Periodicity and Parity Theorems for a Statistic on r-Mino Arrangements

Mark A. Shattuck and Carl G. Wagner
Mathematics Department
University of Tennessee
Knoxville, TN 37996-1300
USA
shattuck@math.utk.edu
wagner@math.utk.edu

Abstract

We study polynomial generalizations of the r-Fibonacci and r-Lucas sequences which arise in connection with a certain statistic on linear and circular r-mino arrangements, respectively. By considering special values of these polynomials, we derive periodicity and parity theorems for this statistic on the respective structures.

1 Introduction

If $r \geqslant 2$, the r-Fibonacci numbers $F_{n}^{(r)}$ are defined by $F_{0}^{(r)}=F_{1}^{(r)}=\cdots=F_{r-1}^{(r)}=1$, with $F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n-r}^{(r)}$ if $n \geqslant r$. The r-Lucas numbers $L_{n}^{(r)}$ are defined by $L_{1}^{(r)}=L_{2}^{(r)}=\cdots=$ $L_{r-1}^{(r)}=1$ and $L_{r}^{(r)}=r+1$, with $L_{n}^{(r)}=L_{n-1}^{(r)}+L_{n-r}^{(r)}$ if $n \geqslant r+1$. If $r=2$, the $F_{n}^{(r)}$ and $L_{n}^{(r)}$ reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrized as in Wilf [12], by $F_{0}=F_{1}=1$, etc., and $L_{1}=1, L_{2}=3$, etc.).

Polynomial generalizations of F_{n} and/or L_{n} have arisen as generating functions for statistics on binary words [1], lattice paths [5], and linear and circular domino arrangements [8]. Generalizations of $F_{n}^{(r)}$ and/or $L_{n}^{(r)}$ have arisen similarly in connection with statistics on Morse code sequences (4] as well as on linear and circular r-mino arrangements (9].

Cigler [3] introduces and studies a new class of q-Fibonacci polynomials, generalizing the classical sequence, which arise in connection with a certain statistic on Morse code sequences in which the dashes have length 2 . The same statistic, which we'll denote by π, applied more generally to linear r-mino arrangements, leads to the polynomial generalization

$$
\begin{equation*}
F_{n}^{(r)}(q, t):=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{\binom{k+1}{2}}\binom{n-(r-1) k}{k}_{q} t^{k} \tag{1.1}
\end{equation*}
$$

of $F_{n}^{(r)}$. A natural extension of this π statistic to circular r-mino arrangements leads to the new polynomial generalization

$$
\begin{equation*}
\left.L_{n}^{(r)}(q, t):=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{(k+1} 2\right)\left[\frac{(r-1) k_{q}+(n-(r-1) k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} t^{k} \tag{1.2}
\end{equation*}
$$

of $L_{n}^{(r)}$.
In addition to deriving the above closed forms for $F_{n}^{(r)}(q, t)$ and $L_{n}^{(r)}(q, t)$, we present both algebraic and combinatorial evaluations of $F_{n}^{(r)}(-1, t)$ and $L_{n}^{(r)}(-1, t)$, as well as determine when the sequences $F_{n}^{(r)}(-1,1)$ and $L_{n}^{(r)}(-1,1)$ are periodic. Our algebraic proofs make frequent use of the identity [11, pp. 201-202]

$$
\begin{equation*}
\sum_{n \geqslant 0}\binom{n}{k}_{q} x^{n}=\frac{x^{k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)}, \quad k \in \mathbb{N} . \tag{1.3}
\end{equation*}
$$

Our combinatorial proofs are based on the fact that $F_{n}^{(r)}(q, t)$ and $L_{n}^{(r)}(q, t)$ are bivariate generating functions for a pair of statistics defined, respectively, on linear and circular arrangements of r-minos. We also describe some variants of the π statistic on circular domino arrangements which lead to additional polynomial generalizations of the Lucas sequence.

In what follows, \mathbb{N} and \mathbb{P} denote, respectively, the nonnegative and positive integers. Empty sums take the value 0 and empty products the value 1 , with $0^{0}:=1$. If q is an indeterminate, then $0_{q}:=0, n_{q}:=1+q+\cdots+q^{n-1}$ for $n \in \mathbb{P}, 0_{q}^{!}:=1, n_{q}^{!}:=1_{q} 2_{q} \cdots n_{q}$ for $n \in \mathbb{P}$, and

$$
\binom{n}{k}_{q}:= \begin{cases}\frac{n_{q}^{!}}{k_{\dot{q}}^{!}(n-k)!}, & \text { if } 0 \leqslant k \leqslant n \tag{1.4}\\ 0, & \text { if } k<0 \text { or } 0 \leqslant n<k\end{cases}
$$

A useful variation of (1.4) is the well known formula [10, p. 29]

$$
\begin{equation*}
\binom{n}{k}_{q}=\sum_{\substack{d_{0}+d_{1}+\cdots+d_{k}=n-k \\ d_{i} \in \mathbb{N}}} q^{0 d_{0}+1 d_{1}+\cdots+k d_{k}}=\sum_{t \geqslant 0} p(k, n-k, t) q^{t} \tag{1.5}
\end{equation*}
$$

where $p(k, n-k, t)$ denotes the number of partitions of the integer t with at most $n-k$ parts, each no larger than k.

2 Linear r-Mino Arrangements

Let $\mathcal{R}_{n, k}^{(r)}$ denote the set of coverings of the numbers $1,2, \ldots, n$ arranged in a row by k indistinguishable r-minos and $n-r k$ indistinguishable squares, where pieces do not overlap, an r-mino, $r \geqslant 2$, is a rectangular piece covering r numbers, and a square is a piece covering
a single number. Each such covering corresponds uniquely to a word in the alphabet $\{r, s\}$ comprising $k r$'s and $n-r k$ s's so that

$$
\begin{equation*}
\left|\mathcal{R}_{n, k}^{(r)}\right|=\binom{n-(r-1) k}{k}, \quad 0 \leqslant k \leqslant\lfloor n / r\rfloor \tag{2.1}
\end{equation*}
$$

for all $n \in \mathbb{P}$. (If we set $\mathcal{R}_{0,0}^{(r)}=\{\emptyset\}$, the "empty covering," then (2.1) holds for $n=0$ as well.) In what follows, we will identify coverings c with such words $c_{1} c_{2} \cdots$ in $\{r, s\}$. With

$$
\begin{equation*}
\mathcal{R}_{n}^{(r)}:=\bigcup_{0 \leqslant k \leqslant\lfloor n / r\rfloor} \mathcal{R}_{n, k}^{(r)}, \quad n \in \mathbb{N}, \tag{2.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left|\mathcal{R}_{n}^{(r)}\right|=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor}\binom{n-(r-1) k}{k}=F_{n}^{(r)} \tag{2.3}
\end{equation*}
$$

where $F_{0}^{(r)}=F_{1}^{(r)}=\cdots=F_{r-1}^{(r)}=1$, with $F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n-r}^{(r)}$ if $n \geqslant r$. Note that

$$
\begin{equation*}
\sum_{n \geqslant 0} F_{n}^{(r)} x^{n}=\frac{1}{1-x-x^{r}} \tag{2.4}
\end{equation*}
$$

Given a covering $c=c_{1} c_{2} \cdots$, let

$$
\begin{equation*}
\pi(c):=\sum_{i: c_{i}=r} i \tag{2.5}
\end{equation*}
$$

note that $\pi(c)$ gives the total resulting when one counts the number of pieces preceding each r-mino, inclusive, and adds up these numbers.

Let

$$
\begin{equation*}
F_{n}^{(r)}(q, t):=\sum_{c \in \mathcal{R}_{n}^{(r)}} q^{\pi(c)} t^{v(c)}, \quad n \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

where $v(c):=$ the number of r-minos in the covering c.
Categorizing linear covers of $1,2, \ldots, n$ according to whether the piece covering n is a square or r-mino yields the recurrence relation

$$
\begin{equation*}
F_{n}^{(r)}(q, t)=F_{n-1}^{(r)}(q, t)+q^{n-r+1} t F_{n-r}^{(r)}\left(q, t / q^{r-1}\right), \quad n \geqslant r, \tag{2.7}
\end{equation*}
$$

with $F_{i}^{(r)}(q, t)=1$ if $0 \leqslant i \leqslant r-1$, since the total number of pieces in $c \in \mathcal{R}_{m}^{(r)}$ is $m-(r-1) v(c)$. Categorizing covers of $1,2, \ldots, n$ according to whether the piece covering 1 is a square or r-mino yields

$$
\begin{equation*}
F_{n}^{(r)}(q, t)=F_{n-1}^{(r)}(q, q t)+q t F_{n-r}^{(r)}(q, q t), \quad n \geqslant r . \tag{2.8}
\end{equation*}
$$

By combining relations (2.7) and (2.8), one gets a recurrence for $F_{n}^{(r)}(q, t)$ for each number q and t. For example when $r=3$, this is

$$
\begin{align*}
F_{n}^{(3)}(q, t)=F_{n-1}^{(3)}(q, t)+q^{n-2} t F_{n-5}^{(3)}(q, t) & +q^{n-3}(1+q) t^{2} F_{n-7}^{(3)}(q, t) \\
& +q^{n-3} t^{3} F_{n-9}^{(3)}(q, t) . \tag{2.9}
\end{align*}
$$

The $F_{n}^{(r)}(q, t)$ have the following explicit formula.

Theorem 2.1. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
F_{n}^{(r)}(q, t)=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{\binom{k+1}{2}}\binom{n-(r-1) k}{k}_{q} t^{k} \tag{2.10}
\end{equation*}
$$

Proof. It clearly suffices to show that

$$
\sum_{c \in \mathcal{R}_{n, k}^{(r)}} q^{\pi(c)}=q^{\left(k_{2}^{k+1}\right)}\binom{n-(r-1) k}{k}_{q} .
$$

Each $c \in \mathcal{R}_{n, k}^{(r)}$ corresponds uniquely to a sequence $\left(d_{0}, d_{1}, \ldots, d_{k}\right)$, where d_{0} is the number of squares following the $k^{\text {th }} r$-mino (counting from left to right) in the covering c, d_{k} is the number of squares preceding the first r-mino, and, for $0<i<k, d_{k-i}$ is the number of squares between the $i^{\text {th }}$ and $(i+1)^{s t} r$-mino. Then $\pi(c)=\left(d_{k}+1\right)+\left(d_{k}+d_{k-1}+2\right)+\cdots+$ $\left(d_{k}+d_{k-1}+\cdots+d_{1}+k\right)=\binom{k+1}{2}+k d_{k}+(k-1) d_{k-1}+\cdots+1 d_{1}$ so that

$$
\begin{aligned}
\sum_{c \in \mathcal{R}_{n, k}^{(r)}} q^{\pi(c)} & =q^{\binom{k+1}{2}} \sum_{d_{0}+d_{1}+\cdots+d_{k}=n-r k}^{d_{i} \in \mathbb{N}} \\
& q^{0 d_{0}+1 d_{1}+\cdots+k d_{k}} \\
& =q^{\binom{k+1}{2}}\binom{n-(r-1) k}{k}_{q},
\end{aligned}
$$

by (1.5).
Theorem 2.2. The ordinary generating function of the sequence $\left(F_{n}^{(r)}(q, t)\right)_{n \geqslant 0}$ is given by

$$
\begin{equation*}
\sum_{n \geqslant 0} F_{n}^{(r)}(q, t) x^{n}=\sum_{k \geqslant 0} \frac{q^{\binom{k+1}{2}} t^{k} x^{r k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)} . \tag{2.11}
\end{equation*}
$$

Proof. By (2.10) and (1.3),

$$
\begin{aligned}
\sum_{n \geqslant 0} F_{n}^{(r)}(q, t) x^{n} & =\sum_{n \geqslant 0}\left(\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{\binom{k+1}{2}}\binom{n-(r-1) k}{k}_{q} t^{k}\right)^{n} \\
& =\sum_{k \geqslant 0} q^{\binom{k+1}{2}} t^{k} x^{(r-1) k} \sum_{n \geqslant k r}\binom{n-(r-1) k}{k}_{q} x^{n-(r-1) k} \\
& =\sum_{k \geqslant 0} q^{\binom{k+1}{2}} t^{k} x^{(r-1) k} \cdot \frac{x^{k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)}
\end{aligned}
$$

Note that $F_{n}^{(r)}(1,1)=F_{n}^{(r)}$, whence (2.11) generalizes (2.4). Setting $q=1$ and $q=-1$ in (2.11) yields

Corollary 2.2.1. The ordinary generating function of the sequence $\left(F_{n}^{(r)}(1, t)\right)_{n \geqslant 0}$ is given by

$$
\begin{equation*}
\sum_{n \geqslant 0} F_{n}^{(r)}(1, t) x^{n}=\frac{1}{1-x-t x^{r}} \tag{2.12}
\end{equation*}
$$

and
Corollary 2.2.2. The ordinary generating function of the sequence $\left(F_{n}^{(r)}(-1, t)\right)_{n \geqslant 0}$ is given by

$$
\begin{equation*}
\sum_{n \geqslant 0} F_{n}^{(r)}(-1, t) x^{n}=\frac{1+x-t x^{r}}{1-x^{2}+t^{2} x^{2 r}} \tag{2.13}
\end{equation*}
$$

When $r=2$ and $t=1$ in (2.13), we get

$$
\begin{equation*}
\sum_{n \geqslant 0} F_{n}^{(2)}(-1,1) x^{n}=\frac{1+x-x^{2}}{1-x^{2}+x^{4}}=\frac{\left(1+x+x^{3}-x^{4}\right)\left(1-x^{6}\right)}{1-x^{12}} \tag{2.14}
\end{equation*}
$$

which implies
Corollary 2.2.3. The sequence $\left(F_{n}^{(2)}(-1,1)\right)_{n \geqslant 0}$ is periodic with period 12 ; namely, if $a_{n}:=F_{n}^{(2)}(-1,1)$ for $n \geqslant 0$, then $a_{0}=1, a_{1}=1, a_{2}=0, a_{3}=1, a_{4}=-1$, and $a_{5}=0$ with $a_{n+6}=-a_{n}, n \geqslant 0$.
(We call a sequence $\left(b_{n}\right)_{n \geqslant 0}$ periodic with period d if $b_{n+d}=b_{n}$ for all $n \geqslant m$ for some $m \in \mathbb{N}$.) Remark. Corollary 2.2.3 is the $q=-1$ case of the well known formula

$$
\sum_{0 \leqslant k \leqslant\lfloor n / 2\rfloor}(-1)^{k} q^{\binom{k}{2}}\binom{n-k}{k}_{q}= \begin{cases}(-1)^{\lfloor n / 3\rfloor} q^{n(n-1) / 6}, & \text { if } n \equiv 0,1(\bmod 3) ; \\ 0, & \text { if } n \equiv 2(\bmod 3) .\end{cases}
$$

See, e.g., Cigler [5], Ekhad and Zeilberger [6], and Kupershmidt [7].
We now show that the periodic behavior of $F_{n}^{(r)}(-1,1)$ seen when $r=2$ is restricted to that case. The following lemma is established in (9). We include its proof here for completeness.

Lemma 2.3. If $r \geqslant 3$, then $g_{r}(x):=1-x+x^{r}$ does not divide any polynomial of the form $1-x^{m}$, where $m \in \mathbb{P}$.

Proof. We first describe the roots of unity that are zeros of $g_{r}(x)$, where $r \geqslant 2$. If z is such a root of unity, let $y=z^{r-1}$. Since $z\left(1-z^{r-1}\right)=1$ and z is a root of unity, it follows that both y
and $1-y$ are roots of unity. In particular, $|y|=|1-y|=1$. Therefore, $1-2 \operatorname{Re}(y)+|y|^{2}=1$, so $\operatorname{Re}(y)=\frac{1}{2}$. This forces y, and hence $1-y$, to be primitive $6^{t h}$ roots of unity. But $1-y=\frac{1}{z}$, so z is also a primitive $6^{\text {th }}$ root of unity.

This implies that the only possible roots of unity which are zeros of g_{r} are the primitive $6^{t h}$ roots of unity. Since the derivative of g_{r} has no roots of unity as zeros, these $6^{t h}$ roots of unity can only be simple zeros of g_{r}. In particular, if every root of g_{r} is a root of unity, then $r=2$.

Theorem 2.4. The sequence $\left(F_{n}^{(r)}(-1,1)\right)_{n \geqslant 0}$ is never periodic for $r \geqslant 3$.
Proof. By (2.13) at $t=1$, we must show that $1-x^{2}+x^{2 r}$ does not divide the product $\left(1-x^{m}\right)\left(1+x-x^{r}\right)$ for any $m \in \mathbb{P}$ whenever $r \geqslant 3$. First note that the polynomials $1-x^{2}+x^{2 r}$ and $1+x-x^{r}$ cannot share a zero; for if t_{0} is a common zero, then $t_{0}^{2}-1=t_{0}^{2 r}=\left(t_{0}+1\right)^{2}$, i.e, $t_{0}=-1$, which isn't a zero of either polynomial. Observe next that $1-x^{2}+x^{2 r}=g_{r}\left(x^{2}\right)$, where $g_{r}(x)$ is as in Lemma 2.3, so that $1-x^{2}+x^{2 r}$ fails to divide $1-x^{m}$ for any $m \in \mathbb{P}$, since $g_{r}(x)$ fails to, which completes the proof.

Iterating (2.7) or (2.8) yields $F_{-i}^{(r)}(q, t)=0$ if $1 \leqslant i \leqslant r-1$, which we'll take as a convention.

Theorem 2.5. Let $m \in \mathbb{N}$. If m and r have the same parity, then

$$
\begin{equation*}
F_{m}^{(r)}(-1, t)=F_{\lfloor m / 2\rfloor}^{(r)}\left(1,-t^{2}\right)-t F_{(m-r) / 2}^{(r)}\left(1,-t^{2}\right), \tag{2.15}
\end{equation*}
$$

and if m and r have different parity, then

$$
\begin{equation*}
F_{m}^{(r)}(-1, t)=F_{\lfloor m / 2\rfloor}^{(r)}\left(1,-t^{2}\right) . \tag{2.16}
\end{equation*}
$$

Proof. Taking the even and odd parts of both sides of (2.13) followed by replacing x with $x^{1 / 2}$ yields

$$
\sum_{n \geqslant 0} F_{2 n}^{(r)}(-1, t) x^{n}=\frac{1-t x^{r / 2}}{1-x+t^{2} x^{r}}
$$

and

$$
\sum_{n \geqslant 0} F_{2 n+1}^{(r)}(-1, t) x^{n}=\frac{1}{1-x+t^{2} x^{r}}
$$

when r is even, and

$$
\sum_{n \geqslant 0} F_{2 n}^{(r)}(-1, t) x^{n}=\frac{1}{1-x+t^{2} x^{r}}
$$

and

$$
\sum_{n \geqslant 0} F_{2 n+1}^{(r)}(-1, t) x^{n}=\frac{1-t x^{(r-1) / 2}}{1-x+t^{2} x^{r}}
$$

when r is odd, from which (2.15) and (2.16) now follow from (2.12) upon putting together cases.

For a combinatorial proof of (2.15) and (2.16), we first assign to each r-mino arrangement $c \in \mathcal{R}_{m}^{(r)}$ the weight $w_{c}:=(-1)^{\pi(c)} t^{v(c)}$, where t is an indeterminate. Let $\mathcal{R}_{m}^{(r)^{\prime}}$ consist of those $c=c_{1} c_{2} \cdots$ in $\mathcal{R}_{m}^{(r)}$ satisfying the conditions $c_{2 i-1}=c_{2 i}, i \geqslant 1$. Suppose $c \in \mathcal{R}_{m}^{(r)}-\mathcal{R}_{m}^{(r))^{\prime}}$, with i_{0} being the smallest value of i for which $c_{2 i-1} \neq c_{2 i}$. Exchanging the positions of the $\left(2 i_{0}-1\right)^{s t}$ and $\left(2 i_{0}\right)^{t h}$ pieces within c produces a π-parity changing involution of $\mathcal{R}_{m}^{(r)}-\mathcal{R}_{m}^{(r)^{\prime}}$ which preserves v.

If m and r have the same parity, then

$$
\begin{aligned}
F_{m}^{(r)}(-1, t) & =\sum_{\substack{c \in \mathcal{R}_{m}^{(r)}}} w_{c}=\sum_{c \in \mathcal{R}_{m}^{(r))^{\prime}}} w_{c}=\sum_{\substack{c \in \mathcal{R}_{m}^{(r)^{\prime}} \\
v(c) \text { even }}} w_{c}+\sum_{\substack{c \in \mathcal{R}_{m}^{(r)^{\prime}} \\
v(c) \text { odd }\\
}} w_{c} \\
& =\sum_{\substack{c \in \mathcal{R}_{l}^{(r)^{\prime}} \\
v(c) \text { even }}}(-1)^{v(c) / 2} t^{v(c)}-t \sum_{\substack{c \in \mathcal{R}_{m}^{(r)^{\prime}} \\
v(c) \text { even }}}(-1)^{v(c) / 2} t^{v(c)} \\
& =\sum_{z \in \mathcal{R}_{\lfloor m / 2\rfloor}^{(r)}}(-1)^{v(z)} t^{2 v(z)}-t \sum_{z \in \mathcal{R}_{(m-r) / 2}^{(r)}}(-1)^{v(z)} t^{2 v(z)} \\
& =F_{\lfloor m / 2\rfloor}^{(r)}\left(1,-t^{2}\right)-t F_{(m-r) / 2}^{(r)}\left(1,-t^{2}\right),
\end{aligned}
$$

which gives (2.15), since each pair of consecutive r-minos in $c \in \mathcal{R}_{m}^{(r)^{\prime}}$ contributes a factor of -1 towards the $\operatorname{sign}(-1)^{\pi(c)}$ and since members of $\mathcal{R}_{m}^{(r)^{\prime}}$ for which $v(c)$ is odd end in a single r-mino. If m and r differ in parity, then

$$
F_{m}^{(r)}(-1, t)=\sum_{c \in \mathcal{R}_{m}^{(r)}} w_{c}=\sum_{c \in \mathcal{R}_{m}^{(r)^{\prime}}} w_{c}=\sum_{z \in \mathcal{R}_{\lfloor m / 2\rfloor}^{(r)}}(-1)^{v(z)} t^{2 v(z)}=F_{\lfloor m / 2\rfloor}^{(r)}\left(1,-t^{2}\right),
$$

which gives (2.16), since members of $\mathcal{R}_{m}^{(r)^{\prime}}$ must contain an even number of r-minos.
The involution of the previous theorem in the case $r=2$ can be extended to account for the periodicity in Corollary 2.2 .3 as follows. If $n \geqslant 6$, let $\mathcal{R}_{n}^{(2) *} \subseteq \mathcal{R}_{n}^{(2)^{\prime}}$ consist of those domino arrangements $c=c_{1} c_{2} \cdots$ that contain at least $4\lfloor n / 6\rfloor$ pieces satisfying the conditions

$$
\begin{equation*}
c_{4 i-3} c_{4 i-2} c_{4 i-1} c_{4 i}=s s d d, \quad 1 \leqslant i \leqslant\lfloor n / 6\rfloor ; \tag{2.17}
\end{equation*}
$$

if $0 \leqslant n \leqslant 5$, then let $\mathcal{R}_{n}^{(2) *}=\mathcal{R}_{n}^{(2)^{\prime}}$.
A π-parity changing involution of $\mathcal{R}_{n}^{(2)^{\prime}}-\mathcal{R}_{n}^{(2) *}$ when $n \geqslant 6$ is given by the pairing

$$
(s s d d)^{k} s s s s u \longleftrightarrow(s s d d)^{k} d d u
$$

where $k \geqslant 0$ and u is some (non-empty) word in $\{d, s\}$. If $n=6 m+i$, where $m \geqslant 1$ and $0 \leqslant i \leqslant 5$, then

$$
\begin{aligned}
F_{n}^{(2)}(-1,1) & =\sum_{c \in \mathcal{R}_{n}^{(2)}}(-1)^{\pi(c)}=\sum_{c \in \mathcal{R}_{n}^{(2){ }^{\prime}}}(-1)^{\pi(c)}=\sum_{c \in \mathcal{R}_{n}^{(2) *}}(-1)^{\pi(c)} \\
& =(-1)^{m} \sum_{c \in \mathcal{R}_{i}^{(2) *}}(-1)^{\pi(c)}=(-1)^{m} F_{i}^{(2)}(-1,1),
\end{aligned}
$$

which implies Corollary 2.2.3, upon checking directly the cases $0 \leqslant n \leqslant 5$, as each ssdd unit in $c \in \mathcal{R}_{n}^{(2) *}$ contributes a factor of -1 towards the sign $(-1)^{\pi(c)}$.

3 Circular r-Mino Arrangements

If $n \in \mathbb{P}$ and $0 \leqslant k \leqslant\lfloor n / r\rfloor$, let $\mathcal{C}_{n, k}^{(r)}$ denote the set of coverings by $k r$-minos and $n-r k$ squares of the numbers $1,2, \ldots, n$ arranged clockwise around a circle:

By the initial segment of an r-mino occurring in such a cover, we mean the segment first encountered as the circle is traversed clockwise. Classifying members of $\mathcal{C}_{n, k}^{(r)}$ according as (i) 1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and applying (2.1), yields

$$
\begin{align*}
\left|\mathcal{C}_{n, k}^{(r)}\right| & =r\binom{n-(r-1) k-1}{k-1}+\binom{n-(r-1) k-1}{k} \\
& =\frac{n}{n-(r-1) k}\binom{n-(r-1) k}{k}, \quad 0 \leqslant k \leqslant\lfloor n / r\rfloor . \tag{3.1}
\end{align*}
$$

Below we illustrate two members of $\mathcal{C}_{4,1}^{(3)}$:
(i)

(ii)

In covering (i), the initial segment of the 3-mino covers 1, and in covering (ii), the initial segment covers 3 .

With

$$
\begin{equation*}
\mathcal{C}_{n}^{(r)}:=\bigcup_{0 \leqslant k \leqslant\lfloor n / r\rfloor} \mathcal{C}_{n, k}^{(r)}, \quad n \in \mathbb{P}, \tag{3.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left|\mathcal{C}_{n}^{(r)}\right|=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} \frac{n}{n-(r-1) k}\binom{n-(r-1) k}{k}=L_{n}^{(r)}, \tag{3.3}
\end{equation*}
$$

where $L_{1}^{(r)}=L_{2}^{(r)}=\cdots=L_{r-1}^{(r)}=1, L_{r}^{(r)}=r+1$, and $L_{n}^{(r)}=L_{n-1}^{(r)}+L_{n-r}^{(r)}$ if $n \geqslant r+1$. Note that

$$
\begin{equation*}
\sum_{n \geqslant 1} L_{n}^{(r)} x^{n}=\frac{x+r x^{r}}{1-x-x^{r}} \tag{3.4}
\end{equation*}
$$

We'll associate to each $c \in \mathcal{C}_{n}^{(r)}$ a word $u_{c}=u_{1} u_{2} \cdots$ in the alphabet $\{r, s\}$, where

$$
u_{i}:= \begin{cases}r, & \text { if the } i^{\text {th }} \text { piece of } c \text { is an } r \text {-mino } \\ s, & \text { if the } i^{\text {th }} \text { piece of } c \text { is a square }\end{cases}
$$

and one determines the $i^{t h}$ piece of c by starting with the piece covering 1 and proceeding clockwise from that piece. Note that for each word starting with r, there are exactly r associated members of $\mathcal{C}_{n}^{(r)}$, while for each word starting with s, there is only one associated member.

Given $c \in \mathcal{C}_{n}^{(r)}$ and its associated word $u_{c}=u_{1} u_{2} \cdots$, let

$$
\begin{equation*}
\pi(c):=\sum_{i: u_{i}=r} i \tag{3.5}
\end{equation*}
$$

note that $\pi(c)$ gives the sum of the numbers gotten by counting the number of pieces preceding each r-mino, inclusive (counting back each time counterclockwise to the piece covering 1).

Let

$$
\begin{equation*}
L_{n}^{(r)}(q, t):=\sum_{c \in \mathcal{C}_{n}^{(r)}} q^{\pi(c)} t^{v(c)}, \quad n \in \mathbb{P} \tag{3.6}
\end{equation*}
$$

where $v(c):=$ the number of r-minos in the covering c.
Categorizing circular covers c of $1,2, \ldots, n$ according to whether the last letter in u_{c} is an s or r yields the recurrence relation

$$
\begin{equation*}
L_{n}^{(r)}(q, t)=L_{n-1}^{(r)}(q, t)+q^{n-r+1} t L_{n-r}^{(r)}\left(q, t / q^{r-1}\right), \quad n \geqslant r+1, \tag{3.7}
\end{equation*}
$$

with $L_{i}^{(r)}(q, t)=1$ if $1 \leqslant i \leqslant r-1$ and $L_{r}^{(r)}(q, t)=1+r q t$, as seen upon removing the final piece of c, sliding the remaining pieces together to form a circle, and renumbering (if necessary) so that 1 corresponds to the same position as before. The $L_{n}^{(r)}(q, t)$, though, do not seem to satisfy a recurrence like (2.8). The following theorem gives an explicit formula for $L_{n}^{(r)}(q, t)$.
Theorem 3.1. For all $n \in \mathbb{P}$,

$$
\begin{equation*}
L_{n}^{(r)}(q, t)=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{\binom{k+1}{2}}\left[\frac{(r-1) k_{q}+(n-(r-1) k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} t^{k} . \tag{3.8}
\end{equation*}
$$

Proof. It suffices to show that

$$
\left.\sum_{c \in \mathcal{C}_{n, k}^{(r)}} q^{\pi(c)}=q^{(k+1} 2\right)\left[\frac{(r-1) k_{q}+(n-(r-1) k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q}
$$

Partitioning $\mathcal{C}_{n, k}^{(r)}$ into the categories employed above in deriving (3.1), and applying ((2.10), yields

$$
\begin{align*}
\sum_{c \in \mathcal{C}_{n, k}^{(r)}} q^{\pi(c)}= & r q^{k-1+1} \cdot q^{\binom{k}{2}}\binom{n-(r-1) k-1}{k-1}_{q} \\
& +q^{k} \cdot q^{\binom{k+1}{2}}\binom{n-(r-1) k-1}{k}_{q} \tag{3.9}\\
= & q^{\binom{k+1}{2}}\left[\frac{r k_{q}+q^{k}(n-r k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} \\
= & q^{\binom{k+1}{2}}\left[\frac{(r-1) k_{q}+(n-(r-1) k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q}
\end{align*}
$$

which completes the proof.
Note that $L_{n}^{(r)}(1,1)=L_{n}^{(r)}$. By (3.8) and (2.10), the $L_{n}^{(r)}(q, t)$ are related to the $F_{n}^{(r)}(q, t)$ by the formula

$$
\begin{equation*}
L_{n}^{(r)}(q, t)=F_{n}^{(r)}(q, t)+(r-1) q t F_{n-r}^{(r)}(q, q t), \quad n \geqslant 1 \tag{3.10}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
L_{n}^{(r)}=F_{n}^{(r)}+(r-1) F_{n-r}^{(r)}, \quad n \geqslant 1 \tag{3.11}
\end{equation*}
$$

when $q=t=1$. Formula (3.10) can also be realized by considering the way in which 1 is covered in $c \in \mathcal{C}_{n}^{(r)}$, the first term representing those c for which 1 is covered by a square or an initial segment of an r-mino and the second term representing the remaining $r-1$ possibilities.

Theorem 3.2. The ordinary generating function of the sequence $\left(L_{n}^{(r)}(q, t)\right)_{n \geqslant 1}$ is given by

$$
\begin{equation*}
\sum_{n \geqslant 1} L_{n}^{(r)}(q, t) x^{n}=\frac{x}{1-x}+\sum_{k \geqslant 1} \frac{q^{\binom{k+1}{2}} t^{k} x^{r k}\left[r-(r-1) q^{k} x\right]}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)} . \tag{3.12}
\end{equation*}
$$

Proof. From (3.9),

$$
\begin{aligned}
\sum_{n \geqslant 1} L_{n}^{(r)}(q, t) x^{n}= & \sum_{n \geqslant 1} x^{n} \sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor}\left(q^{k+\binom{k+1}{2}} t^{k}\binom{n-(r-1) k-1}{k}_{q}\right. \\
& +r q^{\binom{k+1}{2}} t^{k}\left(\begin{array}{c}
\left.n-\binom{r-1) k-1}{k-1}_{q}\right) \\
=
\end{array} \frac{x}{1-x}+\sum_{k \geqslant 1} q^{k+\binom{k+1}{2}} t^{k} \sum_{n \geqslant r k+1}\binom{n-(r-1) k-1}{k}_{q} x^{n}\right. \\
& +r \sum_{k \geqslant 1} q^{\binom{k+1}{2}} t^{k} \sum_{n \geqslant r k}\binom{n-(r-1) k-1}{k-1}_{q} x^{n} \\
= & \frac{x}{1-x}+\sum_{k \geqslant 1} q^{k+\binom{k+1}{2}} t^{k} x^{(r-1) k+1} \cdot \frac{x^{k-1}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)} \\
& +r \sum_{k \geqslant 1} q^{\binom{k+1}{2}} t^{k} x^{(r-1) k+1} \cdot \frac{x^{k}}{(1-x)(1-q x) \cdots\left(1-q^{k-1} x\right)} \\
= & \frac{x}{1-x}+\sum_{k \geqslant 1} q^{\binom{k+1}{2}} t^{k} \cdot \frac{x^{r k}\left[q^{k} x+r\left(1-q^{k} x\right)\right]}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)},
\end{aligned}
$$

by (1.3).
Note that (3.12) reduces to (3.4) when $q=t=1$. Setting $q=1$ and $q=-1$ in (3.12) yields

Corollary 3.2.1. The ordinary generating function of the sequence $\left(L_{n}^{(r)}(1, t)\right)_{n \geqslant 1}$ is given by

$$
\begin{equation*}
\sum_{n \geqslant 1} L_{n}^{(r)}(1, t) x^{n}=\frac{x+r t x^{r}}{1-x-t x^{r}} \tag{3.13}
\end{equation*}
$$

and
Corollary 3.2.2. The ordinary generating function of the sequence $\left(L_{n}^{(r)}(-1, t)\right)_{n \geqslant 1}$ is given by

$$
\begin{equation*}
\sum_{n \geqslant 1} L_{n}^{(r)}(-1, t) x^{n}=\frac{x+x^{2}-r t x^{r}-(r-1) t x^{r+1}-r t^{2} x^{2 r}}{1-x^{2}+t^{2} x^{2 r}} \tag{3.14}
\end{equation*}
$$

When $r=2$ and $t=1$ in (3.14), we get

$$
\begin{equation*}
\sum_{n \geqslant 1} L_{n}^{(2)}(-1,1) x^{n}=\frac{x-x^{2}-x^{3}-2 x^{4}}{1-x^{2}+x^{4}}=\frac{\left(x-x^{2}-3 x^{4}-x^{5}-2 x^{6}\right)\left(1-x^{6}\right)}{1-x^{12}} \tag{3.15}
\end{equation*}
$$

which implies

Corollary 3.2.3. The sequence $\left(L_{n}^{(2)}(-1,1)\right)_{n \geqslant 1}$ is periodic with period 12 ; namely, if $a_{n}:=$ $L_{n}^{(2)}(-1,1)$ for $n \geqslant 1$, then $a_{1}=1, a_{2}=-1, a_{3}=0, a_{4}=-3, a_{5}=-1$, and $a_{6}=-2$ with $a_{n+6}=-a_{n}, n \geqslant 1$.

This periodic behavior is again restricted to the case $r=2$.
Theorem 3.3. The sequence $\left(L_{n}^{(r)}(-1,1)\right)_{n \geqslant 1}$ is never periodic for $r \geqslant 3$.
Proof. By (3.14) at $t=1$, we must show that $f(x):=1-x^{2}+x^{2 r}$ does not divide the product $\left(1-x^{m}\right) h(x)$, where $h(x):=x+x^{2}-r x^{r}-(r-1) x^{r+1}-r x^{2 r}$, for any $m \in \mathbb{P}$ whenever $r \geqslant 3$. By the proof of Theorem 2.4, it suffices to show that f and h are relatively prime. Suppose, to the contrary, that t_{0} is a common zero of f and h so that $t_{0}\left(1+t_{0}\right)+r\left(1-t_{0}^{2}\right)=t_{0}\left(1+t_{0}\right)-r t_{0}^{2 r}=$ $t_{0}^{r}\left[r+(r-1) t_{0}\right]$. Squaring, substituting $t_{0}^{2 r}=t_{0}^{2}-1$, and noting $t_{0} \neq-1$ implies that t_{0} must then be a root of the equation $(x+1)[(r-1) x-r]^{2}=(x-1)[(r-1) x+r]^{2}$, which reduces to $\left(r^{2}-1\right) x^{2}=r^{2}$. But $t_{0}= \pm \frac{r}{\sqrt{r^{2}-1}}$ is a zero of neither f nor h after all, which implies f and h are relatively prime and completes the proof.

Recall that $F_{-i}^{(r)}(q, t)=0$ if $1 \leqslant i \leqslant r-1$, by convention.
Theorem 3.4. Let $m \in \mathbb{P}$. If r is even, then

$$
\begin{equation*}
L_{2 m}^{(r)}(-1, t)=L_{m}^{(r)}\left(1,-t^{2}\right)-r t F_{m-\frac{r}{2}}^{(r)}\left(1,-t^{2}\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2 m-1}^{(r)}(-1, t)=F_{m-1}^{(r)}\left(1,-t^{2}\right)-(r-1) t F_{m-\frac{r}{2}-1}^{(r)}\left(1,-t^{2}\right) \tag{3.17}
\end{equation*}
$$

and if r is odd, then

$$
\begin{equation*}
L_{2 m}^{(r)}(-1, t)=L_{m}^{(r)}\left(1,-t^{2}\right)-(r-1) t F_{m-\left(\frac{r+1}{2}\right)}^{(r)}\left(1,-t^{2}\right) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2 m-1}^{(r)}(-1, t)=F_{m-1}^{(r)}\left(1,-t^{2}\right)-r t F_{m-\left(\frac{r+1}{2}\right)}^{(r)}\left(1,-t^{2}\right) \tag{3.19}
\end{equation*}
$$

Proof. Taking the even and odd parts of both sides of (3.14) followed by replacing x with $x^{1 / 2}$ yields

$$
\sum_{m \geqslant 1} L_{2 m}^{(r)}(-1, t) x^{m}=\frac{x-r t x^{\frac{r}{2}}-r t^{2} x^{r}}{1-x+t^{2} x^{r}}
$$

and

$$
\sum_{m \geqslant 1} L_{2 m-1}^{(r)}(-1, t) x^{m}=\frac{x-(r-1) t x^{\frac{r}{2}+1}}{1-x+t^{2} x^{r}}
$$

when r is even, and

$$
\sum_{m \geqslant 1} L_{2 m}^{(r)}(-1, t) x^{m}=\frac{x-(r-1) t x^{\frac{(r+1)}{2}}-r t^{2} x^{r}}{1-x+t^{2} x^{r}}
$$

and

$$
\sum_{m \geqslant 1} L_{2 m-1}^{(r)}(-1, t) x^{m}=\frac{x-r t x^{\frac{(r+1)}{2}}}{1-x+t^{2} x^{r}}
$$

when r is odd, from which (3.16) -(3.19) now follow from (3.13) and (2.12).
For a combinatorial proof of (3.16)-(3.19), we first assign to each covering $c \in \mathcal{C}_{n}^{(r)}$ the weight $w_{c}:=(-1)^{\pi(c)} t^{v(c)}$, where t is an indeterminate. Let $\mathcal{C}_{n}^{(r)^{\prime}}$ consist of those c in $\mathcal{C}_{n}^{(r)}$ whose associated word $u_{c}=u_{1} u_{2} \cdots$ satisfies the conditions $u_{2 i}=u_{2 i+1}, i \geqslant 1$. Suppose $c \in \mathcal{C}_{n}^{(r)}-\mathcal{C}_{n}^{(r)^{\prime}}$, with i_{0} being the smallest value of i for which $u_{2 i} \neq u_{2 i+1}$. Exchanging the positions of the $\left(2 i_{0}\right)^{t h}$ and $\left(2 i_{0}+1\right)^{s t}$ pieces within c produces a π-parity changing, v-preserving involution of $\mathcal{C}_{n}^{(r)}-\mathcal{C}_{n}^{(r)^{\prime}}$.

If r is even and $n=2 m$, then

$$
\begin{aligned}
L_{2 m}^{(r)}(-1, t) & =\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r)}}} w_{c}=\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r)^{\prime}}}} w_{c}=\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r)^{\prime}} \\
v(c) \text { even }}} w_{c}+\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r)^{\prime}} \\
v(c) \text { odd }}} w_{c} \\
& =\sum_{\substack{c \mathcal{C}_{2 m}^{(r)^{\prime}} \\
v(c) \text { even }}}(-1)^{v(c) / 2} t^{v(c)}-r t \sum_{\substack{c \in \mathcal{R}_{2 m-r}^{(r)^{\prime}} \\
v(c) \text { even }}}(-1)^{v(c) / 2} t^{v(c)} \\
& =\sum_{z \in \mathcal{C}_{m}^{(r)}}(-1)^{v(z)} t^{2 v(z)}-r t \sum_{z \in \mathcal{R}_{m-\frac{r}{2}}^{(r)}}(-1)^{v(z)} t^{2 v(z)} \\
& =L_{m}^{(r)}\left(1,-t^{2}\right)-r t F_{m-\frac{r}{2}}^{(r)}\left(1,-t^{2}\right),
\end{aligned}
$$

which gives (3.16), where $\mathcal{R}_{n}^{(r)^{\prime}}$ is as in the proof of Theorem 2.5, since members of $\mathcal{C}_{2 m}^{(r)^{\prime}}$ with $v(c)$ even must begin and end with the same type of piece, while members with $v(c)$ odd must have $u_{1}=r$ in u_{c} with r possibilities for the position of its initial segment. Similarly, if r is odd and $n=2 m-1$, then

$$
\begin{aligned}
L_{2 m-1}^{(r)}(-1, t) & =\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r)^{\prime}}}} w_{c}=\sum_{\substack{c \in \mathcal{L}_{2 m-1}^{(r)^{\prime}} \\
u_{1}=s}} w_{c}+\sum_{\substack{c \in \mathcal{L}_{2 m}^{(r)^{\prime}} \\
u_{1}=r}} w_{c} \\
& =\sum_{c \in \mathcal{R}_{2 m-2}^{(r)^{\prime}}} w_{c}-r t \sum_{\substack{c \in \mathcal{R}_{2 m-r-1}^{(r) \prime^{\prime}}}} w_{c} \\
& =F_{m-1}^{(r)}\left(1,-t^{2}\right)-r t F_{m-\left(\frac{r+1}{2}\right)}^{(r)}\left(1,-t^{2}\right),
\end{aligned}
$$

which gives (3.19).
For the cases that remain, let $\mathcal{C}_{n}^{(r)^{*}} \subseteq \mathcal{C}_{n}^{(r)^{\prime}}$ such that $\mathcal{C}_{n}^{(r)^{\prime}}-\mathcal{C}_{n}^{(r)^{*}}$ comprises those c which satisfy the following additional conditions:
(i) c contains an even number of pieces in all;
(ii) $u_{1} \neq u_{p}$ in $u_{c}=u_{1} u_{2} \cdots u_{p}$;
(iii) if $u_{1}=r$, then 1 corresponds to the initial segment of the r-mino covering it.

Pair members of $\mathcal{C}_{n}^{(r)^{\prime}}-\mathcal{C}_{n}^{(r)^{*}}$ of opposite π-parity as follows: given $c \in \mathcal{C}_{n}^{(r)^{\prime}}-\mathcal{C}_{n}^{(r)^{*}}$, let c^{\prime} be the covering resulting when $u_{c}=u_{1} u_{2} \cdots u_{p}$ is read backwards.

If r is even and $n=2 m-1$, then

$$
\begin{aligned}
L_{2 m-1}^{(r)}(-1, t) & =\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r)}}} w_{c}=\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r)^{*}}}} w_{c}=\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r)^{*}} \\
u_{1}=s}} w_{c}+\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r)^{*}} \\
u_{1}=r}} w_{c} \\
& =\sum_{\substack{c \in \mathcal{R}_{2 m-2}^{(r)^{\prime}} \\
v(c) \text { even }}} w_{c}-(r-1) t \sum_{\substack{c \in \mathcal{R}_{2 m-r-2}^{(r)} \\
v(c) \text { even }}} w_{c} \\
& =F_{m-1}^{(r)}\left(1,-t^{2}\right)-(r-1) t F_{m-\frac{r}{2}-1}^{(r)}\left(1,-t^{2}\right),
\end{aligned}
$$

which gives (3.17), since members of $\mathcal{C}_{2 m-1}^{(r)^{*}}$ with $u_{1}=s$ must end in a double letter, while those with $u_{1}=r$ must end in a single s with 1 not corresponding to the initial segment of the r-mino covering it. Similarly, if r is odd and $n=2 m$, then

$$
\begin{aligned}
L_{2 m}^{(r)}(-1, t) & =\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r)^{*}}}} w_{c}=\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r)^{*}} \\
u_{1}=u_{p}}} w_{c}+\sum_{\substack{c \in \mathcal{C}_{2 m}^{(r) *} \\
u_{1} \neq u_{p}}} w_{c} \\
& =\sum_{\substack{c \in \mathcal{C}_{2}^{(r)^{*}} \\
u_{1}=u_{p}}}(-1)^{v(c) / 2} t^{v(c)}-(r-1) t \sum_{\substack{c \in \mathcal{R}_{2 m-r-1}^{(r)^{\prime}}}}(-1)^{v(c) / 2} t^{v(c)} \\
& =\sum_{z \in \mathcal{C}_{m}^{(r)}}(-1)^{v(z)} t^{2 v(z)}-(r-1) t \sum_{\substack{z \in \mathcal{R}^{(r)} \\
m-\left(\frac{r+1}{2}\right)}}(-1)^{v(z)} t^{2 v(z)} \\
& =L_{m}^{(r)}\left(1,-t^{2}\right)-(r-1) t F_{m-\left(\frac{r+1}{2}\right)}^{(r)}\left(1,-t^{2}\right),
\end{aligned}
$$

which gives (3.18).

4 Variants of the π Statistic

Modifying the π statistic of the previous section in different ways yields additional polynomial generalizations of $L_{n}^{(r)}$. In this section, we look at some specific variants of the π statistic on circular r-mino arrangements, taking $r=2$ for simplicity. We'll use the notation $\mathcal{C}_{n}=\mathcal{C}_{n}^{(2)}$, $\mathcal{C}_{n, k}=\mathcal{C}_{n, k}^{(2)}$, and $F_{n}(q, t)=F_{n}^{(2)}(q, t)$.

We first partition \mathcal{C}_{n} as follows: let $\overrightarrow{\mathcal{C}}_{n}$ comprise those coverings in which 1 is covered by a square or by an initial segment of a domino and let $\overleftarrow{\mathcal{C}}_{n}$ comprise those coverings in which 1 is covered by the second segment of a domino.

Define the statistic π_{1} on \mathcal{C}_{n} by

$$
\pi_{1}(c)= \begin{cases}\pi(c), & \text { if } c \in \widehat{\mathcal{C}}_{n} \tag{4.1}\\ \pi(c)-2 v(c)+n, & \text { if } c \in \overleftarrow{\mathcal{C}}_{n}\end{cases}
$$

Note that $\pi_{1}(c)$ gives the sum of the numbers obtained by counting back counterclockwise the pieces from each domino to the piece covering 2 whenever $c \in \overleftarrow{\mathcal{C}}_{n}$.
Theorem 4.1. For all $n \in \mathbb{P}$,

$$
\begin{equation*}
\sum_{c \in \mathcal{C}_{n}} q^{\pi_{1}(c)} t^{v(c)}=\sum_{0 \leqslant k \leqslant\lfloor n / 2\rfloor} q^{\binom{k+1}{2}}\left[\frac{(n-k)_{q}+q^{n-2 k} k_{q}}{(n-k)_{q}}\right]\binom{n-k}{k}_{q} t^{k} \tag{4.2}
\end{equation*}
$$

Proof. By (2.10) when $r=2$,

$$
\left.\begin{array}{rl}
\sum_{c \in \mathcal{C}_{n, k}} q^{\pi_{1}(c)} & =q^{\binom{k+1}{2}}\binom{n-k}{k}_{q}+q^{\binom{k}{2}+k+(n-2 k)}\binom{n-k-1}{k-1}_{q} \\
& =q^{\binom{k+1}{2}}\left[\binom{n-k}{k}_{q}+q^{n-2 k} \frac{k_{q}}{(n-k)_{q}}\binom{n-k}{k}_{q}\right.
\end{array}\right] .
$$

If $\hat{L}_{n}(q, t)$ denotes the distribution polynomial in (4.2), then

$$
\begin{equation*}
\hat{L}_{n}(q, t)=F_{n}(q, t)+q^{n-1} t F_{n-2}(q, t / q), \quad n \geqslant 1 \tag{4.3}
\end{equation*}
$$

by (4.2) and (2.10), or by considering whether or not c belongs to $\overrightarrow{\mathcal{C}}_{n}$. The $\hat{L}_{n}(q, t)$ satisfy the nice recurrence

$$
\begin{equation*}
\hat{L}_{n}(q, t)=\hat{L}_{n-1}(q, q t)+q t \hat{L}_{n-2}(q, q t), \quad n \geqslant 3 \tag{4.4}
\end{equation*}
$$

with $\hat{L}_{1}(q, t)=1$ and $\hat{L}_{2}(q, t)=1+2 q t$, the first term of (4.4) accounting for those $c \in \overrightarrow{\mathcal{C}}_{n}$ where 1 is covered by a square as well as those $c \in \overleftarrow{\mathcal{C}}_{n}$ where 2 is covered by a square and the second term accounting for the cases that remain.

Next define π_{2} on \mathcal{C}_{n} by

$$
\pi_{2}(c)= \begin{cases}\pi(c), & \text { if } c \in \overrightarrow{\mathcal{C}}_{n} \tag{4.5}\\ \pi(c)-v(c), & \text { if } c \in \overleftarrow{\mathcal{C}}_{n}\end{cases}
$$

Theorem 4.2. For all $n \in \mathbb{P}$,

$$
\begin{equation*}
\sum_{c \in \mathcal{C}_{n}} q^{\pi_{2}(c)} t^{v(c)}=\sum_{0 \leqslant k \leqslant\lfloor n / 2\rfloor} q^{\binom{k}{2}} \frac{n_{q}}{(n-k)_{q}}\binom{n-k}{k}_{q} t^{k} \tag{4.6}
\end{equation*}
$$

Proof. By (2.10) when $r=2$,

$$
\begin{aligned}
\sum_{c \in \mathcal{C}_{n, k}} q^{\pi_{2}(c)} & =q^{\binom{k+1}{2}}\binom{n-k}{k}_{q}+q^{\binom{k}{2}+k-k}\binom{n-k-1}{k-1}_{q} \\
& =q^{\binom{k}{2}}\left[\frac{q^{k}(n-k)_{q}+k_{q}}{(n-k)_{q}}\right]\binom{n-k}{k}_{q} \\
& =q^{\binom{k}{2}} \frac{n_{q}}{(n-k)_{q}}\binom{n-k}{k}_{q} .
\end{aligned}
$$

Theorem 4.2 provides a combinatorial interpretation of the generalized Lucas polynomials

$$
\begin{equation*}
\operatorname{Luc}_{n}(x, t):=\sum_{0 \leqslant k \leqslant\lfloor n / 2\rfloor} q^{\binom{k}{2}} \frac{n_{q}}{(n-k)_{q}}\binom{n-k}{k}_{q} x^{n-2 k} t^{k}, \tag{4.7}
\end{equation*}
$$

studied by Cigler [2, [3]. Note that the joint distribution of π_{2} and v on \mathcal{C}_{n} is $\operatorname{Luc}_{n}(1, t)$, with the x variable of $\operatorname{Luc_{n}}(x, t)$ recording the number of squares in $c \in \mathcal{C}_{n}$. Considering whether or not c belongs to $\overrightarrow{\mathcal{C}}_{n}$ leads directly to the relation (cf. [3])

$$
\begin{equation*}
\operatorname{Luc}_{n}(1, t)=F_{n}(q, t)+t F_{n-2}(q, t), \quad n \geqslant 1 \tag{4.8}
\end{equation*}
$$

The $\operatorname{Luc}_{n}(1, t)$ do not seem to satisfy a two-term recurrence like (3.7) or (4.4).
Similar reasoning shows that $L u c_{n}(1, t)$ is also the joint distribution of the statistics π_{3} and v on \mathcal{C}_{n}, where

$$
\pi_{3}(c)= \begin{cases}\pi(c)-v(c), & \text { if } c \in \overrightarrow{\mathcal{C}}_{n} \tag{4.9}\\ \pi(c)-2 v(c)+n, & \text { if } c \in \overleftarrow{\mathcal{C}}_{n}\end{cases}
$$

which yields the relation

$$
\begin{equation*}
\operatorname{Luc}_{n}(1, t)=F_{n}(q, t / q)+q^{n-1} t F_{n-2}(q, t / q), \quad n \geqslant 1 . \tag{4.10}
\end{equation*}
$$

The π_{2} statistic on \mathcal{C}_{n} can be generalized to $\mathcal{C}_{n}^{(r)}$ by letting $\pi_{2}(c)=\pi(c)$, if the number 1 is covered by a square or an initial segment of an r-mino, and letting $\pi_{2}(c)=\pi(c)-v(c)$, otherwise. Reasoning as in Theorem 4.2 with π_{2} on $\mathcal{C}_{n}^{(r)}$ leads to

$$
\begin{equation*}
L u c_{n}^{(r)}(x, t):=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{\binom{k}{2}}\left[\frac{(r-2) k_{q}+(n-(r-2) k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} x^{n-r k} t^{k} \tag{4.11}
\end{equation*}
$$

which generalizes $L u c_{n}(x, t)$. The $L u c_{n}^{(r)}(x, t)$ are connected with the $F_{n}^{(r)}(q, t)$ by the simple relation

$$
\begin{equation*}
L u c_{n}^{(r)}(1, t)=F_{n}^{(r)}(q, t)+(r-1) t F_{n-r}^{(r)}(q, t), \quad n \geqslant 1, \tag{4.12}
\end{equation*}
$$

which generalizes (4.8).

Acknowledgment

The authors would like to thank the anonymous referee for formulas (2.8), (2.9), (4.11), and (4.12).

References

[1] L. Carlitz, Fibonacci notes 3: q-Fibonacci polynomials, Fibonacci Quart. 12 (1974), 317-322.
[2] J. Cigler, Einige q-Analoga der Lucas- and Fibonacci-Polynome, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 211 (2002), 3-20.
[3] J. Cigler, A new class of q-Fibonacci polynomials, Electron. J. Combin. 10 (2003), \#R19.
[4] J. Cigler, Some algebraic aspects of Morse code sequences, Discrete Math. Theor. Comput. Sci. 6 (2003), 55-68.
[5] J. Cigler, q-Fibonacci polynomials and the Rogers-Ramanujan identities, Ann. Combin. 8 (2004), 269-285.
[6] S. Ekhad and D. Zeilberger, The number of solutions of $X^{2}=0$ in triangular matrices over GF(q), Electron. J. Combin. 3 (1) (1996), \#R2.
[7] B. Kupershmidt, q-Analogues of classical 6-periodicity, J. Nonlinear Math. Physics 10 (2003), 318-339.
[8] M. Shattuck and C. Wagner, Parity theorems for statistics on domino arrangements, Electron. J. Combin. 12 (2005), \#N10.
[9] M. Shattuck and C. Wagner, A new statistic on linear and circular r-mino arrangements, Electron. J. Combin. 13 (1) (2006), \#R42.
[10] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, 1986.
[11] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), 199-218.
[12] H. Wilf, generatingfunctionology, Academic Press, 1990.

[^0](Concerned with sequences A000045 and A000204.)

Received April 4 2006; revised version received August 17 2006. Published in Journal of Integer Sequences, August 182006.

Return to Journal of Integer Sequences home page.

[^0]: 2000 Mathematics Subject Classification: Primary 11B39; Secondary 05A15.
 Keywords: r-mino arrangement, polynomial generalization, Fibonacci numbers, Lucas numbers.

