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Abstract

In this expository article we collect the integer sequences that count several different

types of matrices over finite fields and provide references to the Online Encyclopedia

of Integer Sequences. Section 1 contains the sequences, their generating functions,

and examples. Section 2 contains the proofs of the formulas for the coefficients and

the generating functions of those sequences if the proofs are not easily available in

the literature. The cycle index for matrices is an essential ingredient in most of the

derivations.

Notation

q a prime power
Fq field with q elements
GLn(q) group of n× n invertible matrices over Fq

Mn(q) algebra of n× n matrices over Fq

γn(q) order of the group GLn(q)
γn order of GLn(q) with q understood
νd number of irreducible monic polynomials of degree d over Fq
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Sequences Section OEIS

All matrices 1.1 A002416
Invertible matrices 1.2 A002884
Subspaces, q-binomial coefficients 1.3 A022166–188

A006116–122
A015195–217

Splittings (direct sum decompositions) 1.4
q-Stirling numbers, q-Bell numbers 1.4
Flags of subspaces 1.5 A005329, A069777
Linear binary codes 1.6 A022166, A076831
Matrices by rank 1.7
Linear derangements 1.8, 2.2 A002820
Projective derangements 1.8, 2.2
Diagonalizable matrices 1.9, 2.3
Projections 1.10, 2.4 A053846
Solutions of Ak = I 1.11, 2.5 A053718, 722, 725

A053770–777
A053846–849
A053851–857
A053859–863

Nilpotent matrices 1.12 A053763
Cyclic(regular) matrices 1.13, 2.6
Semi-simple matrices 1.14, 2.7
Separable matrices 1.15, 2.8
Conjugacy classes 1.16, 2.9 A070933, A082877

1 The Sequences

References to the Online Encyclopedia of Integer Sequences (OEIS) are accurate as of Febru-
ary 1, 2006. Sequences mentioned in this article may have been added since then and entries
in the OEIS may have been modified.

1.1 n× n matrices over Fq

Over the field Fq the number of n × n matrices is qn
2

. For q = 2 this sequence is A002416
of the OEIS, indexed from n = 0. The terms for 0 ≤ n ≤ 4 are

1, 2, 16, 512, 65536.

1.2 Invertible matrices

The number of invertible n× n matrices is given by

γn(q) := |GLn(q)| = (q
n − 1)(qn − q)(qn − q2) · · · (qn − qn−1).
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We will use γn in place of γn(q) unless there is a need to be explicit about the base field. It
is convenient to define γ0 to be 1. For q = 2 the sequence is A002884, and from γ0 to γ5 the
terms are

1, 1, 6, 168, 20160, 9999360.

A second formula for γn is

γn = (q − 1)
nq(

n
2)[n]q!,

where [n]q! := [n]q[n− 1]q · · · [2]q[1]q and [i]q := 1+ q+ q2+ · · ·+ qi−1 are the q-analogs of n!
and i. Also, [i]q is the number of points in the projective space of dimension i− 1 over Fq.
A third formula is

γn = (−1)
nq(

n
2)(q; q)n,

where (a; q)n is defined for n > 0 by

(a; q)n :=
n−1
∏

j=0

(1− aqj).

Construct a random n × n matrix over Fq by choosing the entries independently and
uniformly from Fq. Then γn/q

n2

is the probability that the matrix is invertible, and this
probability has a limit as n→∞

lim
n→∞

γn
qn2 =

∏

r≥1

(

1−
1

qr

)

.

For q = 2 the limit is 0.28878 . . .. For q = 3 the limit is 0.56012 . . .. As q →∞ the probability
of being invertible goes to 1.

1.3 Subspaces

The number of k-dimensional subspaces of a vector space of dimension n over Fq is given by
the Gaussian binomial coefficient (also called the q-binomial coefficient)

(

n

k

)

q

=
(qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1)

(qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1)
.

Also, we define
(

0
0

)

q
= 1. Other useful expressions for the Gaussian binomial coefficients are

(

n

k

)

q

=
[n]q!

[k]q![n− k]q!
,

which shows the q-analog nature of the Gaussian coefficients, and
(

n

k

)

q

=
γn

γkγn−kqk(n−k)
,

which comes from the transitive action of GLn(q) on the set of subspaces of dimension k,
the denominator being the order of the subgroup stabilizing one of the subspaces.
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Entries A022166–A022188 are the triangles of Gaussian binomial coefficients for q = 2 to
q = 24. Note that when q is not a prime power the formula does not count subspaces. For
q = 2 the rows from n = 0 to 6 are

1
1 1
1 3 1
1 7 7 1
1 15 35 15 1
1 31 155 155 31 1
1 63 651 1395 651 63 1

For the Gaussian binomial coefficients we have the q-binomial theorem [2]

∏

1≤i≤n

(1 + qit) =
∑

0≤k≤n

q(
k
2)
(

n

k

)

q

tk.

Summing over k from 0 to n for a fixed n gives the total number of subspaces. Sequences
A006116–A006122 and A015195–A015217 correspond to the values q = 2, . . . , 8 and q =
9, . . . , 24. (Same warning applies to those q that are not prime powers.) For q = 2 and
n = 0, . . . , 8 the sequence begins

1, 2, 5, 16, 67, 374, 2825, 29212, 417199.

1.4 Splittings

Let
{

n
k

}

q
be the number of direct sum splittings of an n-dimensional vector space into k

non-trivial subspaces without regard to the order among the subspaces. These numbers are
q-analogs of the Stirling numbers of the second kind, which count the number of partitions
of an n-set into k non-empty subsets, and the notation follows that of Knuth for the Stirling
numbers. Then it is easy to see that

{

n

k

}

q

=
1

k!

∑

n1+···+nk=n

ni≥1

γn
γn1
· · · γnk

.

It is not difficult to verify that the triangle
{

n
k

}

q
satisfies the two variable generating function

identity

1 +
∑

n≥1

n
∑

k=1

{

n

k

}

q

un

γn
tk = exp

(

t
∑

r≥1

ur

γr

)

.

For q = 2 the entries for 1 ≤ n ≤ 6 and 1 ≤ k ≤ n are

1
1 3
1 28 28
1 400 1680 840
1 10416 168640 277760 83328
1 525792 36053248 159989760 139991040 27998208
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Let bn be the total number of non-trivial splittings of an n-dimensional vector space:

bn =
n
∑

k=1

{

n

k

}

q

.

The bn are analogs of the Bell numbers counting the number of partitions of finite sets. Then
we have the formula for the generating function for the bn,

1 +
∑

n≥1

bn
un

γn
= exp

(

∑

r≥1

ur

γr

)

.

For q = 2 the values of bn for n = 1, . . . , 6 are

1, 4, 57, 2921, 540145, 364558049.

Bender and Goldman [1] first wrote down the generating function for the q-Bell numbers,
which, along with the q-Stirling numbers, can be put into the context of q-exponential families
[10].

1.5 Flags

A flag of length k in a vector space V is an increasing sequence of subspaces

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · ·Vk = V.

If dimV = n, then a complete flag is a flag of length n. Necessarily, dimVi = i.
The number of complete flags of an n-dimensional vector space over Fq is

(

n

1

)

q

(

n− 1

1

)

q

· · ·

(

1

1

)

q

= [n]q[n− 1]q · · · [1]q = [n]q!.

The reason is that having selected V1, . . . , Vi, the number of choices for Vi+1 is
(

n−i
1

)

q
. Alter-

natively, the general linear group acts transitively on the set of complete flags. The stabilizer
subgroup of the standard flag is the subgroup of upper triangular matrices, whose order is

(q − 1)nq(
n
2). Hence, the number of complete flags is

γn

(q − 1)nq(
n
k)
= [n]q!.

Define [0]q! = 1. The sequence [n]q! for q = 2 is A005329. The terms for n = 0, 1, 2, . . . , 8
are

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075.

By looking up the phrase “q-factorial numbers” in the OEIS one can find the sequences
[n]q! for q ≤ 13. The triangle of q-factorial numbers is A069777.
The q-multinomial coefficient

(

n

n1 n2 · · · nk

)

q

:=
[n]q!

[n1]q![n2]q! · · · [nk]q!
,

where n = n1 + · · · + nk, is the number of flags of length k in an n-dimensional space such
that dimVi = n1 + · · ·+ ni.
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1.6 Linear binary codes

An [n, k] linear binary code is a k-dimensional subspace of the space of Fn
2 . Thus, the number

of [n, k] linear binary codes is the Gaussian binomial coefficient
(

n
k

)

2
from section 1.3 and is

given by the triangle A022166.
Two linear binary codes are equivalent (or isometric) if there is a permutation matrix

P mapping one subspace to the other. The number of equivalence classes of [n, k] codes
is given by the triangle A076831. The early entries are identical with the corresponding
binomial coefficients, but that does not hold in general. The rows for n = 0 to 6 are

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 16 22 16 6 1

For linear codes over other finite fields, the notion of equivalence uses matrices P having
exactly one non-zero entry in each row and column. These matrices, as linear maps, preserve
the Hamming distance between vectors. They form a group isomorphic to the wreath product
of the multiplicative group of Fq with Sn.
There are more than a dozen sequences and triangles associated to linear binary codes

in the OEIS. They are listed in the short index of the OEIS under “Codes.”

1.7 Matrices by rank

The number of m× n matrices of rank k over Fq is

(

m

k

)

q

(qn − 1)(qn − q) · · · (qn − qk−1)

=

(

n

k

)

q

(qm − 1)(qm − q) · · · (qm − qk−1)

=
(qm − 1)(qm − q) · · · (qm − qk−1) (qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
.

(To justify the first line of the formula note that the number of k-dimensional subspaces of Fm
q

to serve as the column space of a rank k matrix is
(

m
k

)

q
. Identify the column space with the

image of the associated linear map from Fn
q to F

m
q . There are (q

n− 1)(qn− q) · · · (qn− qk−1)
surjective linear maps from Fn

q to that k-dimensional image. The second line follows by
transposing.)
Define the triangle r(n, k) to be the number of n × n matrices of rank k over Fq and

r(0, 0) := 1. Thus,

r(n, k) =

(

(qn − 1)(qn − q) · · · (qn − qk−1)
)2

(qk − 1)(qk − q) · · · (qk − qk−1)
.
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For q = 2 the entries from r(0, 0) to r(5, 5) are

1
1 1
1 9 6
1 49 294 168
1 225 7350 37800 20160
1 961 144150 4036200 19373760 9999360

1.8 Linear and projective derangements

A matrix is a linear derangement if it is invertible and does not fix any non-zero vector.
Such a matrix is characterized as not having 0 or 1 as an eigenvalue. Let en be the number
of linear derangements and define e0 = 1. Then en satisfies the recursion

en = en−1(q
n − 1)qn−1 + (−1)nqn(n−1)/2.

For q = 2, the sequence is A002820 (with offset 2) and the first few terms beginning with e0
are 1, 0, 2, 48, 5824, 2887680, . . .. The sequence can be obtained from the generating function

1 +
∑

n≥1

en
γn
un =

1

1− u

∏

r≥1

(

1−
u

qr

)

.

The proof of this is in section 2. The asymptotic probability that an invertible matrix is a
linear derangement is

lim
n→∞

en
γn
=
∏

r≥1

(

1−
1

qr

)

.

The asymptotic probability that a square matrix is a linear derangement is

lim
n→∞

en
qn2 =

∏

r≥1

(

1−
1

qr

)2

A matrix over Fq is a projective derangement if the induced map on projective space
has no fixed points. Equivalently, this means that the matrix has no eigenvalues in Fq. If
dn is the number of such n× n matrices, then

1 +
∑

n≥1

dn
γn
un =

1

1− u

∏

r≥1

(

1−
u

qr

)q−1

.

For q = 2 the notions of projective and linear derangement are the same, and the corre-
sponding sequence is given above. For q = 3 the sequence has initial terms from n = 1 to
5

0, 18, 3456, 7619508, 149200289280.
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Since two matrices that differ by a scalar multiple induce the same map on projective space,
the number of maps that are projective derangements is dn/(q − 1). The asymptotic proba-
bility that a random invertible matrix is a projective derangement is the limit

lim
n→∞

dn
γn
=
∏

r≥1

(

1−
1

qr

)q−1

.

The asymptotic probability that a random n× n matrix is a projective derangement is

lim
n→∞

dn
qn2 =

∏

r≥1

(

1−
1

qr

)q

.

As q → ∞, this probability goes to 1/e, the same value as the asymptotic probability that
a random permutation is a derangement.

1.9 Diagonalizable matrices

In this section let dn be the number of diagonalizable n× n matrices over Fq. Then

1 +
∑

n≥1

dn
γn
un =

(

∑

m≥0

um

γm

)q

.

It follows that
dn =

∑

n1+···+nq=n

γn
γn1
· · · γnq

.

For q = 2 this simplifies to

dn =
n
∑

i=0

γn
γiγn−i

.

The sequence for d1 to d8 is

2, 8, 58, 802, 20834, 1051586, 102233986, 196144424834.

For q = 3 the five initial terms are

3, 39, 2109, 417153, 346720179.

For arbitrary q, we can easily find d2,

d2 =
∑

n1+···+nq=2

γn
γn1
· · · γnq

= q
γ2
γ0γ2

+

(

q

2

)

γ2
γ1γ1

=
q4 − q2 + 2q

2
.
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1.10 Projections

A projection is a matrix P such that P 2 = P . Let pn be the number of n× n projections.
Then

1 +
∑

n≥1

pn
γn
un =

(

∑

m≥0

um

γm

)2

.

It follows that
pn =

∑

0≤i≤n

γn
γiγn−i

.

In the sum the term γn/γiγn−i is the number of projections of rank i. Projections are also
characterized as diagonalizable matrices having eigenvalues 0 or 1. Thus, for q = 2 the
diagonalizable matrices are precisely the projections, and so we get the same sequence as in
section 1.9. From p1 to p8 the sequence is

2, 8, 58, 802, 20834, 1051586, 102233986, 196144424834.

For q = 3 the map P 7→ P + I gives a bijection from the set of projections to the set of
diagonalizable matrices with eigenvalues 1 or 2. Such matrices are precisely the solutions of
X2 = I. The sequence is given in the OEIS by A053846. From p1 to p7 the sequence is

1, 2, 14, 236, 12692, 1783784, 811523288, 995733306992.

There is a bijection between the set of n × n projections and the direct sum splittings
Fn
q = V ⊕W . The projection P corresponds to the splitting ImP ⊕KerP . Note that V ⊕W
is regarded as different from W ⊕ V . Hence,

pn = 2 + 2

{

n

2

}

q

,

because
{

n
2

}

q
is the number of splittings into two proper subspaces, with V ⊕W regarded

as the same as W ⊕ V .
From §1.3 we have

(

n

k

)

q

=
γn

γkγn−kqk(n−k)
,

showing the relationship between the number of subspaces of dimension k and the number
of projections of rank k. From it we see that t there are qk(n−k) complementary subspaces
for a fixed subspace of dimension k.

1.11 Solutions of Ak = I

Let an be the number of n × n matrices A satisfying A2 = I. Such matrices correspond to
group homomorphisms from the cyclic group of order 2 to GLn(q). In characteristic other
than two, the generating function for the an is

1 +
∑

n≥1

an
γn
un =

(

∑

m≥0

um
γm

)2

,
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and so

an =
n
∑

i=0

γn
γiγn−i

.

These matrices are those which are diagonalizable and have only 1 and −1 for eigenvalues.
If we fix two distinct elements λ1 and λ2 in the base field Fq, then an also gives the number
of diagonalizable matrices having eigenvalues λ1 and λ2. Taking the eigenvalues to be 0 and
1 gives the set of projections, and so we see that the number of projections is the same as the
number of solutions to A2 = I, when q is not a power of 2. The proof in §2.4 for the number
of projections is essentially the proof for the more general case. The sequence A053846 gives
the number of solutions over F3.
In characteristic two, A2 = I does not imply that A is diagonalizable and the previous

formula does not hold. We have the formula

an =
∑

0≤i≤n/2

γn
qi(2n−3i)γiγn−2i

to be proved in §2.5. Because A2 = I is equivalent to (A + I)2 = 0, the formula for an also
counts the number of n× n nilpotent matrices N such that N 2 = 0. For q = 2 the sequence
is A053722. Although there appears to be an error in the formula given in the OEIS entry,
the initial terms of the sequence are correct. For n = 1, . . . , 8 they are

1, 4, 22, 316, 6976, 373024, 32252032, 6619979776.

For q = 4 the sequence is A053856 and the initial terms for n = 1, . . . , 7 are

1, 16, 316, 69616, 21999616, 74351051776, 374910580965376.

More generally, let k be a positive integer not divisible by p, where q is a power of p. We
consider the solutions of Ak = I and let an be the number of n×n solutions with coefficients
in Fq. Now zk − 1 factors into a product of distinct irreducible polynomials

zk − 1 = φ1(z)φ2(z) · · ·φr(z).

Let di = deg φi. Then the generating function for the an is

1 +
∑

n≥1

an
γn
un =

r
∏

i=1

∑

m≥0

qmdi

γm(qdi)
.

Note that an counts the homormorphisms from the cyclic group of order k to GLn(q). The
generating function given here is a special case of the generating function given by Chigira,
Takegahara, and Yoshida [3] for the sequence whose nth term is the number of homomor-
phisms from a finite group G to GLn(q) under the assumption that the characteristic of Fq

does not divide the order of G.
Now we consider some specific examples. Let k = 3 and let q be a power of 2. Then

z3 − 1 = z3 + 1 = (z + 1)(z2 + z + 1)
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is the irreducible factorization. Thus, d1 = 1 and d2 = 2. The generating function is

1 +
∑

n≥1

an
γn
un =

(

∑

m≥0

um

γm

)(

∑

m≥0

u2m

γm(q2)

)

.

With q = 2 we get the sequence A053725 with initial terms for n = 1, . . . , 8

1, 3, 57, 1233, 75393, 19109889, 6326835201, 6388287561729.

With q = 4 we get the sequence A053857 with initial terms for n = 1, . . . , 5

3, 63, 8739, 5790339, 25502129667.

For the next example, let k = 8 and let q be a power of 3. Then

z8 − 1 = (z − 1)(z + 1)φ3(z)φ4(z)φ5(z),

where the last three factors all have degree 2. Thus, r = 5, d1 = d2 = 1, and d3 = d4 = d5 = 2.
The generating function is given by

∑

n≥1

an
γn
un =

(

∑

m≥0

um

γm

)2(
∑

m≥0

u2m

γm(q2)

)3

.

For q = 3 this gives the sequence A053853 beginning for n = 1, . . . , 5

2, 32, 4448, 3816128, 26288771456.

These are the sequences in the OEIS for small values of k and q.

k q = 2 q = 3 q = 4
2 A053722 A053846 A053856
3 A053725 A053847 A053857
4 A053718 A053848 A053859
5 A053770 A053849 A053860
6 A053771 A053851 A053861
7 A053772 A053852 A053862
8 A053773 A053853 A053863
9 A053774 A053854
10 A053775 A053855
11 A053776
12 A053777

1.12 Nilpotent matrices

Fine and Herstein [5] proved that the number of nilpotent n × n matrices is qn(n−1), and
Gerstenhaber [7] simplified the proof. Recently Crabb has given an even more accessible
proof [4]. For q = 2 this is sequence A053763 with initial terms from n = 1 to n = 6

1, 1, 4, 64, 4096, 1048576, 1073741824.
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1.13 Cyclic matrices

A matrix A is cyclic if there exists a vector v such that {Aiv|i = 0, 1, 2, . . .} spans the
underlying vector space. (The term regular is also used. ) An equivalent description is
that the minimal and characteristic polynomials of A are the same. Let an be the number
of cyclic matrices over Fq. The generating function factors as

1 +
∑

n≥1

an
γn
un =

∏

d≥1

(

1 +
1

qd − 1

ud

1− (u/q)d

)νd

,

and can be put into the form

1 +
∑

n≥1

an
γn
un =

1

1− u

∏

d≥1

(

1 +
ud

qd(qd − 1)

)νd

,

where νd is the number of irreducible, monic polynomials of degree d over Fq. The generating
function can be extracted from the proof of Theorem 1 in [6], which we present in section 2.
For q = 2 the sequence from a1 to a7 is

2, 14, 412, 50832, 25517184, 51759986688, 422000664182784.

Wall [13] proved that the probability that an n× n matrix is cyclic has a limit

lim
n→∞

an
qn2 =

(

1−
1

q5

)

∏

r≥3

(

1−
1

qr

)

.

Fulman [6] also has a proof. For q = 2 this limit is 0.7403 . . ..

1.14 Semi-simple matrices

A matrix A is semi-simple if it diagonalizes over the algebraic closure of the base field. Let
an be the number of semi-simple n× n matrices over Fq. Then the generating function has
a factorization

1 +
∑

n≥1

an
γn
un =

∏

d≥1

(

1 +
∑

j≥1

ujd

γj(qd)

)νd

,

where γj(q
d) = |GLj(q

d)|. For q = 2 the sequence from a1 to a7 is

2, 10, 218, 25426, 11979362, 24071588290, 195647202043778.

1.15 Separable matrices

A matrix is separable if it is both cyclic and semi-simple, which is equivalent to having
a characteristic polynomial that is square-free. Let an be the number of separable n × n
matrices over Fq. Then the generating function factors

1 +
∑

n≥1

an
γn
un =

∏

d≥1

(

1 +
ud

qd − 1

)νd

.

12



This can also be factored as

1 +
∑

n≥1

an
γn
un =

1

1− u

∏

d≥1

(

1 +
ud(ud − 1)

qd(qd − 1)

)νd

.

For q = 2 the sequence from a1 to a7 is

2, 8, 160, 22272, 9744384, 20309999616, 165823024988160.

The number of conjugacy classes of separable n× n matrices is qn − qn−1 for n ≥ 2 and
q for n = 1. This is proved by Neumann and Praeger [11, Lemma 3.2] by showing that the
number of square-free monic polynomials of degree n is qn−qn−1. There is a natural bijection
between the set of conjugacy classes of separable matrices and the set of square-free monic
polynomials obtained by associating to each conjugacy class the characteristic polynomial
of the matrices in that class.

1.16 Conjugacy classes

Let an be the number of conjugacy classes of n×n matrices over Fq. The generating function
for this sequence is

1 +
∑

n≥1

anu
n =

∏

r≥1

1

1− qur
.

The number of conjugacy classes grows like qn. In fact,

lim
n→∞

an
qn
=
∏

r≥1

(

1−
1

qr

)−1

,

which is the reciprocal of the limiting probability that a matrix is invertible. See section 1.2.
For q = 2 the sequence is A070933. The initial terms for n = 1, . . . , 10 are

2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206.

For q = 3 the initial terms for n = 1, . . . , 10 are

3, 12, 39, 129, 399, 1245, 3783, 11514, 34734, 104754.

Let bn be the number of conjugacy classes in the general linear group GLn(q), the group
of n× n invertible matrices over Fq. Then

1 +
∑

n≥0

bnu
n =

∏

r≥1

1− ur

1− qur
.

For q = 2 the sequence is A006951, which starts

1, 3, 6, 14, 27, 60, 117, 246, 490, 1002.
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For q = 3 the sequence is A006952, which starts

2, 8, 24, 78, 232, 720, 2152, 6528, 19578, 58944.

For q = 4, 5, 7 the sequences are A049314, A049315, and A049316.
The number of conjugacy classes is asymptotic to qn:

lim
n→∞

bn
qn
= 1.

Hence, in the limit the ratio of the number of conjugacy classes of invertible matrices to the
number of conjugacy classes of all matrices is the same as the limiting probability that a
matrix is invertible. That is,

lim
n→∞

bn
an
=
∏

r≥1

(

1−
1

qr

)

.

Sequence A070731 gives the size of the largest conjugacy class in GLn(2). Starting with
n = 1 the initial terms are

1, 3, 56, 3360, 833280, 959938560.

The minimal order of the centralizers of elements in GLn(2) is given by the quotient of γn
by the nth term in this sequence. The resulting sequence for n = 1, . . . 10 is

1, 2, 3, 6, 12, 21, 42, 84, 147, 294.

This sequence is A082877 in the OEIS.

2 Selected Proofs

2.1 The cycle index and generating functions

In sections 1.6-1.13 we make heavy use of generating functions of the form

1 +
∑

n≥1

an
γn
un,

where the sequence an counts some class of n×n matrices. These generating functions come
from the cycle index for matrices that was first defined by Kung [9] and later extended
by Stong [12]. We follow Fulman’s notation in [6]. The cycle index for conjugation action
of GLn(q) on Mn(q) is a polynomial in the indeterminates xφ,λ, where φ ranges over the
set Φ of monic irreducible polynomials over Fq and λ ranges over the partitions of the
positive integers. First we recall that the conjugacy class of a matrix A is determined by the
isomorphism type of the associated Fq[z]-module on the vector space F

n
q in which the action

of z is that of A. This module is isomorphic to a direct sum

k
⊕

i=1

li
⊕

j=1

Fq[z]/(φ
λi,j
i )

14



where φ1, . . . , φk are distinct monic irreducible polynomials; for each i, λi,1 ≥ λi,2 ≥ · · · ≥ λi,li
is a partition of ni =

∑

j λi,j. Since A is n × n, then n =
∑

i ni deg φi =
∑

i,j λi,j deg φi.Let
λi denote the partition of ni given by the λi,j and define |λi| = ni. The conjugacy class of A
in Mn(q) is determined by the data consisting of the finite list of distinct monic irreducible
polynomials φ1, . . . , φk and the partitions λ1, . . . , λk.
The cycle index is defined to be

1

γn

∑

A∈Mn(q)

∏

φ∈Φ

xφ,λφ(A),

where λφ(A) is the partition associated to φ in the conjugacy class data for A. If φ does not
occur in the polynomials associated to A, then λφ(A) is the empty partition, and we define
xφ,λφ(A) = 1.
We construct the generating function for the cycle index

1 +
∑

n≥1

un

γn

∑

A∈Mn(q)

∏

φ∈Φ

xφ,λφ(A).

This generating function has a formal factorization over the monic irreducible polynomials.
For the proof we refer to the paper of Stong [12, p. 170] .

Lemma 2.1.

1 +
∞
∑

n=1

un

γn

∑

A∈Mn(q)

∏

φ

xφ,λφ(A) =
∏

φ

∑

λ

xφ,λu
|λ| deg φ

cφ(λ)

where cφ(λ) is the order of the group of module automorphisms of the Fq[z]-module
⊕

j Fq[z]/(φ
λj).

Lemma 2.2. Fix a monic irreducible φ. Then

∑

λ

u|λ| deg φ

cφ(λ)
=
∏

r≥1

(

1−
udeg φ

qr deg φ

)−1

.

Proof. We use the formula for cφ(λ) proved by Kung [9, Lemma 2, p. 146]. Let λ be a
partition of n and let bi be the number of parts of size i. Let di = b1 + 2b2 + · · · + ibi +
i(bi+1 + · · ·+ bn). Then

cφ(λ) =
∏

i

bi
∏

k=1

(qdi deg φ − q(di−k) deg φ).

We see from this formula that cφ(λ) is a function of λ and q
deg φ. Therefore it is sufficient to

prove the lemma for a single polynomial of degree 1, say φ(z) = z, and then to replace u by
udeg φ and q by qdeg φ. So, now we will prove that for φ(z) = z,

∑

λ

u|λ|

cφ(λ)
=
∏

r≥1

(

1−
u

qr

)−1

.

15



We split the left side into an outer sum over n and an inner sum over the partitions of n

∑

λ

u|λ|

cφ(λ)
= 1 +

∑

n≥1

∑

|λ|=n

un

cφ(λ)
.

To evaluate the inner sum we note that γn
∑

|λ|=n
1

cφ(λ)
is the number of n × n nilpotent

matrices, which is qn(n−1) from the theorem of Fine and Herstein [5]. Therefore, the un

coefficient of the left side is

∑

|λ|=n

1

cφ(λ)
=

1

qn(1− 1
q
) . . . (1− 1

qn
)
.

For the right side we use a formula of Euler, which is a special case of Cauchy’s identity and
a limiting case of the q-binomial theorem. A convenient reference is the book of Hardy and
Wright [8, Theorem 349, p. 280]. For |a| < 1, |y| < 1, the coefficient of an in the infinite
product

∏

r≥1

1

(1− ayr)

is
yn

(1− y)(1− y2) . . . (1− yn)
.

Let a = u and y = 1
q
to see that the un coefficient of

∏

r≥1

(

1−
u

qr

)−1

is
1

qn(1− 1
q
) . . . (1− 1

qn
)
.

Therefore, the coefficients of un of the left and right sides are equal and so we have proved
that for φ(z) = z,

∑

λ

u|λ|

cφ(λ)
=
∏

r≥1

(

1−
u

qr

)−1

.

Lemma 2.3. Let Φ′ be a subset of the irreducible monic polynomials. Let an be the number
of n× n matrices whose conjugacy class data involves only polynomials φ ∈ Φ′. Then

1 +
∑

n≥1

an
γn
un =

∏

φ∈Φ′

∑

λ

u|λ| deg φ

cφ(λ)

1 +
∑

n≥1

an
γn
un =

∏

φ∈Φ′

∏

r≥1

(

1−
udeg φ

qr deg φ

)−1

.
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Proof. Using Lemma 1 we set xφ,λ = 1 or 0 according to whether φ ∈ Φ
′ or not. Then on

the left side the inner sum is over the matrices A that do not have factors of φ ∈ Φ′ in their
characteristic polynomials, and so the coefficient of un is simply the number of such n × n
matrices. This gives the first equality in the statement of the lemma

1 +
∑

n≥1

an
γn
un =

∏

φ∈Φ′

∑

λ

u|λ| deg φ

cφ(λ)
.

Then from Lemma 2 we get the second equality.

Lemma 2.4.

1

1− u
=
∏

φ6=z

∑

λ

u|λ| deg φ

cφ(λ)

1

1− u
=
∏

φ6=z

∏

r≥1

(

1−
udeg φ

qr deg φ

)−1

.

Proof. Using Lemma 3 we let Φ′ be the complement of the polynomial φ(z) = z. The matrices
not having factors of z in their characteristic polynomials are the invertible matraices. Thus,
an = γn, and so the left side is 1 +

∑

n≥1 u
n.

We can generalize the first part of Lemma 3 to allow for conjugacy class data in which the
allowed partitions vary with the polynomials. The proof follows immediately from Lemma
1.

Lemma 2.5. For each monic, irreducible polynomial φ let Lφ be a subset of all partitions of
the positive integers. Let an be the number of n× n matrices A such that λφ(A) ∈ Lφ for all
φ. Then

1 +
∑

n≥1

an
γn
un =

∏

φ

∑

λ∈Lφ

u|λ| deg φ

cφ(λ)
.

Lemma 2.6.

1− u =
∏

φ

(

1−
udeg φ

qdeg φ

)

=
∏

d≥1

(

1−
ud

qd

)νd

Proof. Unique factorization in the ring of polynomials Fq[z] means that each of the q
n

monic polynomials of degree n has a unique factorization as a product of monic irreducible
polynomials. This implies the factorization of the generating function

∑

n≥0

qnun =
∏

φ

∑

k≥0

uk deg φ.

The left side and the inner sum on the right are geometric series, and so

1

1− qu
=
∏

φ

1

1− udeg φ
.
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Grouping the factors on the right according to degree we get

1

1− qu
=
∏

d≥1

(

1

1− ud

)νd

.

Substituing u/q for u gives

1

1− u
=
∏

d≥1

(

1

1− (u/q)d

)νd

.

The lemma follows by taking reciprocals.
The final lemma below is used to evaluate limiting probabilities such as limn→∞ an/γn.

The proof is straightforward and omitted.

Lemma 2.7. If
∑

n≥0

αnu
n =

1

1− u
F (u)

where F (u) is analytic and the series for F (1) is convergent, then

lim
n→∞

αn = F (1).

Now with these lemmas we are ready to prove several results stated in §1.

2.2 Linear and Projective Derangements

In this section we prove the results given in §1.8. Linear derangements are matrices with no
eigenvalues of 0 or 1, which means that their characteristic polynomials do not have factors
of z or z − 1.

Theorem 2.1. Let en be the number of n× n linear derangements. Then

1 +
∑

n≥1

en
γn
un =

1

1− u

∏

r≥1

(

1−
u

qr

)

.

Proof. In Lemma 3 let Φ′ = Φ \ {z, z − 1} to see that

1 +
∑

n≥1

en
γn
un =

∏

φ∈Φ′

∏

r≥1

(

1−
udeg φ

qr deg φ

)−1

.

On the right side multiply and divide by the product corresponding to φ(z) = z, which is

∏

r≥1

(

1−
u

qr

)−1

,

to see that

1 +
∑

n≥1

en
γn
un =

∏

φ6=z

∏

r≥1

(

1−
udeg φ

qr deg φ

)−1
∏

r≥1

(

1−
u

qr

)

.
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Then use Lemma 4 to give

1 +
∑

n≥1

en
γn
un =

1

1− u

∏

r≥1

(

1−
u

qr

)

.

From the generating function we can derive a recursive formula for en.

Corollary 2.1.

en = en−1(q
n − 1)qn−1 + (−1)nqn(n−1)/2, e0 = 1.

Proof. From Theorem 8 it follows that en/γn is the sum of the u
i coefficients of

∏

r≥1

(1− u/qr)

for i = 0, 1, . . . , n. Now the ui coefficient is

(−1)i
∑

1≤r1<r2<···<ri

1

qr1+r2+···+ri
.

By induction one can easily show that this coefficient is

(−1)i

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

Therefore
en
γn
= 1 +

∑

1≤i≤n

(−1)i

(qi − 1)(qi−1 − 1) · · · (q − 1)
.

Next,
en
γn
=

en−1
γn−1

+
(−1)n

(qn − 1) · · · (q − 1)
.

Making use of the formula for γn and γn−1 and canceling where possible we see that

en = en−1(q
n − 1)qn−1 + (−1)nqn(n−1)/2.

We present the next result because the sequence en for q = 2 is given in the OEIS as
2n(n−1)/2an where an satisfies a recursive formula.

Corollary 2.2. Let

an =
en

qn(n−1)/2
.

Then an satisfies the recursion

an = an−1(q
n − 1) + (−1)n, a0 = 1.

Proof. The proof follows immediately from the recursive formula for en.
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Corollary 2.3. The asymptotic probability that an invertible matrix is a linear derangement
is

lim
n→∞

en
γn
=
∏

r≥1

(

1−
1

qr

)

.

The asymptotic that any matrix is a linear derangement is

lim
n→∞

en
qn2 =

∏

r≥1

(

1−
1

qr

)2

.

Proof. We use Lemma 7 for the first statement. Then

lim
n→∞

en
qn2 = lim

n→∞

en
γn

γn
qn2

=

(

lim
n→∞

en
γn

)(

lim
n→∞

γn
qn2

)

.

We have just computed the first limit on the right and the second limit (from §1.2) is the
same.
The proof of Theorem 8 easily adapts to give the generating function for the number of

projective derangements.

Theorem 2.2. Let dn be the number of n× n projective derangements. Then

1 +
∑

n≥1

dn
γn
un =

1

1− u

∏

r≥1

(

1−
u

qr

)q−1

.

Proof. In this case Φ′ = Φ \ {z − a|a ∈ Fq}. As in the proof of Theorem 8 this time
we multiply and divide by the products corresponding to all the linear polynomials except
φ(z) = z − 1. There are q − 1 of these and so we get

1 +
∑

n≥1

en
γn
un =

∏

φ6=z

∏

r≥1

(

1−
udeg φ

qr deg φ

)−1
∏

r≥1

(

1−
u

qr

)q−1

.

Use Lemma 4 to finish the proof.
It would be interesting to find a recursive formula for the dn analagous to that given in

Corollary 9 for the en.

2.3 Diagonalizable matrices

Theorem 2.3. Let dn be the number of diagonalizable n× n matrices. Then

1 +
∑

n≥0

dn
γn
un =

(

∑

m≥0

um

γm

)q

and
dn =

∑

n1+···+nq=n

γn
γn1
· · · γnq

.
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Proof. We use Lemma 5. Diagonalizable matrices have conjugacy class data that only in-
volves the linear polynomials φ(z) = z−a, a ∈ Fq and partitions λφ(A) that are either empty
or have the form 1 ≥ 1 ≥ . . . ≥ 1. These partitions are indexed by non-negative integer. For
φ(z) = z − a and for λ the partition consisting of m 1’s, the corresponding m ×m matrix
in the canonical form is the diagonal matrix with a on the main diagonal. The centralizer
subgroup of this matrix is the full general linear group GLm(q) and so cφ(λ) = γm. Then
from Lemma 5 we see that

1 +
∑

n≥0

dn
γn
un =

∏

a∈Fq

∑

m≥0

um

γm

=

(

∑

m≥0

um

γm

)q

.

From this the formula for dn follows immediately.
It should be noted that the formula for dn follows directly from the knowledge of the

centralizer subgroup of a diagonalizable matrix and does not require the full machinery of
the cycle index generating function. Also, there is an alternative approach to this problem
given in [10].

2.4 Projections

Theorem 2.4. Let pn be the number of n× n projections. Then

1 +
∑

n≥0

pn
γn
un =

(

∑

m≥0

um

γm

)2

and
pn =

∑

0≤i≤n

γn
γiγn−i

.

Proof. Since projections are diagonalizable matrices with eigenvalues restricted to be in the
set {0, 1}, it follows that the product in the generating function for the cycle index is over
the two polynomials z and z−1 and the partitions are restricted as described in the previous
theorem. Thus, we see that

1 +
∑

n≥0

pn
γn
un =

∏

z,z−1

∑

m≥0

um

γm

=

(

∑

m≥0

um

γm

)2

.

The formula for pn follows immediately.
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2.5 Solutions of Ak = I

Theorem 2.5. Let an be the number of n × n matrices A satisfying A2 = I, and assume
that the base field Fq has characteristic two. Then

an =
∑

0≤i≤n/2

γn
qi(2n−3i)γiγn−2i

.

Proof. The rational canonical form for A is a direct sum of companion matrices for z−1 and
(z− 1)2. No other polynomials occur. Thus, the partition λφ(A) for φ(z) = z− 1 consists of
b1 repetitions of 1 and b2 repetitions of 2, where b1 + 2b2 = n. From Lemma 5 we see that

1 +
∑

n≥1

an
γn
un =

∑

b1, b2

ub1+2b2

cz−1(b)
,

where b = (b1, b2) denotes the partition. To compute cz−1(b) we refer to the formula stated
in the proof of Lemma 2. In that formula we have d1 = b1 + b2 and d2 = b1 + 2b2, and then

cz−1(b) =
2
∏

i=1

bi
∏

k=1

(qdi − qdi−k).

This becomes

cz−1(b) =

b1
∏

k=1

(qd1 − qd1−k)

b2
∏

k=1

(qd2 − qd2−k).

Now let i = d1 − k in the first product and let i = d2 − k in the second product, so that

cz−1(b) =

d1−1
∏

i=b2

(qd1 − qi)

d2−1
∏

i=d2−b2

(qd2 − qi).

From each factor of the first product we pull out a factor of qb2 and from each factor of the
second product we remove a factor of qd2−b2 . This gives

cz−1(b) = qb1b2γb1q
(d2−b2)b2γb2 .

Then
an
γn
=

∑

b1+2b2=n

1

cz−1(b)
,

where we note that d2 = n and b1 = n− 2b2. Therefore,

an
γn
=

∑

b1+2b2=n

1

qb2(3n−2b2)γb1γb2
,

which is equivalent to the formula to be proved.
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Theorem 2.6. Assume that k is a positive integer relatively prime to q. Let

zk − 1 = φ1(z)φ2(z) · · ·φr(z)

be the factorization of zk − 1 over Fq into distinct irreducible polynomials with di = deg φi,
and let an be the number of n× n matrices over Fq that are solutions of A

k = I. Then

1 +
∑

n≥1

an
γn
un =

r
∏

i=1

∑

m≥0

qmdi

γm(qdi)
.

Proof. The rational canonical form of a matrix A satisfying Ak = I is a direct sum of any
number of copies of the companion matrices of the φi. Thus, with Lemma 5 the product is
taken over the φi for i = 1, . . . , r and the subset Lφi is the same for all i and consists of the
partitions in which all parts are 1. Hence, Lφi can be identified with the non-negative integers
m = 0, 1, 2, . . .. For the partition λ given by m 1’s, the value of cφi(λ) is the order of the
group of automorphisms of the Fq[z]-module Fq[z]/(φ

m
i ), but this module is the direct sum of

m copies of the extension field of degree di over Fq. Therefore, the group of automorphisms
is the general linear group GLm(q

di), and so cφi(λ) = γm(q
di).

2.6 Cyclic matrices

Theorem 2.7. Let an be the number of cyclic n× n matrices. Then

1 +
∑

n≥1

an
γn
un =

∏

d≥1

(

1 +
1

qd − 1

ud

1− (u/q)d

)νd

and

1 +
∑

n≥1

an
γn
un =

1

1− u

∏

d≥1

(

1 +
ud

qd(qd − 1)

)νd

.

Proof. In terms of the conjugacy class data a matrix is cyclic if λφ has at most one part for
each φ. Thus, Lφ = {∅, 1, 2, . . .}, where m means the partition of m having just one part.
For these partitions we have cφ(∅) = 1 and cφ(m) = qmdeg φ − q(m−1) deg φ. Let an be the
number of cyclic matrices of size n × n. Beginning with Lemma 5 we find the generating
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function.

1 +
∑

n≥1

an
γn
un =

∏

φ

∑

Lφ

u|λ| deg φ

cφ(λ)

=
∏

φ

(

1 +
∑

m≥1

um deg φ

qmdeg φ − q(m−1) deg φ

)

=
∏

d≥1

(

1 +
∑

m≥1

umd

qmd − q(m−1)d

)νd

=
∏

d≥1

(

1 +
1

qd − 1

∑

m≥1

umd

q(m−1)d

)νd

=
∏

d≥1

(

1 +
1

qd − 1

ud

1− (u/q)d

)νd

.

For the second part, we use Lemma 6 to get

1 +
∑

n≥1

an
γn
un =

1

1− u

∏

d≥1

(

1−
ud

qd

)νd
∏

d≥1

(

1 +
1

qd − 1

ud

1− (u/q)d

)νd

.

Combine the products and simplify to finish the proof.

2.7 Semi-simple matrices

Theorem 2.8. Let an be the number of n× n semi-simple matrices over Fq. Then

1 +
∑

n≥1

an
γn
un =

∏

d≥1

(

1 +
∑

j≥1

ujd

γj(qd)

)νd

.

Proof. In order for a matrix to be semi-simple the partition associated to a polynomial φ
has no parts greater than 1. Thus, for all φ, Lφ = {∅, 1, 1

2, . . . , 1j, . . .}, where 1j means the
partition of j consisting of j copies of 1. Then cφ(1

j) is the order of the automorphism group
of the Fq[z]-module which is the direct sum of j copies of Fq[z]/(φ), which can be identified
with (Fqd)

j, where d = deg φ. Furthermore, the automorphisms of the module (Fq[z]/(φ))
⊕j

can be identified with the Fqd-linear automorphisms of (Fqd)
j. This group of automorphisms

is GLj(q
d), and so cφ(1

j) = γj(q
d).

From Lemma 5 we find

1 +
∑

n≥1

an
γn
un =

∏

φ

∑

Lφ

u|λ| deg φ

cφ(λ)

=
∏

φ

(

1 +
∑

j≥1

uj deg φ

γj(qd)

)

=
∏

d≥1

(

1 +
∑

j≥1

ujd

γj(qd)

)νd

.
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2.8 Separable matrices

Theorem 2.9. Let an be the number of separable n× n matrices over Fq. Then

1 +
∑

n≥1

an
γn
un =

∏

d≥1

(

1 +
ud

qd − 1

)νd

and

1 +
∑

n≥1

an
γn
un =

1

1− u

∏

d≥1

(

1 +
ud(ud − 1)

qd(qd − 1)

)νd

.

Proof. For a matrix to be separable the allowed partitions are either empty or the unique
partition of 1. So the sum over Lφ in Lemma 5 is a sum of two terms. For λ = ∅,

u|λ| deg φ

cφ(λ)
= 1,

and for λ = 1,
u|λ| deg φ

cφ(λ)
=

udeg φ

qdeg φ − 1
.

Therefore,

1 +
∑

n≥1

an
γn
un =

∏

φ

∑

Lφ

u|λ| deg φ

cφ(λ)

=
∏

φ

(

1 +
udeg φ

qdeg φ − 1

)

=
∏

d≥1

(

1 +
ud

qd − 1

)νd

.

For the second statement of the theorem multiply the right side in the line above by

1

1− u

∏

d≥1

(

1−
ud

qd

)νd

,

which is equal to 1 by Lemma 6. Then combine the products.

2.9 Conjugacy classes

Theorem 2.10. Let an be the number of conjugacy classes of n × n matrices. Then the
ordinary generating function for the sequence {an} is given by

1 +
∑

n≥1

anu
n =

∏

r≥1

1

1− qur
.
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Proof. Recall the ordinary power series generating function for partitions factors as the
infinite product

∑

n≥0

pnu
n =

∏

r≥1

1

1− ur
,

where pn is the number of partitions of the integer n. A conjugacy class of n × n matrices
is uniquely specified by the choice of a partition λφ for each monic irreducible polynomial φ
such that

∑

φ |λφ| deg φ = n. Consider the infinite product over φ

∏

φ

∑

n≥0

pnu
n deg φ.

The coefficient of un is a sum of terms of the form pn1
un1 deg φ1 · · · pnku

nk deg φk where n =
∑

nk deg φk. Therefore, the u
n-coefficient is the number of conjugacy classes of n × n ma-

trices. Then

1 +
∑

n≥1

anu
n =

∏

φ

∑

n≥0

pnu
n deg φ

=
∏

φ

∏

r≥1

1

1− ur deg φ

=
∏

r≥1

∏

φ

1

1− ur deg φ

=
∏

r≥1

∏

d≥1

(

1

1− urd

)νd

Then by substituting qur for u in Lemma 6 and inverting we see that

∏

d≥1

(

1

1− urd

)νd

=
1

1− qur
.

Therefore

1 +
∑

n≥1

anu
n =

∏

r≥1

1

1− qur
.
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