dyck paths of length 2n according
to the statistic By is given by

- ¥ e =o (T )

n>0 DeD,,

) (see [A, Equations 2.2 and 2.3]). In general, if ¢ = g and ¢; = 1 for

where C(x) is the generating function for the Catalan numbers.

For instance, Corollary for K = 2 and ¢ = 0 gives that the ordinary generating
function for the number of Dyck paths of length 2n that avoid UDU DU is given by

(1 n (nom/2 Jazgei (m neom2j _ g
(=)o R R e () e
3 Enumeration of Dyck paths according to number of
ut . .. udu’s or number of udud . . . udu’s at low and high
levels

In this section we consider the following statistics on Dyck paths: number of low (high) level
uw ... udu's or number of low (high) level udud . ..udu’s (for the case k = 1, see [[], Section

3)).

3.1 Enumeration of Dyck paths according to number of uu . .. udu’s
at low and high levels

Let 7 (resp. 7;.) be the number of occurrences of yu . .. w,du at low (resp. high) level. Denote

k
the ordinary generating function for the number of Dyck paths of length 2n according to the
statistics yx (resp. 7;) by

AETES ) SEVELIN (ST 3p i)

n>0 DEDy,, n>0 DeD,,



Theorem 3.1 Let k > 2. Then the number of Dyck paths of length 2n with v, = m is given
by

S (1 m+)k+1)+1  (m+5\[/2n+1—(m+j)(k+1)
= n+1—(m+j)(k+1)\ J n+1 ‘
Proof Consider any Dyck path D = uPd(@), where P and ) are Dyck paths. So D
contains ay, := yu ... udu if either P starts with ay_; or @) contains ay (see Figure []). Thus,

k
P
Q

Figure 3: First return decomposition of a Dyck path.

yk<uuu Ddd...d>
M i/ for

Li(w;q) = 1+ ati (x5 q) Li(x; q), where t;(x5q) = >, 50 X pep, "4 i

all 7 =1,2,...k — 1. Again, using the first return decomposition of a Dyck path we obtain
that the ordinary generating function ¢;(z;q) equals 1 + xt;41(x; ¢)C(z), where C'(z) is the
ordinary generating function for the Catalan numbers and 7 = 1,2,...,k — 2. In addition,

tio1(z;q) =14+ x4+ 2C(x)(C(z) — 1) + 2q(C(z) — 1). Therefore, it is easy to check that

N

0(0) = (O tr(550) + 3 (O

J

Il
=)

This implies that the ordinary generating function Ly (x;q) is given by

Lilw;0) :
kAL = k—2 '
1o (S 4 (oC(a))2h (2:9)) )
By using the identity C(z) = ﬁ()(x) (see ([)) we arrive at
C(l’) xm(k+1)Cm(k+1)+1(I)
L . — =
w(@9) = 7 (1 = g)(xC(x))F+ 2 (1+ (zC(x))kst)mt?

m>0
which is equivalent to
Liaig) = 33 (-1y (m +J> L) G ()1 )
m>0 j>0 J
On other hand, by applying the Lagrange inversion formula in [[], we get that

k 2n+ k
k o n
C(x)_ZQn—Hc( " )x

n>0
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Hence, the z™¢™ coefficient in the ordinary generating function Lg(z;q) is given by

(1 (m—+5)(k+1)+1 <m—|—j) <2n+1—(m+j)(/€+1))’

n+1—(m+j)(k+1)\ Jj n+1

j=0
as required. O For example, Theorem B.J] for k£ = 2 (for the case k = 1 see [f],

Theorem 3.1]) gives that the number of Dyck paths of length 2n having v, = m is given by

Z(_l)j 3(m+j)+1 | <m—-i—j)<2n—|—1—3(m+j))'

= 2n+1—-3(m+j)\ J n+1

Theorem 3.2 The ordinary generating function for the number of Dyck paths of length 2n
according to the statistic vy, is given by

1
Lot (1 - g B ) (Fi(eig) — 1)
1 — xFy(z;q)

where the explicit formula for the ordinary generating function Fy(x;q) is given by Theo-

rem [2.].

Hy(v;q) =

1—

Proof Again (see Theorem [B-1]), by using the first return decomposition of a Dyck path
D (D = uPd@ where P and @ are Dyck paths, see Figure [JJ), we obtain that the ordinary
generating function Hy(x;q) satisfies Hy(z;q) = 1+ xt1(z; ) Hi(2; q), where t;(z; q) satisfies
the recurrence relation ¢;(z;q) = 1+ at;j11(z;q)Fr(x;q), for j = 1,2,.. .k, and t,(z;q) =
1+ a2+ 2(tp(z; q) — 1) Fr(z;q) + zq(Fr(x; ) — 1). Solving the above system of equations we
get the desired result. O

Theorems P and give the following result. For «] = 0, we obtain that the number
of Dyck paths of length 2n is given by the n-th Motzkin number (see [[], Equation 3.6]). For
5 = 0, we obtain that the ordinary generating function for the number of Dyck paths of
length 2n is given by

22 + 2 —5x+3—(2x—|—1)\/x4—2x3—5x2—2x+1
2(x® + 2t + 423 + 52 — dx + 1)

3.2 Enumeration of Dyck paths according to number of ud. .. udu’s
at low and high levels

Let 0y (resp. 0}) be the number of occurrences of udud...udu at low (resp. high) level.
—

k
Denote the ordinary generating function for the number of Dyck paths of length 2n according
to the statistics d; (resp. d}) by

Li(z;q) = ZZI"&“ (resp H(x;q) = ZZx”‘s/D)>

n>0 DeD,, n>0 DeD,

Using the same techniques as in the previous subsection we obtain the following results.

11



Theorem 3.3 Let k > 1. Then the ordinary generating function for the number of Dyck
paths of length 2n according to the statistic oy, is given by

1 —aft —aq(1 — 2¥)

Li(w:0) = T——5m— 2(1 — 2%)C(z) — 2q(1 — 2% — (1 — 2+ C(x))

Moreover, the ordinary generating function for the number of Dyck paths of length 2n with
O, =m 1S
(1 — 2)2C(2)(1 — 2% — 2(1 — 28 1)C ()™t
(1 — 21 — (1 — 2F)C(z))m

17$k+1

when m > 1, and i e e v e

) when m = 0.

For example, the number of Dyck paths of length 2n having §; = 0 is given by H%w%(x)
1+z+z2

(see [, Page 5]), and having d, = 0 is given by R CwToT

To enumerate the number of Dyck paths of length 2n according to the statistic d; we
use the first return decomposition of a Dyck path and Corollary P-2J. Thus we obtain the
following result.

Theorem 3.4 Let k > 1. Then the ordinary generating function for the number of Dyck
paths of length 2n according to the statistic 6, is given by

1

! (e _

where

(1l —xqg— 21 —
Gr(z;q) = Z Z g =C ( 1(— xq (‘i xk+1((1 —qq)))> '

n>0 DeD,,

For example, the ordinary generating function for the number of Dyck paths of length
2n having 8] = 0 is given by M (z) (see [[], Equation 3.6]).
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