

Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.6

Periodicity and Parity Theorems for a Statistic on *r*-Mino Arrangements

Mark A. Shattuck and Carl G. Wagner Mathematics Department University of Tennessee Knoxville, TN 37996-1300 USA shattuck@math.utk.edu wagner@math.utk.edu

Abstract

We study polynomial generalizations of the r-Fibonacci and r-Lucas sequences which arise in connection with a certain statistic on linear and circular r-mino arrangements, respectively. By considering special values of these polynomials, we derive periodicity and parity theorems for this statistic on the respective structures.

1 Introduction

If $r \ge 2$, the *r*-Fibonacci numbers $F_n^{(r)}$ are defined by $F_0^{(r)} = F_1^{(r)} = \cdots = F_{r-1}^{(r)} = 1$, with $F_n^{(r)} = F_{n-1}^{(r)} + F_{n-r}^{(r)}$ if $n \ge r$. The *r*-Lucas numbers $L_n^{(r)}$ are defined by $L_1^{(r)} = L_2^{(r)} = \cdots = L_{r-1}^{(r)} = 1$ and $L_r^{(r)} = r+1$, with $L_n^{(r)} = L_{n-1}^{(r)} + L_{n-r}^{(r)}$ if $n \ge r+1$. If r=2, the $F_n^{(r)}$ and $L_n^{(r)}$ reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrized as in Wilf [12], by $F_0 = F_1 = 1$, etc., and $L_1 = 1$, $L_2 = 3$, etc.).

Polynomial generalizations of F_n and/or L_n have arisen as generating functions for statistics on binary words [1], lattice paths [5], and linear and circular domino arrangements [8]. Generalizations of $F_n^{(r)}$ and/or $L_n^{(r)}$ have arisen similarly in connection with statistics on Morse code sequences [4] as well as on linear and circular r-mino arrangements [9].

Cigler [3] introduces and studies a new class of q-Fibonacci polynomials, generalizing the classical sequence, which arise in connection with a certain statistic on Morse code sequences in which the dashes have length 2. The same statistic, which we'll denote by π , applied more generally to linear r-mino arrangements, leads to the polynomial generalization

$$F_n^{(r)}(q,t) := \sum_{0 \le k \le \lfloor n/r \rfloor} q^{\binom{k+1}{2}} \binom{n - (r-1)k}{k}_q t^k$$
(1.1)

of $F_n^{(r)}$. A natural extension of this π statistic to circular r-mino arrangements leads to the new polynomial generalization

$$L_n^{(r)}(q,t) := \sum_{0 \le k \le \lfloor n/r \rfloor} q^{\binom{k+1}{2}} \left[\frac{(r-1)k_q + (n-(r-1)k)_q}{(n-(r-1)k)_q} \right] \binom{n-(r-1)k}{k}_q t^k \tag{1.2}$$

of $L_n^{(r)}$.

In addition to deriving the above closed forms for $F_n^{(r)}(q,t)$ and $L_n^{(r)}(q,t)$, we present both algebraic and combinatorial evaluations of $F_n^{(r)}(-1,t)$ and $L_n^{(r)}(-1,t)$, as well as determine when the sequences $F_n^{(r)}(-1,1)$ and $L_n^{(r)}(-1,1)$ are periodic. Our algebraic proofs make frequent use of the identity [11, pp. 201–202]

$$\sum_{n \ge 0} \binom{n}{k}_q x^n = \frac{x^k}{(1-x)(1-qx)\cdots(1-q^kx)}, \qquad k \in \mathbb{N}.$$
 (1.3)

Our combinatorial proofs are based on the fact that $F_n^{(r)}(q,t)$ and $L_n^{(r)}(q,t)$ are bivariate generating functions for a pair of statistics defined, respectively, on linear and circular arrangements of r-minos. We also describe some variants of the π statistic on circular domino arrangements which lead to additional polynomial generalizations of the Lucas sequence.

In what follows, \mathbb{N} and \mathbb{P} denote, respectively, the nonnegative and positive integers. Empty sums take the value 0 and empty products the value 1, with $0^0 := 1$. If q is an indeterminate, then $0_q := 0$, $n_q := 1 + q + \cdots + q^{n-1}$ for $n \in \mathbb{P}$, $0_q^! := 1$, $n_q^! := 1_q 2_q \cdots n_q$ for $n \in \mathbb{P}$, and

$$\binom{n}{k}_{q} := \begin{cases} \frac{n_{q}^{!}}{k_{q}^{!}(n-k)_{q}^{!}}, & \text{if } 0 \leq k \leq n; \\ 0, & \text{if } k < 0 \text{ or } 0 \leq n < k. \end{cases}$$
(1.4)

A useful variation of (1.4) is the well known formula [10, p. 29]

$$\binom{n}{k}_{q} = \sum_{\substack{d_{0}+d_{1}+\dots+d_{k}=n-k\\d_{i}\in\mathbb{N}}} q^{0d_{0}+1d_{1}+\dots+kd_{k}} = \sum_{t\geqslant0} p(k,n-k,t)q^{t},$$
(1.5)

where p(k, n - k, t) denotes the number of partitions of the integer t with at most n - k parts, each no larger than k.

2 Linear *r*-Mino Arrangements

Let $\mathcal{R}_{n,k}^{(r)}$ denote the set of coverings of the numbers $1, 2, \ldots, n$ arranged in a row by k indistinguishable r-minos and n - rk indistinguishable squares, where pieces do not overlap, an r-mino, $r \ge 2$, is a rectangular piece covering r numbers, and a square is a piece covering

a single number. Each such covering corresponds uniquely to a word in the alphabet $\{r, s\}$ comprising k r's and n - rk s's so that

$$|\mathcal{R}_{n,k}^{(r)}| = \binom{n - (r-1)k}{k}, \qquad 0 \le k \le \lfloor n/r \rfloor, \tag{2.1}$$

for all $n \in \mathbb{P}$. (If we set $\mathcal{R}_{0,0}^{(r)} = \{\emptyset\}$, the "empty covering," then (2.1) holds for n = 0 as well.) In what follows, we will identify coverings c with such words $c_1c_2\cdots$ in $\{r, s\}$. With

$$\mathcal{R}_{n}^{(r)} := \bigcup_{0 \leqslant k \leqslant \lfloor n/r \rfloor} \mathcal{R}_{n,k}^{(r)}, \qquad n \in \mathbb{N},$$
(2.2)

it follows that

$$|\mathcal{R}_n^{(r)}| = \sum_{0 \le k \le \lfloor n/r \rfloor} \binom{n - (r-1)k}{k} = F_n^{(r)},$$
(2.3)

where $F_0^{(r)} = F_1^{(r)} = \dots = F_{r-1}^{(r)} = 1$, with $F_n^{(r)} = F_{n-1}^{(r)} + F_{n-r}^{(r)}$ if $n \ge r$. Note that

$$\sum_{n \ge 0} F_n^{(r)} x^n = \frac{1}{1 - x - x^r}.$$
(2.4)

Given a covering $c = c_1 c_2 \cdots$, let

$$\pi(c) := \sum_{i:c_i=r} i; \tag{2.5}$$

note that $\pi(c)$ gives the total resulting when one counts the number of pieces preceding each r-mino, inclusive, and adds up these numbers.

Let

$$F_n^{(r)}(q,t) := \sum_{c \in \mathcal{R}_n^{(r)}} q^{\pi(c)} t^{v(c)}, \qquad n \in \mathbb{N},$$
(2.6)

where v(c) := the number of r-minos in the covering c.

Categorizing linear covers of 1, 2, ..., n according to whether the piece covering n is a square or r-mino yields the recurrence relation

$$F_n^{(r)}(q,t) = F_{n-1}^{(r)}(q,t) + q^{n-r+1} t F_{n-r}^{(r)}\left(q,t/q^{r-1}\right), \qquad n \ge r,$$
(2.7)

with $F_i^{(r)}(q,t) = 1$ if $0 \leq i \leq r-1$, since the total number of pieces in $c \in \mathcal{R}_m^{(r)}$ is m - (r-1)v(c). Categorizing covers of 1,2,...,n according to whether the piece covering 1 is a square or r-mino yields

$$F_n^{(r)}(q,t) = F_{n-1}^{(r)}(q,qt) + qtF_{n-r}^{(r)}(q,qt), \qquad n \ge r.$$
(2.8)

By combining relations (2.7) and (2.8), one gets a recurrence for $F_n^{(r)}(q,t)$ for each number q and t. For example when r = 3, this is

$$F_{n}^{(3)}(q,t) = F_{n-1}^{(3)}(q,t) + q^{n-2}tF_{n-5}^{(3)}(q,t) + q^{n-3}(1+q)t^{2}F_{n-7}^{(3)}(q,t) + q^{n-3}t^{3}F_{n-9}^{(3)}(q,t).$$
(2.9)

The $F_n^{(r)}(q,t)$ have the following explicit formula.

Theorem 2.1. For all $n \in \mathbb{N}$,

$$F_n^{(r)}(q,t) = \sum_{0 \le k \le \lfloor n/r \rfloor} q^{\binom{k+1}{2}} \binom{n - (r-1)k}{k}_q t^k.$$
 (2.10)

Proof. It clearly suffices to show that

$$\sum_{c \in \mathcal{R}_{n,k}^{(r)}} q^{\pi(c)} = q^{\binom{k+1}{2}} \binom{n - (r-1)k}{k}_q.$$

Each $c \in \mathcal{R}_{n,k}^{(r)}$ corresponds uniquely to a sequence (d_0, d_1, \ldots, d_k) , where d_0 is the number of squares following the k^{th} r-mino (counting from left to right) in the covering c, d_k is the number of squares preceding the first r-mino, and, for 0 < i < k, d_{k-i} is the number of squares between the i^{th} and $(i+1)^{st}$ r-mino. Then $\pi(c) = (d_k+1) + (d_k+d_{k-1}+2) + \cdots + (d_k+d_{k-1}+\cdots+d_1+k) = {k+1 \choose 2} + kd_k + (k-1)d_{k-1} + \cdots + 1d_1$ so that

$$\sum_{c \in \mathcal{R}_{n,k}^{(r)}} q^{\pi(c)} = q^{\binom{k+1}{2}} \sum_{\substack{d_0+d_1+\dots+d_k=n-rk\\d_i \in \mathbb{N}}} q^{0d_0+1d_1+\dots+kd_k}$$
$$= q^{\binom{k+1}{2}} \binom{n-(r-1)k}{k}_q,$$

by (1.5).

Theorem 2.2. The ordinary generating function of the sequence $(F_n^{(r)}(q,t))_{n\geq 0}$ is given by

$$\sum_{n \ge 0} F_n^{(r)}(q,t) x^n = \sum_{k \ge 0} \frac{q^{\binom{k+1}{2}} t^k x^{rk}}{(1-x)(1-qx)\cdots(1-q^k x)}.$$
(2.11)

Proof. By (2.10) and (1.3),

$$\begin{split} \sum_{n \ge 0} F_n^{(r)}(q, t) x^n &= \sum_{n \ge 0} \left(\sum_{0 \le k \le \lfloor n/r \rfloor} q^{\binom{k+1}{2}} \binom{n - (r-1)k}{k}_q t^k \right) x^n \\ &= \sum_{k \ge 0} q^{\binom{k+1}{2}} t^k x^{(r-1)k} \sum_{n \ge kr} \binom{n - (r-1)k}{k}_q x^{n - (r-1)k} \\ &= \sum_{k \ge 0} q^{\binom{k+1}{2}} t^k x^{(r-1)k} \cdot \frac{x^k}{(1-x)(1-qx)\cdots(1-q^kx)}. \end{split}$$

Note that $F_n^{(r)}(1,1) = F_n^{(r)}$, whence (2.11) generalizes (2.4). Setting q = 1 and q = -1 in (2.11) yields

Corollary 2.2.1. The ordinary generating function of the sequence $(F_n^{(r)}(1,t))_{n\geq 0}$ is given by

$$\sum_{n \ge 0} F_n^{(r)}(1,t) x^n = \frac{1}{1 - x - tx^r}.$$
(2.12)

and

Corollary 2.2.2. The ordinary generating function of the sequence $(F_n^{(r)}(-1,t))_{n\geq 0}$ is given by

$$\sum_{n \ge 0} F_n^{(r)}(-1,t)x^n = \frac{1+x-tx^r}{1-x^2+t^2x^{2r}}.$$
(2.13)

When r = 2 and t = 1 in (2.13), we get

$$\sum_{n \ge 0} F_n^{(2)}(-1,1)x^n = \frac{1+x-x^2}{1-x^2+x^4} = \frac{(1+x+x^3-x^4)(1-x^6)}{1-x^{12}},$$
(2.14)

which implies

Corollary 2.2.3. The sequence $(F_n^{(2)}(-1,1))_{n\geq 0}$ is periodic with period 12; namely, if $a_n := F_n^{(2)}(-1,1)$ for $n \geq 0$, then $a_0 = 1$, $a_1 = 1$, $a_2 = 0$, $a_3 = 1$, $a_4 = -1$, and $a_5 = 0$ with $a_{n+6} = -a_n$, $n \geq 0$.

(We call a sequence $(b_n)_{n \ge 0}$ periodic with period d if $b_{n+d} = b_n$ for all $n \ge m$ for some $m \in \mathbb{N}$.)

Remark. Corollary 2.2.3 is the q = -1 case of the well known formula

$$\sum_{0 \leqslant k \leqslant \lfloor n/2 \rfloor} (-1)^k q^{\binom{k}{2}} \binom{n-k}{k}_q = \begin{cases} (-1)^{\lfloor n/3 \rfloor} q^{n(n-1)/6}, & \text{if } n \equiv 0, \ 1 \pmod{3}; \\ 0, & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

See, e.g., Cigler [5], Ekhad and Zeilberger [6], and Kupershmidt [7].

We now show that the periodic behavior of $F_n^{(r)}(-1,1)$ seen when r = 2 is restricted to that case. The following lemma is established in [9]. We include its proof here for completeness.

Lemma 2.3. If $r \ge 3$, then $g_r(x) := 1 - x + x^r$ does not divide any polynomial of the form $1 - x^m$, where $m \in \mathbb{P}$.

Proof. We first describe the roots of unity that are zeros of $g_r(x)$, where $r \ge 2$. If z is such a root of unity, let $y = z^{r-1}$. Since $z(1-z^{r-1}) = 1$ and z is a root of unity, it follows that both y

and 1-y are roots of unity. In particular, |y| = |1-y| = 1. Therefore, $1-2\operatorname{Re}(y) + |y|^2 = 1$, so $\operatorname{Re}(y) = \frac{1}{2}$. This forces y, and hence 1-y, to be primitive 6^{th} roots of unity. But $1-y = \frac{1}{z}$, so z is also a primitive 6^{th} root of unity.

This implies that the only possible roots of unity which are zeros of g_r are the primitive 6^{th} roots of unity. Since the derivative of g_r has no roots of unity as zeros, these 6^{th} roots of unity can only be simple zeros of g_r . In particular, if every root of g_r is a root of unity, then r = 2.

Theorem 2.4. The sequence $(F_n^{(r)}(-1,1))_{n\geq 0}$ is never periodic for $r \geq 3$.

Proof. By (2.13) at t = 1, we must show that $1 - x^2 + x^{2r}$ does not divide the product $(1-x^m)(1+x-x^r)$ for any $m \in \mathbb{P}$ whenever $r \ge 3$. First note that the polynomials $1-x^2+x^{2r}$ and $1+x-x^r$ cannot share a zero; for if t_0 is a common zero, then $t_0^2 - 1 = t_0^{2r} = (t_0 + 1)^2$, i.e., $t_0 = -1$, which isn't a zero of either polynomial. Observe next that $1-x^2+x^{2r} = g_r(x^2)$, where $g_r(x)$ is as in Lemma 2.3, so that $1-x^2+x^{2r}$ fails to divide $1-x^m$ for any $m \in \mathbb{P}$, since $g_r(x)$ fails to, which completes the proof.

Iterating (2.7) or (2.8) yields $F_{-i}^{(r)}(q,t) = 0$ if $1 \leq i \leq r-1$, which we'll take as a convention.

Theorem 2.5. Let $m \in \mathbb{N}$. If m and r have the same parity, then

$$F_m^{(r)}(-1,t) = F_{\lfloor m/2 \rfloor}^{(r)}(1,-t^2) - tF_{(m-r)/2}^{(r)}(1,-t^2), \qquad (2.15)$$

and if m and r have different parity, then

$$F_m^{(r)}(-1,t) = F_{\lfloor m/2 \rfloor}^{(r)}(1,-t^2).$$
(2.16)

Proof. Taking the even and odd parts of both sides of (2.13) followed by replacing x with $x^{1/2}$ yields

$$\sum_{n \ge 0} F_{2n}^{(r)}(-1,t)x^n = \frac{1 - tx^{r/2}}{1 - x + t^2x^r}$$

and

$$\sum_{n \ge 0} F_{2n+1}^{(r)}(-1,t)x^n = \frac{1}{1-x+t^2x^r},$$

when r is even, and

$$\sum_{n \ge 0} F_{2n}^{(r)}(-1,t)x^n = \frac{1}{1 - x + t^2 x^r}$$

and

$$\sum_{n \ge 0} F_{2n+1}^{(r)}(-1,t)x^n = \frac{1 - tx^{(r-1)/2}}{1 - x + t^2x^r},$$

when r is odd, from which (2.15) and (2.16) now follow from (2.12) upon putting together cases.

For a combinatorial proof of (2.15) and (2.16), we first assign to each *r*-mino arrangement $c \in \mathcal{R}_m^{(r)}$ the weight $w_c := (-1)^{\pi(c)} t^{v(c)}$, where *t* is an indeterminate. Let $\mathcal{R}_m^{(r)'}$ consist of those $c = c_1 c_2 \cdots$ in $\mathcal{R}_m^{(r)}$ satisfying the conditions $c_{2i-1} = c_{2i}$, $i \ge 1$. Suppose $c \in \mathcal{R}_m^{(r)} - \mathcal{R}_m^{(r)'}$, with i_0 being the smallest value of *i* for which $c_{2i-1} \ne c_{2i}$. Exchanging the positions of the $(2i_0 - 1)^{st}$ and $(2i_0)^{th}$ pieces within *c* produces a π -parity changing involution of $\mathcal{R}_m^{(r)} - \mathcal{R}_m^{(r)'}$ which preserves *v*.

If m and r have the same parity, then

$$\begin{split} F_m^{(r)}(-1,t) &= \sum_{c \in \mathcal{R}_m^{(r)}} w_c = \sum_{c \in \mathcal{R}_m^{(r)'}} w_c = \sum_{\substack{c \in \mathcal{R}_m^{(r)'} \\ v(c) \text{ even}}} w_c + \sum_{\substack{c \in \mathcal{R}_m^{(r)'} \\ v(c) \text{ odd}}} w_c \\ &= \sum_{\substack{c \in \mathcal{R}_m^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(c)/2} t^{v(c)} - t \sum_{\substack{c \in \mathcal{R}_m^{(r)'} \\ w_c \text{ odd}}} (-1)^{v(c)/2} t^{v(c)} \\ &= \sum_{\substack{c \in \mathcal{R}_m^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(z)} t^{2v(z)} - t \sum_{\substack{c \in \mathcal{R}_{m-r}^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(z)} t^{2v(z)} \\ &= F_{\lfloor m/2 \rfloor}^{(r)} (1, -t^2) - t F_{(m-r)/2}^{(r)} (1, -t^2), \end{split}$$

which gives (2.15), since each pair of consecutive r-minos in $c \in \mathcal{R}_m^{(r)'}$ contributes a factor of -1 towards the sign $(-1)^{\pi(c)}$ and since members of $\mathcal{R}_m^{(r)'}$ for which v(c) is odd end in a single r-mino. If m and r differ in parity, then

$$F_m^{(r)}(-1,t) = \sum_{c \in \mathcal{R}_m^{(r)}} w_c = \sum_{c \in \mathcal{R}_m^{(r)'}} w_c = \sum_{z \in \mathcal{R}_{\lfloor m/2 \rfloor}^{(r)}} (-1)^{v(z)} t^{2v(z)} = F_{\lfloor m/2 \rfloor}^{(r)}(1,-t^2),$$

which gives (2.16), since members of $\mathcal{R}_m^{(r)'}$ must contain an even number of r-minos.

The involution of the previous theorem in the case r = 2 can be extended to account for the periodicity in Corollary 2.2.3 as follows. If $n \ge 6$, let $\mathcal{R}_n^{(2)*} \subseteq \mathcal{R}_n^{(2)'}$ consist of those domino arrangements $c = c_1 c_2 \cdots$ that contain at least $4\lfloor n/6 \rfloor$ pieces satisfying the conditions

$$c_{4i-3}c_{4i-2}c_{4i-1}c_{4i} = ssdd, \qquad 1 \le i \le \lfloor n/6 \rfloor;$$
 (2.17)

if $0 \leq n \leq 5$, then let $\mathcal{R}_n^{(2)*} = \mathcal{R}_n^{(2)'}$.

A π -parity changing involution of $\mathcal{R}_n^{(2)'} - \mathcal{R}_n^{(2)*}$ when $n \ge 6$ is given by the pairing

$$(ssdd)^k ssssu \longleftrightarrow (ssdd)^k ddu,$$

where $k \ge 0$ and u is some (non-empty) word in $\{d, s\}$. If n = 6m + i, where $m \ge 1$ and $0 \le i \le 5$, then

$$\begin{split} F_n^{(2)}(-1,1) &= \sum_{c \in \mathcal{R}_n^{(2)}} (-1)^{\pi(c)} = \sum_{c \in \mathcal{R}_n^{(2)'}} (-1)^{\pi(c)} = \sum_{c \in \mathcal{R}_n^{(2)*}} (-1)^{\pi(c)} \\ &= (-1)^m \sum_{c \in \mathcal{R}_i^{(2)*}} (-1)^{\pi(c)} = (-1)^m F_i^{(2)}(-1,1), \end{split}$$

which implies Corollary 2.2.3, upon checking directly the cases $0 \leq n \leq 5$, as each *ssdd* unit in $c \in \mathcal{R}_n^{(2)*}$ contributes a factor of -1 towards the sign $(-1)^{\pi(c)}$.

3 Circular *r*-Mino Arrangements

If $n \in \mathbb{P}$ and $0 \leq k \leq \lfloor n/r \rfloor$, let $\mathcal{C}_{n,k}^{(r)}$ denote the set of coverings by k r-minos and n - rk squares of the numbers $1, 2, \ldots, n$ arranged clockwise around a circle:

By the *initial segment* of an r-mino occurring in such a cover, we mean the segment first encountered as the circle is traversed clockwise. Classifying members of $C_{n,k}^{(r)}$ according as (i) 1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and applying (2.1), yields

$$\begin{aligned} |\mathcal{C}_{n,k}^{(r)}| &= r \binom{n - (r-1)k - 1}{k - 1} + \binom{n - (r-1)k - 1}{k} \\ &= \frac{n}{n - (r-1)k} \binom{n - (r-1)k}{k}, \quad 0 \le k \le \lfloor n/r \rfloor. \end{aligned} (3.1)$$

Below we illustrate two members of $\mathcal{C}_{4,1}^{(3)}$:

In covering (i), the initial segment of the 3-mino covers 1, and in covering (ii), the initial segment covers 3.

With

$$\mathcal{C}_{n}^{(r)} := \bigcup_{0 \leqslant k \leqslant \lfloor n/r \rfloor} \mathcal{C}_{n,k}^{(r)}, \qquad n \in \mathbb{P},$$
(3.2)

it follows that

$$\left|\mathcal{C}_{n}^{(r)}\right| = \sum_{0 \leqslant k \leqslant \lfloor n/r \rfloor} \frac{n}{n - (r-1)k} \binom{n - (r-1)k}{k} = L_{n}^{(r)}, \tag{3.3}$$

where $L_1^{(r)} = L_2^{(r)} = \dots = L_{r-1}^{(r)} = 1$, $L_r^{(r)} = r+1$, and $L_n^{(r)} = L_{n-1}^{(r)} + L_{n-r}^{(r)}$ if $n \ge r+1$. Note that

$$\sum_{n \ge 1} L_n^{(r)} x^n = \frac{x + rx^r}{1 - x - x^r}.$$
(3.4)

We'll associate to each $c \in \mathcal{C}_n^{(r)}$ a word $u_c = u_1 u_2 \cdots$ in the alphabet $\{r, s\}$, where

 $u_i := \begin{cases} r, & \text{if the } i^{th} \text{ piece of } c \text{ is an } r\text{-mino}; \\ s, & \text{if the } i^{th} \text{ piece of } c \text{ is a square}, \end{cases}$

and one determines the i^{th} piece of c by starting with the piece covering 1 and proceeding clockwise from that piece. Note that for each word starting with r, there are exactly r associated members of $\mathcal{C}_n^{(r)}$, while for each word starting with s, there is only one associated member.

Given $c \in \mathcal{C}_n^{(r)}$ and its associated word $u_c = u_1 u_2 \cdots$, let

$$\pi(c) := \sum_{i:u_i=r} i; \tag{3.5}$$

note that $\pi(c)$ gives the sum of the numbers gotten by counting the number of pieces preceding each *r*-mino, inclusive (counting back each time counterclockwise to the piece covering 1).

Let

$$L_n^{(r)}(q,t) := \sum_{c \in \mathcal{C}_n^{(r)}} q^{\pi(c)} t^{v(c)}, \qquad n \in \mathbb{P},$$
(3.6)

where v(c) := the number of *r*-minos in the covering *c*.

Categorizing circular covers c of 1, 2, ..., n according to whether the last letter in u_c is an s or r yields the recurrence relation

$$L_n^{(r)}(q,t) = L_{n-1}^{(r)}(q,t) + q^{n-r+1}tL_{n-r}^{(r)}(q,t/q^{r-1}), \quad n \ge r+1,$$
(3.7)

with $L_i^{(r)}(q,t) = 1$ if $1 \leq i \leq r-1$ and $L_r^{(r)}(q,t) = 1 + rqt$, as seen upon removing the final piece of c, sliding the remaining pieces together to form a circle, and renumbering (if necessary) so that 1 corresponds to the same position as before. The $L_n^{(r)}(q,t)$, though, do not seem to satisfy a recurrence like (2.8). The following theorem gives an explicit formula for $L_n^{(r)}(q,t)$.

Theorem 3.1. For all $n \in \mathbb{P}$,

$$L_n^{(r)}(q,t) = \sum_{0 \le k \le \lfloor n/r \rfloor} q^{\binom{k+1}{2}} \left[\frac{(r-1)k_q + (n-(r-1)k)_q}{(n-(r-1)k)_q} \right] \binom{n-(r-1)k}{k}_q t^k.$$
(3.8)

Proof. It suffices to show that

$$\sum_{c \in \mathcal{C}_{n,k}^{(r)}} q^{\pi(c)} = q^{\binom{k+1}{2}} \left[\frac{(r-1)k_q + (n-(r-1)k)_q}{(n-(r-1)k)_q} \right] \binom{n-(r-1)k}{k}_q$$

Partitioning $C_{n,k}^{(r)}$ into the categories employed above in deriving (3.1), and applying (2.10), yields

$$\sum_{c \in \mathcal{C}_{n,k}^{(r)}} q^{\pi(c)} = rq^{k-1+1} \cdot q^{\binom{k}{2}} \binom{n-(r-1)k-1}{k-1}_{q} + q^{k} \cdot q^{\binom{k+1}{2}} \binom{n-(r-1)k-1}{k}_{q}$$

$$= q^{\binom{k+1}{2}} \left[\frac{rk_{q}+q^{k}(n-rk)_{q}}{(n-(r-1)k)_{q}} \right] \binom{n-(r-1)k}{k}_{q}$$

$$= q^{\binom{k+1}{2}} \left[\frac{(r-1)k_{q}+(n-(r-1)k)_{q}}{(n-(r-1)k)_{q}} \right] \binom{n-(r-1)k}{k}_{q},$$
(3.9)

which completes the proof.

Note that $L_n^{(r)}(1,1) = L_n^{(r)}$. By (3.8) and (2.10), the $L_n^{(r)}(q,t)$ are related to the $F_n^{(r)}(q,t)$ by the formula

$$L_n^{(r)}(q,t) = F_n^{(r)}(q,t) + (r-1)qtF_{n-r}^{(r)}(q,qt), \qquad n \ge 1,$$
(3.10)

which reduces to

$$L_n^{(r)} = F_n^{(r)} + (r-1)F_{n-r}^{(r)}, \qquad n \ge 1,$$
(3.11)

when q = t = 1. Formula (3.10) can also be realized by considering the way in which 1 is covered in $c \in C_n^{(r)}$, the first term representing those c for which 1 is covered by a square or an initial segment of an r-mino and the second term representing the remaining r - 1possibilities.

Theorem 3.2. The ordinary generating function of the sequence $(L_n^{(r)}(q,t))_{n\geq 1}$ is given by

$$\sum_{n \ge 1} L_n^{(r)}(q,t) x^n = \frac{x}{1-x} + \sum_{k \ge 1} \frac{q^{\binom{k+1}{2}} t^k x^{rk} \left[r - (r-1)q^k x\right]}{(1-x)(1-qx)\cdots(1-q^k x)}.$$
(3.12)

Proof. From (3.9),

$$\begin{split} \sum_{n \ge 1} L_n^{(r)}(q,t) x^n &= \sum_{n \ge 1} x^n \sum_{0 \le k \le \lfloor n/r \rfloor} \left(q^{k + \binom{k+1}{2}} t^k \binom{n - (r-1)k - 1}{k} \right)_q \\ &+ rq^{\binom{k+1}{2}} t^k \binom{n - (r-1)k - 1}{k-1} q \\ &= \frac{x}{1-x} + \sum_{k \ge 1} q^{k + \binom{k+1}{2}} t^k \sum_{n \ge rk+1} \binom{n - (r-1)k - 1}{k} q^n \\ &+ r \sum_{k \ge 1} q^{\binom{k+1}{2}} t^k \sum_{n \ge rk} \binom{n - (r-1)k - 1}{k-1} q^n \\ &= \frac{x}{1-x} + \sum_{k \ge 1} q^{k + \binom{k+1}{2}} t^k x^{(r-1)k+1} \cdot \frac{x^k}{(1-x)(1-qx)\cdots(1-q^kx)} \\ &+ r \sum_{k \ge 1} q^{\binom{k+1}{2}} t^k x^{(r-1)k+1} \cdot \frac{x^{k-1}}{(1-x)(1-qx)\cdots(1-q^{k-1}x)} \\ &= \frac{x}{1-x} + \sum_{k \ge 1} q^{\binom{k+1}{2}} t^k \cdot \frac{x^{rk} \left[q^k x + r(1-q^kx) \right]}{(1-x)(1-qx)\cdots(1-q^kx)}, \end{split}$$

by (1.3).

Note that (3.12) reduces to (3.4) when q = t = 1. Setting q = 1 and q = -1 in (3.12) yields

Corollary 3.2.1. The ordinary generating function of the sequence $(L_n^{(r)}(1,t))_{n\geq 1}$ is given by

$$\sum_{n \ge 1} L_n^{(r)}(1,t) x^n = \frac{x + rtx^r}{1 - x - tx^r}.$$
(3.13)

and

Corollary 3.2.2. The ordinary generating function of the sequence $(L_n^{(r)}(-1,t))_{n\geq 1}$ is given by

$$\sum_{n \ge 1} L_n^{(r)}(-1,t)x^n = \frac{x + x^2 - rtx^r - (r-1)tx^{r+1} - rt^2x^{2r}}{1 - x^2 + t^2x^{2r}}.$$
(3.14)

When r = 2 and t = 1 in (3.14), we get

$$\sum_{n \ge 1} L_n^{(2)}(-1,1)x^n = \frac{x - x^2 - x^3 - 2x^4}{1 - x^2 + x^4} = \frac{(x - x^2 - 3x^4 - x^5 - 2x^6)(1 - x^6)}{1 - x^{12}}, \qquad (3.15)$$

which implies

Corollary 3.2.3. The sequence $(L_n^{(2)}(-1,1))_{n\geq 1}$ is periodic with period 12; namely, if $a_n := L_n^{(2)}(-1,1)$ for $n \geq 1$, then $a_1 = 1$, $a_2 = -1$, $a_3 = 0$, $a_4 = -3$, $a_5 = -1$, and $a_6 = -2$ with $a_{n+6} = -a_n$, $n \geq 1$.

This periodic behavior is again restricted to the case r = 2.

Theorem 3.3. The sequence $(L_n^{(r)}(-1,1))_{n\geq 1}$ is never periodic for $r \geq 3$.

Proof. By (3.14) at t = 1, we must show that $f(x) := 1 - x^2 + x^{2r}$ does not divide the product $(1-x^m)h(x)$, where $h(x) := x + x^2 - rx^r - (r-1)x^{r+1} - rx^{2r}$, for any $m \in \mathbb{P}$ whenever $r \ge 3$. By the proof of Theorem 2.4, it suffices to show that f and h are relatively prime. Suppose, to the contrary, that t_0 is a common zero of f and h so that $t_0(1+t_0) + r(1-t_0^2) = t_0(1+t_0) - rt_0^{2r} = t_0^r[r + (r-1)t_0]$. Squaring, substituting $t_0^{2r} = t_0^2 - 1$, and noting $t_0 \ne -1$ implies that t_0 must then be a root of the equation $(x+1)[(r-1)x-r]^2 = (x-1)[(r-1)x+r]^2$, which reduces to $(r^2-1)x^2 = r^2$. But $t_0 = \pm \frac{r}{\sqrt{r^2-1}}$ is a zero of neither f nor h after all, which implies f and h are relatively prime and completes the proof.

Recall that $F_{-i}^{(r)}(q,t) = 0$ if $1 \leq i \leq r-1$, by convention.

Theorem 3.4. Let $m \in \mathbb{P}$. If r is even, then

$$L_{2m}^{(r)}(-1,t) = L_m^{(r)}(1,-t^2) - rtF_{m-\frac{r}{2}}^{(r)}(1,-t^2)$$
(3.16)

and

$$L_{2m-1}^{(r)}(-1,t) = F_{m-1}^{(r)}(1,-t^2) - (r-1)tF_{m-\frac{r}{2}-1}^{(r)}(1,-t^2), \qquad (3.17)$$

and if r is odd, then

$$L_{2m}^{(r)}(-1,t) = L_m^{(r)}(1,-t^2) - (r-1)tF_{m-\left(\frac{r+1}{2}\right)}^{(r)}(1,-t^2)$$
(3.18)

and

$$L_{2m-1}^{(r)}(-1,t) = F_{m-1}^{(r)}(1,-t^2) - rtF_{m-\left(\frac{r+1}{2}\right)}^{(r)}(1,-t^2).$$
(3.19)

Proof. Taking the even and odd parts of both sides of (3.14) followed by replacing x with $x^{1/2}$ yields

$$\sum_{m \ge 1} L_{2m}^{(r)}(-1,t) x^m = \frac{x - rtx^{\frac{1}{2}} - rt^2 x^r}{1 - x + t^2 x^r}$$

and

$$\sum_{m \ge 1} L_{2m-1}^{(r)} (-1, t) x^m = \frac{x - (r-1)tx^{\frac{t}{2}+1}}{1 - x + t^2 x^r},$$

when r is even, and

$$\sum_{m \ge 1} L_{2m}^{(r)}(-1,t)x^m = \frac{x - (r-1)tx^{\frac{(r+1)}{2}} - rt^2x^r}{1 - x + t^2x^r}$$

and

$$\sum_{m \ge 1} L_{2m-1}^{(r)} (-1,t) x^m = \frac{x - rtx^{\frac{(r+1)}{2}}}{1 - x + t^2 x^r},$$

when r is odd, from which (3.16)-(3.19) now follow from (3.13) and (2.12).

For a combinatorial proof of (3.16)-(3.19), we first assign to each covering $c \in \mathcal{C}_n^{(r)}$ the weight $w_c := (-1)^{\pi(c)} t^{v(c)}$, where t is an indeterminate. Let $\mathcal{C}_n^{(r)'}$ consist of those c in $\mathcal{C}_n^{(r)}$ whose associated word $u_c = u_1 u_2 \cdots$ satisfies the conditions $u_{2i} = u_{2i+1}$, $i \ge 1$. Suppose $c \in \mathcal{C}_n^{(r)} - \mathcal{C}_n^{(r)'}$, with i_0 being the smallest value of i for which $u_{2i} \ne u_{2i+1}$. Exchanging the positions of the $(2i_0)^{th}$ and $(2i_0 + 1)^{st}$ pieces within c produces a π -parity changing, v-preserving involution of $\mathcal{C}_n^{(r)} - \mathcal{C}_n^{(r)'}$.

If r is even and n = 2m, then

$$\begin{split} L_{2m}^{(r)}(-1,t) &= \sum_{c \in \mathcal{C}_{2m}^{(r)}} w_c = \sum_{c \in \mathcal{C}_{2m}^{(r)'}} w_c = \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)'} \\ v(c) \text{ even}}} w_c + \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)'} \\ v(c) \text{ odd}}} w_c \\ &= \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(c)/2} t^{v(c)} - rt \sum_{\substack{c \in \mathcal{R}_{2m-r}^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(c)/2} t^{v(c)} \\ &= \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(z)} t^{2v(z)} - rt \sum_{\substack{c \in \mathcal{R}_{2m-r}^{(r)'} \\ v(c) \text{ even}}} (-1)^{v(z)} t^{2v(z)} \\ &= \sum_{\substack{c \in \mathcal{C}_{m}^{(r)}}} (-1)^{v(z)} t^{2v(z)} - rt F_{m-\frac{r}{2}}^{(r)} (1, -t^2), \end{split}$$

which gives (3.16), where $\mathcal{R}_n^{(r)'}$ is as in the proof of Theorem 2.5, since members of $\mathcal{C}_{2m}^{(r)'}$ with v(c) even must begin and end with the same type of piece, while members with v(c) odd must have $u_1 = r$ in u_c with r possibilities for the position of its initial segment. Similarly, if r is odd and n = 2m - 1, then

$$L_{2m-1}^{(r)}(-1,t) = \sum_{c \in \mathcal{C}_{2m-1}^{(r)'}} w_c = \sum_{\substack{c \in \mathcal{C}_{2m-1}^{(r)'} \\ u_1 = s}} w_c + \sum_{\substack{c \in \mathcal{C}_{2m-1}^{(r)'} \\ u_1 = r}} w_c$$
$$= \sum_{c \in \mathcal{R}_{2m-2}^{(r)'}} w_c - rt \sum_{\substack{c \in \mathcal{R}_{2m-r-1}^{(r)'} \\ m-r+1}} w_c$$
$$= F_{m-1}^{(r)}(1,-t^2) - rt F_{m-\left(\frac{r+1}{2}\right)}^{(r)}(1,-t^2),$$

which gives (3.19).

For the cases that remain, let $C_n^{(r)^*} \subseteq C_n^{(r)'}$ such that $C_n^{(r)'} - C_n^{(r)^*}$ comprises those c which satisfy the following additional conditions:

- (i) c contains an even number of pieces in all;
- (ii) $u_1 \neq u_p$ in $u_c = u_1 u_2 \cdots u_p$;

(iii) if $u_1 = r$, then 1 corresponds to the initial segment of the r-mino covering it.

Pair members of $C_n^{(r)'} - C_n^{(r)^*}$ of opposite π -parity as follows: given $c \in C_n^{(r)'} - C_n^{(r)^*}$, let c' be the covering resulting when $u_c = u_1 u_2 \cdots u_p$ is read backwards.

If r is even and n = 2m - 1, then

$$\begin{split} L_{2m-1}^{(r)}(-1,t) &= \sum_{c \in \mathcal{C}_{2m-1}^{(r)}} w_c = \sum_{c \in \mathcal{C}_{2m-1}^{(r)^*}} w_c = \sum_{\substack{c \in \mathcal{C}_{2m-1}^{(r)^*} \\ u_1 = s}} w_c + \sum_{\substack{c \in \mathcal{C}_{2m-1}^{(r)^*} \\ u_1 = r}} w_c \\ &= \sum_{\substack{c \in \mathcal{R}_{2m-2}^{(r)'} \\ v(c) \text{ even}}} w_c - (r-1)t \sum_{\substack{c \in \mathcal{R}_{2m-r-2}^{(r)'} \\ v(c) \text{ even}}} w_c \\ &= F_{m-1}^{(r)}(1, -t^2) - (r-1)t F_{m-\frac{r}{2}-1}^{(r)}(1, -t^2), \end{split}$$

which gives (3.17), since members of $\mathcal{C}_{2m-1}^{(r)^*}$ with $u_1 = s$ must end in a double letter, while those with $u_1 = r$ must end in a single s with 1 not corresponding to the initial segment of the r-mino covering it. Similarly, if r is odd and n = 2m, then

$$\begin{split} L_{2m}^{(r)}(-1,t) &= \sum_{c \in \mathcal{C}_{2m}^{(r)^*}} w_c = \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)^*} \\ u_1 = u_p}} w_c + \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)^*} \\ u_1 \neq u_p}} w_c \\ &= \sum_{\substack{c \in \mathcal{C}_{2m}^{(r)^*} \\ u_1 = u_p}} (-1)^{v(c)/2} t^{v(c)} - (r-1)t \sum_{c \in \mathcal{R}_{2m-r-1}^{(r)'}} (-1)^{v(c)/2} t^{v(c)} \\ &= \sum_{z \in \mathcal{C}_m^{(r)}} (-1)^{v(z)} t^{2v(z)} - (r-1)t \sum_{z \in \mathcal{R}_{m-}^{(r)} (r+\frac{1}{2})} (-1)^{v(z)} t^{2v(z)} \\ &= L_m^{(r)} (1, -t^2) - (r-1)t F_{m-(\frac{r+1}{2})}^{(r)} (1, -t^2), \end{split}$$

which gives (3.18).

4 Variants of the π Statistic

Modifying the π statistic of the previous section in different ways yields additional polynomial generalizations of $L_n^{(r)}$. In this section, we look at some specific variants of the π statistic on circular *r*-mino arrangements, taking r = 2 for simplicity. We'll use the notation $C_n = C_n^{(2)}$, $C_{n,k} = C_{n,k}^{(2)}$, and $F_n(q,t) = F_n^{(2)}(q,t)$.

We first partition C_n as follows: let \overrightarrow{C}_n comprise those coverings in which 1 is covered by a square or by an initial segment of a domino and let \overleftarrow{C}_n comprise those coverings in which 1 is covered by the second segment of a domino.

Define the statistic π_1 on \mathcal{C}_n by

$$\pi_1(c) = \begin{cases} \pi(c), & \text{if } c \in \overrightarrow{\mathcal{C}}_n; \\ \pi(c) - 2v(c) + n, & \text{if } c \in \overleftarrow{\mathcal{C}}_n. \end{cases}$$
(4.1)

Note that $\pi_1(c)$ gives the sum of the numbers obtained by counting back counterclockwise the pieces from each domino to the piece covering 2 whenever $c \in \mathcal{C}_n$.

Theorem 4.1. For all $n \in \mathbb{P}$,

$$\sum_{c \in \mathcal{C}_n} q^{\pi_1(c)} t^{v(c)} = \sum_{0 \leqslant k \leqslant \lfloor n/2 \rfloor} q^{\binom{k+1}{2}} \left[\frac{(n-k)_q + q^{n-2k} k_q}{(n-k)_q} \right] \binom{n-k}{k}_q t^k.$$
(4.2)

Proof. By (2.10) when r = 2,

$$\sum_{c \in \mathcal{C}_{n,k}} q^{\pi_1(c)} = q^{\binom{k+1}{2}} \binom{n-k}{k}_q + q^{\binom{k}{2}+k+(n-2k)} \binom{n-k-1}{k-1}_q$$
$$= q^{\binom{k+1}{2}} \left[\binom{n-k}{k}_q + q^{n-2k} \frac{k_q}{(n-k)_q} \binom{n-k}{k}_q \right]$$
$$= q^{\binom{k+1}{2}} \left[\frac{(n-k)_q + q^{n-2k}k_q}{(n-k)_q} \right] \binom{n-k}{k}_q.$$

If $\hat{L}_n(q,t)$ denotes the distribution polynomial in (4.2), then

$$\hat{L}_n(q,t) = F_n(q,t) + q^{n-1}tF_{n-2}(q,t/q), \quad n \ge 1,$$
(4.3)

by (4.2) and (2.10), or by considering whether or not c belongs to $\overrightarrow{\mathcal{C}}_n$. The $\hat{L}_n(q,t)$ satisfy the nice recurrence

$$\hat{L}_n(q,t) = \hat{L}_{n-1}(q,qt) + qt\hat{L}_{n-2}(q,qt), \quad n \ge 3,$$
(4.4)

with $\hat{L}_1(q,t) = 1$ and $\hat{L}_2(q,t) = 1 + 2qt$, the first term of (4.4) accounting for those $c \in \overrightarrow{\mathcal{C}}_n$ where 1 is covered by a square as well as those $c \in \overleftarrow{\mathcal{C}}_n$ where 2 is covered by a square and the second term accounting for the cases that remain.

Next define π_2 on \mathcal{C}_n by

$$\pi_2(c) = \begin{cases} \pi(c), & \text{if } c \in \overrightarrow{\mathcal{C}}_n; \\ \pi(c) - v(c), & \text{if } c \in \overleftarrow{\mathcal{C}}_n. \end{cases}$$
(4.5)

Theorem 4.2. For all $n \in \mathbb{P}$,

$$\sum_{c \in \mathcal{C}_n} q^{\pi_2(c)} t^{v(c)} = \sum_{0 \leqslant k \leqslant \lfloor n/2 \rfloor} q^{\binom{k}{2}} \frac{n_q}{(n-k)_q} \binom{n-k}{k}_q t^k.$$
(4.6)

Proof. By (2.10) when r = 2,

$$\sum_{c \in \mathcal{C}_{n,k}} q^{\pi_2(c)} = q^{\binom{k+1}{2}} \binom{n-k}{k}_q + q^{\binom{k}{2}+k-k} \binom{n-k-1}{k-1}_q$$
$$= q^{\binom{k}{2}} \left[\frac{q^k(n-k)_q + k_q}{(n-k)_q} \right] \binom{n-k}{k}_q$$
$$= q^{\binom{k}{2}} \frac{n_q}{(n-k)_q} \binom{n-k}{k}_q.$$

Theorem 4.2 provides a combinatorial interpretation of the generalized Lucas polynomials

$$Luc_{n}(x,t) := \sum_{0 \leqslant k \leqslant \lfloor n/2 \rfloor} q^{\binom{k}{2}} \frac{n_{q}}{(n-k)_{q}} \binom{n-k}{k}_{q} x^{n-2k} t^{k},$$
(4.7)

studied by Cigler [2, 3]. Note that the joint distribution of π_2 and v on \mathcal{C}_n is $Luc_n(1, t)$, with the x variable of $Luc_n(x, t)$ recording the number of squares in $c \in \mathcal{C}_n$. Considering whether or not c belongs to $\overrightarrow{\mathcal{C}}_n$ leads directly to the relation (cf. [3])

$$Luc_n(1,t) = F_n(q,t) + tF_{n-2}(q,t), \quad n \ge 1.$$
 (4.8)

The $Luc_n(1,t)$ do not seem to satisfy a two-term recurrence like (3.7) or (4.4).

Similar reasoning shows that $Luc_n(1,t)$ is also the joint distribution of the statistics π_3 and v on \mathcal{C}_n , where

$$\pi_3(c) = \begin{cases} \pi(c) - v(c), & \text{if } c \in \overrightarrow{\mathcal{C}}_n; \\ \pi(c) - 2v(c) + n, & \text{if } c \in \overleftarrow{\mathcal{C}}_n, \end{cases}$$
(4.9)

which yields the relation

$$Luc_n(1,t) = F_n(q,t/q) + q^{n-1}tF_{n-2}(q,t/q), \quad n \ge 1.$$
(4.10)

The π_2 statistic on C_n can be generalized to $C_n^{(r)}$ by letting $\pi_2(c) = \pi(c)$, if the number 1 is covered by a square or an initial segment of an *r*-mino, and letting $\pi_2(c) = \pi(c) - v(c)$, otherwise. Reasoning as in Theorem 4.2 with π_2 on $C_n^{(r)}$ leads to

$$Luc_{n}^{(r)}(x,t) := \sum_{0 \leq k \leq \lfloor n/r \rfloor} q^{\binom{k}{2}} \left[\frac{(r-2)k_{q} + (n-(r-2)k)_{q}}{(n-(r-1)k)_{q}} \right] \binom{n-(r-1)k}{k}_{q} x^{n-rk} t^{k}, \quad (4.11)$$

which generalizes $Luc_n(x,t)$. The $Luc_n^{(r)}(x,t)$ are connected with the $F_n^{(r)}(q,t)$ by the simple relation

$$Luc_n^{(r)}(1,t) = F_n^{(r)}(q,t) + (r-1)tF_{n-r}^{(r)}(q,t), \qquad n \ge 1,$$
(4.12)

which generalizes (4.8).

Acknowledgment

The authors would like to thank the anonymous referee for formulas (2.8), (2.9), (4.11), and (4.12).

References

- L. Carlitz, Fibonacci notes 3: q-Fibonacci polynomials, Fibonacci Quart. 12 (1974), 317–322.
- [2] J. Cigler, Einige q-Analoga der Lucas- and Fibonacci-Polynome, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II **211** (2002), 3–20.
- [3] J. Cigler, A new class of q-Fibonacci polynomials, *Electron. J. Combin.* 10 (2003), #R19.
- [4] J. Cigler, Some algebraic aspects of Morse code sequences, Discrete Math. Theor. Comput. Sci. 6 (2003), 55–68.
- [5] J. Cigler, q-Fibonacci polynomials and the Rogers-Ramanujan identities, Ann. Combin. 8 (2004), 269–285.
- [6] S. Ekhad and D. Zeilberger, The number of solutions of $X^2 = 0$ in triangular matrices over GF(q), *Electron. J. Combin.* **3** (1) (1996), #R2.
- [7] B. Kupershmidt, q-Analogues of classical 6-periodicity, J. Nonlinear Math. Physics 10 (2003), 318–339.
- [8] M. Shattuck and C. Wagner, Parity theorems for statistics on domino arrangements, *Electron. J. Combin.* **12** (2005), #N10.
- [9] M. Shattuck and C. Wagner, A new statistic on linear and circular *r*-mino arrangements, *Electron. J. Combin.* **13** (1) (2006), #R42.
- [10] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, 1986.
- [11] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), 199–218.
- [12] H. Wilf, generatingfunctionology, Academic Press, 1990.

2000 Mathematics Subject Classification: Primary 11B39; Secondary 05A15. Keywords: r-mino arrangement, polynomial generalization, Fibonacci numbers, Lucas numbers.

(Concerned with sequences $\underline{A000045}$ and $\underline{A000204}$.)

Received April 4 2006; revised version received August 17 2006. Published in *Journal of Integer Sequences*, August 18 2006.

Return to Journal of Integer Sequences home page.