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Abstract

We present several methods of computing sequences of generalized central trinomial
coefficients. We generalize the Schur and Holt congruences for Legendre polynomials
in order to prove divisibility properties of these sequences and a conjecture of Deutsch
and Sagan.

1 Introduction

For integers a, b, c, we call the coefficient of xn in the expression

(a+ bx+ cx2)n (1)

the generalized central trinomial coefficient, Tn. The sequences {Tn}n≥0 have combinatorial
interpretations and, as shown in Table 1 at the end of this paper, appear frequently in
Sloane’s On-Line Encyclopedia of Integer Sequences [6]. By using the binomial theorem
twice and the identity

(

n
k

)(

n−k
n−2k

)

=
(

2k
k

)(

n
2k

)

, we obtain

Tn =

bn/2c
∑

k=0

(

2k

k

)(

n

2k

)

bn−2k(ac)k. (2)

Assuming b is fixed, note that for any a and c having a fixed nonzero product, the sequences
will be the same. Hence, we assume a = 1. Because b = 0 is a degenerate case and the
absolute value of Tn is the same for b and −b, we can assume b > 0 for divisibility purposes.
As we will see below, an important quantity that determines many properties of the

sequence is the the discriminant d = b2 − 4ac. There are an infinite number of pairs (b, c)
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that yield the same discriminant. Also, the discriminant is always of the form 4k or 4k + 1
for some integer k.
We begin by considering several ways of evaluating these sequences. We will see that the

representation as values of Legendre polynomials is crucial in studying the divisibility of the
sequences by primes.

2 Ordinary Generating Function

Using the solution to an exercise in [4, page 575], we compute the sequence from the ordinary
generating function

1√
1− 2bx+ dx2

=
∞
∑

k=0

Tkx
k. (3)

Euler [3] found this generating function for the case a = b = c = 1.
Observe that when c is a perfect square, the quadratic in the radical factors into the

product of two linear terms 1 − (b + 2√c)x and 1 − (b − 2√c)x having integer coefficients.
This factorization allows us to represent equation (3) as the convolution of two sequences of
the form

1√
1− fx

=
∞
∑

k=0

1

4k

(

2k

k

)

fk

for constant f . For f = 1, see sequence A001790. Forming the convolution, we obtain the
interesting

Tn =
1

4n

n
∑

k=0

(

2n− 2k
n− k

)(

2k

k

)

fkgn−k,

where f = b+ 2
√

c and g = b− 2√c are not required to be integers.

3 Recursion Equation

The exercise in [4] states that the recurrence equation for the sequence is

T0 = 1, T1 = b, Tn =
(2n− 1)bTn−1 − (n− 1)dTn−2

n
, (4)

which provides an efficient formula for computing Tn. Euler [3] found this recursion equation
for the case a = b = c = 1. Observe that the recursion actually needs only T0 to start; T1

can be computed. The recursion also allows us to show that

Tn+1 ≡ bTn (mod n).
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4 Exponential Generating Function

Using the infinite series expansion of the modified Bessel function of the first kind,

I0(x) =
∞
∑

k=0

(1
4
x2)k

(k!)2

and the infinite series expansion of the exponential function, it is not hard to show that the
sequence can be computed from the exponential generating function

ebxI0(2x
√

c) =
∞
∑

k=0

Tkx
k

k!
.

5 Legendre Polynomials

When the discriminant d is nonzero, the sequence can be defined in terms of the Legendre
polynomials

Tn = dn/2 Pn

(

b√
d

)

, (5)

which is easy to derive from the generating function for Legendre polynomials

1√
1− 2tx+ t2

=
∞
∑

n=0

Pn(x)t
n.

Note that in equation (5), after multiplying each term of the polynomial Pn(b/
√

d) by dn/2,
there will be no occurrences of

√
d because the degree of the polynomial is n and its terms

have either all even or all odd exponents if n is even or odd, respectively.
The cases of d = 1 and d = 0 have particularly simple forms. When d = 1, which occurs

when b = 2k + 1 and c = k(k + 1) for integer k ≥ 0, we obtain Tn = Pn(b). When d = 0,
equation (1) can be written as (1 + bx/2)2n and the sequence is

Tn =

(

b

2

)n(
2n

n

)

. (6)

6 Schur and Holt Congruences

The remainder of this paper contains many polynomial congruences. A statement such as

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ≡ 0 (mod p)

in the indeterminant x means that ak ≡ 0 (mod p) for all k. The coefficients ak are allowed
to be fractions if the denominator is not divisible by p.
Papers by Carlitz [1] and Wahab [7] have congruences for Legendre polynomials modulo

an odd prime p. In particular, Carlitz cites the congruence of Schur: if n is written in base p
as

n = n0 + n1p+ n2p
2 + · · ·+ nrp

r (0 ≤ ni < p), (7)
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then
Pn(x) ≡ Pn0

(x) (Pn1
(x))p (Pn2

(x))p
2

. . . (Pnr
(x))p

r

(mod p). (8)

This beautiful congruence, which is reminiscent of Lucas’ theorem for binomial coefficients,
is proved by Wahab [7, Theorem 6.1]. The congruence implies that the divisibility of Pn(x)
by p is completely determined by the divisibility of Pk(x) by p for 0 ≤ k < p. We may use
Fermat’s little theorem to write congruence (8) as

Pn(x) ≡ Pn0
(x) Pn1

(xp) Pn2
(xp2

) . . . Pnr
(xpr

) (mod p).

If we replace x by an integer s > 0, then Schur’s congruence still holds and we use Fermat’s
little theorem to obtain a congruence without exponents:

Pn(s) ≡ Pn0
(s) Pn1

(s) Pn2
(s) . . . Pnr

(s) (mod p). (9)

Another result mentioned by Carlitz and Wahab is due to Holt [5]:

Pk(x) ≡ Pp−k−1(x) (mod p) (10)

for k < p. A surprising implication of this congruence is that for (p − 1)/2 < k < p, the
polynomial Pk(x) (mod p) has degree less than k. It also means, in conjunction with the
Schur congruence (8), that the divisibility of Pn(x) by p is completely determined by the
divisibility of Pk(x) by p for 0 ≤ k ≤ (p− 1)/2.

7 Scaled Legendre Polynomials

We would like to use the Schur and Holt congruences to prove divisibility properties of the
sequence Tn using equation (5). However, the factor of dn/2 in that equation makes using
the congruences dubious. To remedy this problem, we define a scaled Legendre polynomial
having a parameter d:

Qn(x, d) = dn/2 Pn

(

x√
d

)

=
1

2n

bn/2c
∑

k=0

(−1)k
(

n

k

)(

2n− 2k
n− 2k

)

dkxn−2k, (11)

which, except for the factor of dk in the summation, is the same as the usual Legendre
polynomial definition. The first few polynomials are Q0(x, d) = 1, Q1(x, d) = x, and
Q2(x, d) = 1

2
(3x2 − d). This formulation also allows the case of d = 0. Note that if we

replace b by the indeterminant x in recursion equation (4), the scaled Legendre polynomials
are generated. Equation (5) becomes

Tn = Qn(b, d).

In the appendix we prove the Schur and Holt congruences for these scaled Legendre
polynomials. Using the same reasoning as in the previous section, congruence (9) becomes

Qn(s, d) ≡ Qn0
(s, d) Qn1

(s, d) Qn2
(s, d) . . . Qnr

(s, d) (mod p), (12)
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which can be used with s = b to obtain the important congruence

Tn ≡ Tn0
Tn1

Tn2
. . . Tnr

(mod p). (13)

Let u = (p− 1)/2− k for k < p. Then, assuming p - d, Holt’s congruence (10) becomes

du Qk(x, d) ≡ Qp−k−1(x, d) (mod p)

for scaled Legendre polynomials, which leads to

du Tk ≡ Tp−k−1 (mod p). (14)

8 Divisibility Properties

The divisibility properties of these sequences are quite interesting. However, as shown in
equation (6), the case d = 0 concerns essentially just the central binomial coefficients, whose
divisibility is handled by Kummer’s theorem [2, Theorem 5.12].
In the following theorems, we assume that {Tn}n≥0 is a sequence of generalized central

trinomial coefficients with b > 0 and discriminant d 6= 0. For specific integer n > 0 and
prime p, let (n)p = (ni) denote the base p representation of n, as in equation (7). We begin
with the case p = 2, which cannot be handled with Legendre polynomials due to the powers
of 2 in their denominators.

Theorem 8.1. If p = 2, then Tn ≡ b (mod p).

Proof. In the sum in equation (2), the k = 0 term is bn; the other terms are 0 (mod 2)
because

(

2k
k

)

is even for k > 0. The theorem follows from bn ≡ b (mod 2) for n > 0.

When p is an odd prime there are four cases to consider: whether or not p | b and
whether or not p | d. We do not treat the case of p - bd except in the general case treated
by Theorem 8.5. The following three theorems cover the three remaining cases. The easiest
case is p dividing both b and d, which we treat first.

Theorem 8.2. If p is an odd prime with p | b and p | d, then p | Tn.

Proof. Because d = b2 − 4c, p | b and p | d imply p | c. Then, using equation (2), it is easy
to see that p divides every term of the sum. Hence, p | Tn.

Theorem 8.3. Let p be an odd prime with p | b and p - d. Then the following are true:
(1) if ni is odd for some 0 ≤ i ≤ r, then p | Tn,
(2) if ni is even and ni ≤ (p− 1)/2 for all 0 ≤ i ≤ r, then p - Tn,
(3) if p | Tn, then either ni is odd or ni > (p− 1)/2 for some 0 ≤ i ≤ r.

Proof. Part 1: Using equation (2), b is a factor in every term of the sum when n is odd.
Hence, because p | b, we obtain p | Tn for odd n. By congruence (13), this divisibility extends
to all n such that ni is odd for some 0 ≤ i ≤ r.
Part 2: If ni is even for all i, then n is even. For even n, the last term of equation (2) is

(

2n
n

)

cn/2; all the other terms are divisible by p because those terms have a factor of b, which p
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divides. Note that d = b2−4c, p | b, and p - d imply p - c. Because we assume ni ≤ (p−1)/2
for all i, there are no carries when n is added to n in base p. Hence, by Kummer’s theorem,
p -
(

2n
n

)

. Thus, p does not divide
(

2n
n

)

cn/2 and we obtain p - Tn.
Part 3: this is just the contrapositive of part 2.

Theorem 8.4. Let p be an odd prime with p - b and p | d, then p | Tn if and only if
(p+ 1)/2 ≤ ni ≤ p− 1 for some 0 ≤ i ≤ r.

Proof. From congruence (13), we see that p | Tn iff p | Tni
for some 0 ≤ i ≤ r. Hence, we

assume that n < p. Recall that Tn = Qn(b, d). We see from equation (11), that all the terms
of Qn(b, d) except the first are divisible by p because p | d. The coefficient of the first term is
(

2n
n

)

bn/2n. Assuming (p+1)/2 ≤ n ≤ p− 1, the sum n+n has a carry in base p. Therefore,

Kummer’s theorem implies that p divides
(

2n
n

)

. We conclude that p | Tn. For the converse,
we prove the contrapositive. Assume 0 ≤ n ≤ (p− 1)/2. The coefficient of the first term of
equation (11) is

(

2n
n

)

bn/2n, which is not divisible by p because 2n and b are not divisible by
p. Hence, p - Tn.

The next theorem generalizes Deutsch and Sagan [2, Corollary 4.8], which they prove for
the case a = b = c = 1.

Theorem 8.5. Let p be a prime. Then p | Tn if and only if p | Tni
for some 0 ≤ i ≤ r.

Proof. For p = 2, ni is either 0 or 1, and at least one ni is 1 because n > 0. Using
Theorem 8.1, we conclude p | Tn if and only if p | T1. For odd prime p, the theorem follows
from congruence (13).

For the case a = b = c = 1, Deutsch and Sagan [2, Conjecture 5.8] and David W. Wilson
conjecture that, for n < p, p divides Tn if and only if p divides Tn−p−1. The next theorem
proves and generalizes the conjecture.

Theorem 8.6. Let p be an odd prime with p - d and n < p. Then p | Tn if and only if
p | Tp−n−1.

Proof. Due to symmetry, we may assume n < (p− 1)/2. Assuming p | Tn, congruence (14)
yields 0 ≡ Tp−n−1 (mod p), which means p | Tp−n−1. Conversely, assuming p | Tp−n−1,
congruence (14) yields duTn ≡ 0 (mod p), which means p | Tn if p - d.

The following three theorems compute the values of Tp, Tp−1, and Tp−2 (mod p). We see
that if p - bd, then p does not divide Tp, Tp−1, and Tp−2. Theorem 8.8 is a rare instance in
which Legendre polynomials and the Legendre symbol appear together.

Theorem 8.7. If p is a prime, then Tp ≡ b (mod p)

Proof. The theorem follows from equation (2), the fact that
(

p
2k

)

≡ 0 (mod p) for all indices
k > 0, and Fermat’s little theorem.
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Theorem 8.8. For odd prime p,

Tp−1 ≡ d(p−1)/2 Pp−1

(

b√
d

)

≡
(

d

p

)

(mod p),

where (d
p
) is the Legendre symbol.

Proof. The first congruence is equation (5). By congruence (14) and the fact that T0 = 1, we
obtain Tp−1 ≡ d(p−1)/2 T0 ≡ d(p−1)/2 (mod p). By Euler’s criterion, ( d

p
) ≡ d(p−1)/2 (mod p).

Hence, Tp−1 ≡ (d
p
) (mod p).

Theorem 8.9. For odd prime p,

Tp−2 ≡ bd(p−3)/2 (mod p).

Proof. If p = 3, then T1 = b. If p ≥ 5 and p | d, then clearly Tp−2 ≡ 0 (mod p) by
Theorems 8.2 and 8.4. If p - d, then the theorem follows from T1 = b and congruence (14).

9 Appendix

Here we prove the generalization of the Schur congruence (8) and Holt congruence (10) for
the scaled Legendre polynomials Q(x, d) defined by (11). In several cases, the parameter d
forces the proofs to be somewhat different than the ones by Holt [5] and Wahab [7]. In all
cases, p is an odd prime and all congruences are modulo p. We use Qn as shorthand for the
polynomial Qn(x, d). As mentioned above, Qn satisfies the recursion equation

nQn = (2n− 1)xQn−1 − (n− 1)dQn−2 (15)

starting with Q0 = 1. Note that because all the denominators in Qn are powers of 2, which
are relatively prime to p, we replace equation (15) by the congruence

nQn ≡ (2n− 1)xQn−1 − (n− 1)dQn−2. (16)

We begin by proving four lemmas that are stated, but not proved in Wahab [7, Lemma 6.2].
The first proof is almost identical to Holt’s proof.

Lemma 9.1. If 0 ≤ r < p, then Qkp+r ≡ QrQkp.

Proof. The case r = 0 is obvious, so assume 0 < r < p. Letting n = kp+r in congruence (16),
we obtain

rQkp+r ≡ (2r − 1)xQkp+r−1 − (r − 1)dQkp+r−2.

Observe that with r = 1 we obtain

Qkp+1 ≡ xQkp ≡ Q1Qkp

because Q1 = x. Similarly, with r = 2 we have

2Qkp+2 ≡ 3xQkp+1 − dQkp ≡ (3x2 − d)Qkp ≡ 2Q2Qkp,
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which allows us to conclude that Qkp+2 ≡ Q2Qkp. Assuming

Qkp+r−1 ≡ Qr−1Qkp and Qkp+r−2 ≡ Qr−2Qkp,

the general case is

rQkp+r ≡ (2r − 1)Qkp+r−1 − (r − 1)dQkp+r−2 ≡ [(2r − 1)Qr−1 − (r − 1)dQr−2]Qkp.

However, the bracketed expression is merely the right-hand-side of (16) with n = r. Hence,

rQkp+r ≡ rQrQkp.

Because 0 < r < p, r is relatively prime to p, and we conclude Qkp+r ≡ QrQkp.

The next lemma shows the effect of the parameter d in the scaled Legendre polynomials.
The parameter d also forces the proof to be slightly different than Holt’s proof.

Lemma 9.2. If 1 ≤ r < p and p - d, then dr−1Qkp−r ≡ Qr−1Qkp−1.

Proof. The case r = 1 is obvious. Letting n = kp− r + 1 in congruence (16), we obtain

(−r + 1)Qkp−r+1 ≡ (−2r + 1)xQkp−r + rdQkp−r−1,

which is rearranged to yield

rdQkp−r−1 ≡ (2r − 1)xQkp−r − (r − 1)Qkp−r+1. (17)

With r = 1 we obtain, using Q1 = x,

dQkp−2 ≡ xQkp−1 ≡ Q1Qkp−1.

Similarly, with r = 2 we have

2dQkp−3 ≡ 3xQkp−2 −Qkp−1.

Multiplying by d, and using the result with r = 1, gives us

2d2Qkp−3 ≡ 3x2Qkp−1 − dQkp−1 ≡ (3x2 − d)Qkp−1 ≡ 2Q2Qkp−1,

and we conclude that d2Qkp−3 ≡ Q2Qkp−1. For the case r ≥ 3, we assume

dr−2Qkp−r+1 ≡ Qr−2Qkp−1 and dr−3Qkp−r+2 ≡ Qr−3Qkp−1, (18)

and substitute r − 1 for r in the general case (17), to obtain

(r − 1)dQkp−r ≡ (2r − 3)xQkp−r+1 − (r − 2)Qkp−r+2.

Multiplying by dr−2, and using the assumptions (18), gives us

dr−1(r − 1)Qkp−r ≡ [(2r − 3)xQr−2 − (r − 2)dQr−3]Qkp−1.

However, the bracketed expression is merely the right-hand-side of (16) for n = r−1. Hence,

dr−1(r − 1)Qkp−r ≡ (r − 1)Qr−1Qkp−1

For r 6= 1, r − 1 is relatively prime to p, and we conclude dr−1Qkp−r ≡ Qr−1Qkp−1.
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Although the statement of the next lemma is the same as Holt’s, the proof is different.

Lemma 9.3. If 0 ≤ r < p, then Qp+r ≡ xpQr.

Proof. By Lemma 9.1, we have Qp+r ≡ QrQp. From the definition of Qp in equation (11),
it is obvious that p divides every term of the sum except the first. The remaining term is
(

2p
p

)

xp/2p. Hence, Qp ≡ Axp for some constant A that is the solution to the congruence

2pA ≡
(

2p
p

)

. By Fermat’s little theorem, 2p ≡ 2. Also,
(

2p
p

)

≡
(

2
1

)

= 2. We conclude that
A ≡ 1, proving the lemma.
The following lemma is a generalization of Holt’s congruence mentioned earlier in this

paper. Its statement and proof are different than Holt’s version.

Lemma 9.4. If 0 ≤ r < p and p - d, then Qp−r−1 ≡ duQr, where u = (p− 1)/2− r.

Proof. Letting k = 1 and substituting r + 1 for r in Lemma 9.2, we have

drQp−r−1 ≡ QrQp−1. (19)

From the definition of Qp−1 in equation (11), we use Kummer’s theorem to show that p
divides every term of the sum except the last. The remaining term is the constant

(−1)m
2p−1

(

p− 1
m

)

dm,

where m = (p− 1)/2. But
(

p−1
m

)

≡ (−1)m for any m, making the constant dm/2p−1. Calling
this constant A and using Fermat’s little theorem as in the previous lemma, we obtain
A ≡ d(p−1)/2. Thus, equation (19) becomes

drQp−r−1 ≡ d(p−1)/2Qr.

Dividing by dr proves the lemma.

The following lemma is proved by Wahab for the usual Legendre polynomials.

Lemma 9.5. Qkp ≡ (Qk)
p.

Proof. By the definition of scaled Legendre polynomials (11),

2kpQkp(x, d) =

bkp/2c
∑

j=0

(−1)j
(

kp

j

)(

2kp− 2j
kp− 2j

)

djxkp−2j.

However,
(

kp
j

)

≡ 0 for j 6= ip and
(

kp
ip

)

≡
(

k
i

)

. Consequently,

2kpQkp(x, d) ≡
bk/2c
∑

i=0

(−1)ip
(

k

i

)(

2k − 2i
k − 2i

)

dipxkp−2ip.

Using Fermat’s little theorem several times, we obtain

2kpQkp(x, d) ≡ 2kQk(x
p, d) ≡ 2kp(Qk(x, d))p.

Dividing by 2kp proves the lemma.
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The following theorem proves Schur’s congruence for scaled Legendre polynomials. The
proof is identical to Wahab’s for the usual Legendre polynomials.

Theorem 9.1. If n = n0 + n1p+ n2p
2 + · · ·+ nrp

r, with 0 ≤ ni < p, then

Qn ≡ Qn0
(Qn1

)p (Qn2
)p

2

. . . (Qnr
)p

r

.

Proof. Induction on n is used. The statement is true for 0 ≤ n < p. By Lemma 9.1,

Qn ≡ Qn0
Qn1p+n2p2+···+nrpr .

By Lemma 9.5,
Qn ≡ Qn0

(Qn1+n2p+···+nrpr−1)p.

By the inductive assumption,

Qn ≡ Qn0
[Qn1

(Qn2
)p · · · (Qnr

)p
r−1

]p.

Hence,
Qn ≡ Qn0

(Qn1
)p (Qn2

)p
2 · · · (Qnr

)p
r

.
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a b c d A-number Comments

1 1 1 -3 A002426 central trinomial coefficients
1 1 2 -7 A084601
1 1 3 -11 A084603
1 1 4 -15 A084605
1 1 5 -19 A098264
1 1 6 -23 A098265
1 1 8 -31 A098329
1 1 12 -47 A098439
1 1 15 -59 A098440
1 1 16 -63 A098441
1 1 24 -95 A098442
1 1 -1 5 A098331
1 1 -2 9 A098332
1 1 -3 13 A098333
1 1 -4 17 A098334
1 2 1 0 A000984 binomial(2n, n)
1 2 2 -4 A006139
1 2 3 -8 A084609
1 2 4 -12 A098453
1 2 5 -16 A084770
1 2 -1 8 A098335
1 2 -2 12 A098336
1 2 -3 16 A012000 4nPn(1/2)
1 2 -4 20 A098337
1 3 1 5 A026375
1 3 2 1 A001850 Pn(3), central Delannoy numbers
1 3 5 -11 A098444
1 3 -1 13 A098338
1 3 -2 17 A098339
1 3 -3 21 A098340
1 3 -4 25 A098341
1 4 1 12 A081671
1 4 2 8 A080609
1 4 3 4 A069835 2nPn(2)
1 4 4 0 A059304 2n binomial(2n, n)
1 4 5 -4 A098443
1 4 6 -8 A106258
1 5 1 21 A098409
1 5 4 9 A084771
1 5 6 1 A006442 Pn(5)
1 6 1 32 A098410
1 6 9 0 A098658 3n binomial(2n, n)
1 7 1 45 A104454
1 7 12 1 A084768 Pn(7)
1 8 16 0 A098430 4n binomial(2n, n)
1 9 20 1 A084769 Pn(9)

Table 1: Generalized Central Trinomial Coefficients
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