Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.6

On the Sum of Iterations of the Euler Function

Igor E. Shparlinski
Department of Computing
Macquarie University
Sydney, NSW 2109

Australia
igor@ics.mq.edu.au

Abstract

We study the sum $$
F(n)=\sum_{k=1}^{\kappa(n)} \varphi^{(k)}(n)
$$ of consecutive iterations of the Euler function $\varphi(n)$ (where the last iteration satisfies $\varphi^{(\kappa(n))}(n)=1$). We show that for almost all n, the difference $|F(n)-n|$ is not too small, and the ratio $n / F(n)$ is not an integer. The latter result is related to a question about the so-called perfect totient numbers, for which $F(n)=n$.

1 Introduction

Let φ denote the Euler function, which, for an integer $n \geq 1$, is defined as usual by

$$
\varphi(n)=\#\{j \in \mathbb{Z} \mid 1 \leq j \leq n, \operatorname{gcd}(j, n)=1\}
$$

Moreover, for an integer $k \geq 1$, we use $\varphi^{(k)}$ to denote the k th iteration of φ, that is, the function defined recursively as $\varphi^{(1)}(n)=\varphi(n)$ and $\varphi^{(k+1)}(n)=\varphi^{k}(\varphi(n)), k=1,2, \ldots$.

Clearly for every n there exists a uniquely defined integer $\kappa(n)$ such that $\varphi^{(\kappa(n))}(n)=1$. Accordingly, we define the function

$$
F(n)=\sum_{k=1}^{\kappa(n)} \varphi^{(k)}(n)
$$

which is an additive analogue of the function

$$
G(n)=\prod_{k=1}^{\kappa(n)} \varphi^{(k)}(n)
$$

considered in the paper [1]. (In fact, the results of 四 are formulated for $n G(n)$ but one can easily reformulate them for $G(n)$.)

The function $F(n)$ also appears in the definition of perfect totient numbers, which are the integers $n \geq 2$ with $F(n)=n$; see [固, (6) and references therein. Here we use some very elementary arguments to establish several properties of this function, which seem to be new.

Let

$$
\mathcal{V}(x)=\{\varphi(n) \leq x \mid n=1,2, \ldots\}, \quad \mathcal{U}(x)=\{F(n) \leq x \mid n=1,2, \ldots\} .
$$

We start with the observation that

$$
\mathcal{U}(x) \subseteq\{v+F(v) \mid v \in \mathcal{V}(x)\}
$$

therefore

$$
\# \mathcal{U}(x) \leq \# \mathcal{V}(x)
$$

There are several very tight bounds on the value set of the Euler function (see [2, 5]). These immediately imply that

$$
\begin{equation*}
\# \mathcal{U}(x) \leq \frac{x}{\log x} \exp \left((C+o(1))(\log \log \log x)^{2}\right), \quad x \rightarrow \infty \tag{1}
\end{equation*}
$$

for some absolute constant $C=0.8178 \cdots$. This, in turn, implies that the set of perfect totient numbers is of density zero. On the other other hand, it is easy to check that $F\left(3^{s}\right)=$ $3^{s}, s=1,2, \ldots$ Thus there are infinitely many perfect totient numbers, and in fact $\# \mathcal{U}(x) \geq$ $\log x / \log 3-1$. Here we show that in fact one can get a better bound by considering integers of the form $2^{r} 3^{s}, r, s=1,2, \ldots$.

As in the case of the classical perfect numbers, see [3], one can consider multiply perfect totient numbers for which $F(n) \mid n$. We show that multiply perfect totient numbers form a zero density set.

We also show that

$$
|F(n)-n| \geq(\log n)^{\log 2+o(1)}
$$

for almost all n. Hence such "approximately" perfect totient numbers form a set of density zero, too.

Throughout the paper, the implied constants in the symbols " O ", ">" and "<<" are absolute. (We recall that the notation $U \ll V$ and $V \gg U$ is equivalent to the statement that $U=O(V)$ for positive functions U and $V)$. We also use the symbol "o" with its usual meaning: the statement $U=o(V)$ is equivalent to $U / V \rightarrow 0$.

Finally, for any real number $z>0$ and any integer $\nu \geq 1$, we write $\log _{\nu} z$ for the function defined inductively by $\log _{1} z=\max \{\log z, 1\}$, where $\log z$ is the natural $\operatorname{logarithm}$ of z and $\log _{\nu} z=\log _{1}\left(\log _{\nu-1} z\right)$ for $\nu>1$. When $\nu=1$, we omit the subscript in order to simplify the notation; however, we continue to assume that $\log z \geq 1$ for any $z>0$.

2 Main Results

Theorem 2.1. The following bound holds:

$$
\# \mathcal{U}(x) \gg(\log x)^{2}
$$

Proof. For positive integer r and s, we have

$$
\begin{aligned}
F\left(2^{2 r} 3^{2 s}\right) & =\sum_{i=1}^{2 s} 3^{2 s-i} 2^{2 r}+\sum_{j=0}^{2 r} 2^{2 r-j} \\
& =2^{2 r-1}\left(3^{2 s}-1\right)+2^{2 r}-1=2^{2 r-1} 3^{2 s}+2^{2 r-1}-1 .
\end{aligned}
$$

Assume that

$$
2^{2 r-1} 3^{2 s}+2^{2 r-1}-1=2^{2 u-1} 3^{2 v}+2^{2 u-1}-1
$$

for some positive integers u and v. Then

$$
\left(3^{2 s}+1\right)=2^{2 u-2 r}\left(3^{2 v}+1\right)
$$

which is impossible unless $u=r, v=s$, since

$$
3^{2 s}+1 \equiv 3^{2 v}+1 \equiv 2 \quad(\bmod 4) .
$$

This means that the values of $F\left(2^{2 r} 3^{2 s}\right)$ are pairwise distinct and the result follows.
Denoting by $M(x)$ the number of multiply perfect totient numbers $n \leq x$, we have the following result.
Theorem 2.2. For all positive integers $n \leq x$ except possibly $o(x)$ of them, the bound

$$
M(x) \ll \frac{x}{\log x} \exp \left((C+o(1))\left(\log _{3} x\right)^{2}\right)
$$

holds.
Proof. Let

$$
\Delta=\max _{n \leq x} \frac{n}{\varphi(n)}
$$

Since $\varphi(n) \gg n / \log _{2} n$ (see [], Theorem 4, Chapter I.5]) we conclude that $\Delta=O\left(\log _{2} x\right)$. Clearly, every n with $F(n) \mid n$ must be of the form $n=d u$ with an positive integer $d \leq \Delta$ and $u \in \mathcal{U}(x / d)$. Therefore, using ($\mathbb{\mathbb { I }}$), we deduce,

$$
\begin{aligned}
M(x) & \leq \sum_{1 \leq d \leq \Delta} \# \mathcal{U}(x / d) \\
& \leq x \sum_{1 \leq d \leq \Delta} \frac{1}{d \log (x / d)} \exp \left((C+o(1))\left(\log _{3}(x / d)\right)^{2}\right) \\
& \leq \frac{x}{\log x} \exp \left((C+o(1))\left(\log _{3} x\right)^{2}\right) \sum_{1 \leq d \leq \Delta} \frac{1}{d} \\
& \ll \frac{x}{\log x} \exp \left((C+o(1))\left(\log _{3} x\right)^{2}\right) \log \Delta \\
& =\frac{x}{\log x} \exp \left((C+o(1))\left(\log _{3} x\right)^{2}\right),
\end{aligned}
$$

which finishes the proof.

Theorem 2.3. For all positive integers $n \leq x$, except possibly $o(x)$ of them, the bound

$$
|F(n)-n| \geq(\log x)^{\log 2+o(1)}
$$

holds.
Proof. Let $\nu(m)$ denote the largest power of 2 that divides m. We start with an observation that if m is not a power of 2 itself, we have $\nu(\varphi(m)) \geq \nu(m)$. It is also clear that $\nu(\varphi(m)) \geq$ $\omega(m)-1$ where $\omega(m)$ is the number of distinct prime divisors of n. This implies that

$$
F(n) \equiv 2^{\omega(n)-1}+\cdots+1 \equiv-1 \quad\left(\bmod 2^{\omega(n)-1}\right)
$$

From the classical Hardy-Ramanujan inequality, for any $y \geq 1$,

$$
\left|\omega(n)-\log _{2} x\right| \leq y \sqrt{\log _{2} x}
$$

for at most $O\left(x y^{-2}\right)$ positive integers $n \leq x$ (see [7, Theorem 4, Chapter III.3]). Take $y=\left(\log _{2} x\right)^{1 / 6}$ and put

$$
r=\left\lfloor\log _{2} x-y \sqrt{\log _{2} x}-1\right\rfloor, \quad s=\left\lfloor\log _{2} x-2 y \sqrt{\log _{2} x}\right\rfloor .
$$

We see that

$$
F(n) \equiv-1 \quad\left(\bmod 2^{r}\right)
$$

for all but $O\left(x\left(\log _{2} x\right)^{-1 / 3}\right)$ positive integers $n \leq x$. Therefore, for every of the remaining integers n we see that if $|F(n)-n|<2^{s}$ then n belongs to one of the $O\left(2^{s}\right)$ residue classes modulo 2^{r}. Thus this is possible for at most $O\left(2^{s}\left(x / 2^{r}+1\right)\right)=O\left(x 2^{s-r}\right)$ positive integers $n \leq x$, which finishes the proof.

3 Open Questions

It seems quite plausible that considering integers n composed out of more fixed primes, for example, $n=2^{r} 3^{s} 5^{t}$ one can improve the lower bound of Theorem 2.1. We however do not see how to create a more generic argument, which would lead to, say, the estimate

$$
\frac{\log \# \mathcal{U}(x)}{\log _{2} x} \rightarrow \infty, \quad x \rightarrow \infty
$$

which, no doubt, is correct.
It is also natural to expect that the bounds of Theorems 2.2 and 2.3 are not tight and can be improved.

One can easily derive from [] , Theorem 4.2] that

$$
\frac{1}{x} \sum_{n \leq x} F(n) \sim \frac{3}{\pi^{2}} x .
$$

In fact, using the full strength of [1] Theorem 4.2], one can obtain a more precise asymptotic expansion for the average value of $F(n)$.

Finally, one can also ask similar questions for the sums of iterations of other number theoretic functions, such as the the sum of divisors function $\sigma(n)$ or the Carmichael functions $\lambda(n)$.

References

[1] P. Erdős, A. Granville, C. Pomerance and C. Spiro, On the normal behaviour of the iterates of some arithmetic functions, in Analytic Number Theory, Birkhäuser, Boston, 1990, pp. 165-204.
[2] K. Ford, The distribution of totients, Ramanujan J., 2 (1998), 67-151.
[3] B. Hornfeck and E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann., 133 (1957), 431-438.
[4] D. E. Iannucci, D. Moujie and G. L. Cohen, On perfect totient numbers, J. Integer Sequences, 6 (2003), Article 03.4.5.
[5] H. Maier and C. Pomerance, On the number of distinct values of Euler's φ function, Acta Arith., 49 (1988), 263-275.
[6] A. L. Mohan and D. Suryanarayana, Perfect totient numbers, in Number Theory (Proc. 3rd Matscience Conf., Mysore, 1981), Lect. Notes in Math., vol. 938, Springer-Verlag, New York, 1982, pp. 101-105.
[7] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.

2000 Mathematics Subject Classification: Primary 11N37; Secondary 11N60.
Keywords: Euler function, iterations, congruences.
(Concerned with sequence A082897.)

Received July 27 2005; revised version received January 18 2006. Published in Journal of Integer Sequences, January 232006.

Return to Journal of Integer Sequences home page.

