

A Note on the Postage Stamp Problem

Amitabha Tripathi
Department of Mathematics
Indian Institute of Technology
Hauz Khas
New Delhi - 110016
India
atripath@maths.iitd.ac.in

Abstract

Let h, k be fixed positive integers, and let A be any set of positive integers. Let $h A:=\left\{a_{1}+a_{2}+\cdots+a_{r}: a_{i} \in A, r \leq h\right\}$ denote the set of all integers representable as a sum of no more than h elements of A, and let $n(h, A)$ denote the largest integer n such that $\{1,2, \ldots, n\} \subseteq h A$. Let $n(h, k)=\max _{A} n(h, A)$, where the maximum is taken over all sets A with k elements. The purpose of this note is to determine $n(h, A)$ when the elements of A are in arithmetic progression. In particular, we determine the value of $n(h, 2)$.

1 Introduction

A set $A=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$ is called an h-basis for a positive integer n if each of $1,2, \ldots, n$ is expressible as a sum of at most h (not necessarily distinct) elements of A. In order that A be an h-basis for n, it is necessary that $a_{1}=1$. For fixed positive integers h and k, let $n(h, k)$ denote the largest integer for which an h-basis of k elements exists. The problem of determining $n(h, k)$ is apparently due to Rohrbach [罒, and has been studied often. A large and extensive bibliography can be found in a paper of Alter and Barnett [2]. The Postage Stamp Problem derives its name from the situation where we require the largest integer $n=n(h, k)$ such that all stamp values from 1 to n may be made up from a collection of k integer-valued stamp denominations with the restriction that an envelope that can have no more than h stamps, repetitions being allowed. An additional related problem is to determine all sets with k elements that form an h-basis for $n(h, k)$. We call such a set an extremal h-basis.

It is easy to see that $n(1, k)=k$ with unique extremal basis $\{1,2, \ldots, k\}$ and that $n(h, 1)=h$ with unique extremal basis $\{1\}$. The result $n(h, 2)=\left\lfloor\left(h^{2}+6 h+1\right) / 4\right\rfloor$ with
unique extremal basis $\{1,(h+3) / 2\}$ for odd h and $\{1,(h+2) / 2\}$ and $\{1,(h+4) / 2\}$ for even h has been rediscovered several times, for instance by Stöhr [3, [] and by Stanton, Bate and Mullin [5]. No other closed-form formula is known for any other pair (h, k) where one of h, k is fixed. In addition, $n(h, k)$ is known for several pairs (h, k); see [日]. Asymptotic bounds for $n(h, k)$ are due to Rohrbach [1] , while bounds for $n(h, 3)$ and $n(2, k)$ are due to Hofmeister [6], and due to Rohrbach [1], Klotz [7, Moser (8) and others, respectively.

Let h, k be fixed positive integers, and let A be any set of positive integers. Let

$$
h A:=\left\{a_{1}+a_{2}+\cdots+a_{r}: a_{i} \in A, r \leq h\right\}
$$

denote the set of all integers representable as a sum of no more than h elements of A, and let $n(h, A)$ denote the largest integer n such that $\{1,2, \ldots, n\} \subseteq h A$. Thus $n(h, k)=$ $\max _{A} n(h, A)$, where the maximum is taken over all sets A with k elements. The purpose of this note is to determine $n(h, A)$ when the elements of A are in arithmetic progression. In particular, this easily gives the value of $n(h, 2)$.

2 Main Result

Throughout this section, h, k, d are fixed positive integers. Let

$$
A=\{1,1+d, 1+2 d, \ldots, 1+(k-1) d\}
$$

be a k-term arithmetic progression. In order that $n \in h A$, it is necessary and sufficient that the equation

$$
\begin{equation*}
x_{0}+(1+d) x_{1}+(1+2 d) x_{2}+\cdots+(1+(k-1) d) x_{k-1}=\sum_{i=0}^{k-1} x_{i}+\left(\sum_{i=0}^{k-1} i x_{i}\right) d=n \tag{1}
\end{equation*}
$$

has a solution, with $x_{i} \in \mathbb{N} \cup 0$ for all i and $\sum_{i=0}^{k-1} x_{i} \leq h$.
Suppose $x_{0}, x_{1}, \ldots, x_{k-1}$ are nonnegative integers whose sum is at most a. Then $x_{1}+$ $2 x_{2}+\cdots+(k-1) x_{k-1}$ assumes all values $0,1, \ldots,(k-1) a$ as the x_{i} 's range over nonnegative integers whose sum does not exceed a. Indeed, to achieve the sum $q(k-1)+r$ for $0 \leq q<a$ and $0 \leq r<k-1$ or for $q=a$, we may choose $x_{k-1}=q, x_{r}=0$ or 1 according as $r=0$ or $r>0$, and all other x_{i} zero. We are now in a position to state our main result.

Theorem 1 Let h, k, d be positive integers. Then

$$
n(h,\{1,1+d, 1+2 d, \ldots, 1+(k-1) d\})= \begin{cases}h, & \text { if } h \leq d-1 \\ h+(k-1)(h+1-d) d, & \text { if } h \geq d\end{cases}
$$

Proof. We write $A=\{1,1+d, 1+2 d, \ldots, 1+(k-1) d\}$. The case $h \leq d-1$ is easy to see. Henceforth, we assume $h \geq d$. Suppose $x_{0}, x_{1}, \ldots, x_{k-1}$ are chosen such that the sum in
(1) equals $n=n(h, A)$. If $\sum_{i=0}^{k-1} x_{i}<h, x_{0}$ may be incremented by 1 without violating the restriction on the sum of the x_{i} 's, thereby achieving the sum $n(h, A)+1$. Thus $\sum_{i=0}^{k-1} x_{i}=h$, so that $n(h, A) \equiv h(\bmod d)$ by (1) and $m:=\sum_{i=0}^{k-1} i x_{i} \leq(k-1) h$.

Now $h+1+m d \in h A$ if and only if (1) has a solution with $\sum_{i=0}^{k-1} x_{i}=h+1-\lambda d$ and $\sum_{i=0}^{k-1} i x_{i}=m+\lambda$ for some $\lambda \in \mathbb{N}$. Such a simultaneous solution exists precisely when $m+\lambda \leq(h+1-\lambda d)(k-1)$, that is, when $m \leq(h+1-\lambda d)(k-1)-\lambda \leq(h+1-d)(k-1)-1$. Thus $h+1+m d \notin h A$ for $m \geq(h+1-d)(k-1)$, and $n(h, A) \leq h+(k-1)(h+1-d) d$.

It remains to show that every positive integer less than or equal to $h+(k-1)(h+1-d) d$ is an element of $h A$. Any such integer N can be expressed as $r+q d$, where r, q satisfy the inequalities $1 \leq r \leq h$ and $q \leq(k-1) r$, as follows. We choose the largest $r \equiv N(\bmod d)$ which is also less than or equal to h. Such an r is greater than or equal to $h+1-d$, so that $q d=N-r \leq N-(h+1-d) \leq h+(h+1-d)((k-1) d-1)<((k-1)(h+1-d)+1) d$, and $q \leq(k-1)(h+1-d) \leq(k-1) r$. Thus $\sum_{i=0}^{k-1} x_{i}=r$ and $\sum_{i=0}^{k-1} i x_{i}=q$ is simultaneously solvable by the argument immediately preceding the Theorem. This completes the proof.

Corollary 2 For $h \geq 1$,

$$
n(h, 2)=\left\lfloor\frac{h^{2}+6 h+1}{4}\right\rfloor .
$$

Moreover, the only extremal basis is $\{1,(h+3) / 2\}$ if h is odd, and $\{1,(h+2) / 2\}$ and $\{1,(h+4) / 2\}$ if h is even.

Proof. From Theorem 1,

$$
n(h, 2)=h+\max _{d \geq 1}(h+1-d) d=h+\left\lfloor\frac{(h+1)^{2}}{4}\right\rfloor=\left\lfloor\frac{h^{2}+6 h+1}{4}\right\rfloor .
$$

It is easy to see that the maximum is achieved at $d=(h+1) / 2$, so that there is only one extremal basis if h is odd and two such bases if h is even.

Remark. The function $n(h, 2)$ is sequence A014616 in Sloane's table [0].

3 Acknowledgments

The author is grateful to the referee for a careful reading and for numerous suggestions all of which have helped improve the presentation of this article.

References

[1] H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z., 42, 1-30, 1937.
[2] R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87, 206210, 1980.
[3] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, I, J. reine Angew. Math., 194, 40-65, 1955.
[4] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, II, J. reine Angew. Math., 194, 111-140, 1955.
[5] R. G. Stanton, J. A. Bate and R. C. Mullin, Some tables for the postage stamp problem, Congr. Numer., Proceedings of the Fourth Manitoba Conference on Numerical Mathematics, Winnipeg, 12, 351-356, 1974.
[6] G. R. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasis in natürlichen Zahlen, J. reine Angew. Math., 232, 77-101, 1968.
[7] W. Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. reine Angew. Math., 238, 161-168, 1969.
[8] L. Moser, On the representation of $1,2, \ldots, n$ by sums, Acta Arith., 6, 11-13, 1960.
[9] N. J. A. Sloane, The On-Line Encylopedia of Integer Sequences, 2005.

2000 Mathematics Subject Classification: Primary 11B13.
Keywords: h-basis, extremal h-basis, arithmetic progression.
(Concerned with sequence A014616.)

Received July 1 2005; revised version received December 15 2005. Published in Journal of Integer Sequences, December 152005.

Return to Journal of Integer Sequences home page.

