A Relation Between Restricted and Unrestricted Weighted Motzkin Paths

Wen-jin Woan
Howard University
Washington, DC 20059
USA
wwoan@fac.howard.edu

Abstract

We consider those lattice paths that use the steps "up", "level", and "down" with assigned weights w, b, c. In probability theory, the total weight is 1 . In combinatorics, we replace weight by the number of colors. Here we give a combinatorial proof of a relation between restricted and unrestricted weighted Motzkin paths.

1 Introduction

We consider those lattice paths in the Cartesian plane starting from $(0,0)$ that use the steps $\{U, L, D\}$, where $U=(1,1)$, an up-step, $L=(1,0)$, a level-step and $D=(1,-1)$, a downstep, with assigned weights w, b, and c. In probability theory, the total weight is 1 . In combinatorics, we regard weight as the number of colors and normalize by setting $w=1$. Let P be a path. We define the weight $w(P)$ to be the product of the weight of the steps. Let $A(n, k)$ be the set of all weighted lattice paths ending at the point (n, k), and let $M(n, k)$ be the set of lattice paths in $A(n, k)$ that never go below the x-axis. Let $a_{n, k}$ be the sum of all $w(P)$ with P in $A(n, k)$ and let $m_{n, k}$ be the sum of all $w(P)$ with P in $M(n, k)$. Note that

$$
a_{n, k}=a_{n-1, k-1}+b a_{n-1, k}+c a_{n-1, k+1},
$$

and the same relationship holds for $b_{n, k}$ and $m_{n, k}$. In combinatorics, we regard the weights as the number of colors. Then $A(n, k)$ is the set of all colored lattice paths ending at the point (n, k) and $M(n, k)$ is the set of all colored lattice paths in $A(n, k)$ that never go below the x-axis. Then $a_{n, k}=|A(n, k)|, m_{n, k}=|M(n, k)|$, and $m_{n}=|M(n, 0)|$. The sequence $\left\{m_{n}\right\}$ is called the $b c$-Motzkin sequence for the $b c$-Motzkin lattice path. Let $B(n, k)$ denote the set of lattice paths in $A(n, k)$ that never return to the x-axis after the initial U step and
let $b_{n, k}=|B(n, k)|$. Note that the paths in $M(n, k)$ and $B(n, k)$ are restricted paths. For definitions and results please refer to Stanley [5].

2 Some Examples

Example 1. For $b=2, c=1$, all matrices are infinite by infinite. Partial entries are as follows:

$$
\begin{gathered}
\left(a_{n, k}\right)=\left[\begin{array}{cccccccccccc}
n \backslash k & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 \\
4 & 0 & 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 & 0 \\
5 & 1 & 10 & 45 & 120 & 210 & 252 & 210 & 120 & 45 & 10 & 1
\end{array}\right], \\
\left(m_{n, k}\right)=\left[\begin{array}{ccccccc}
n \backslash k & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
2 & 5 & 4 & 1 & 0 & 0 & 0 \\
3 & 14 & 14 & 6 & 1 & 0 & 0 \\
4 & 42 & 48 & 27 & 8 & 1 & 0 \\
5 & 132 & 165 & 110 & 44 & 10 & 1
\end{array}\right], \\
\left(b_{n, k}\right)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 5 & 4 & 1 & 0 & 0 & 0 \\
0 & 14 & 14 & 6 & 1 & 0 & 0 \\
0 & 42 & 48 & 27 & 8 & 1 & 0 \\
0 & 132 & 165 & 110 & 44 & 10 & 1
\end{array}\right] .
\end{gathered}
$$

The 21-Motzkin sequence $1,2,5,14,42,132, \ldots$ of the first column of $\left(m_{n, k}\right)$ is the Catalan sequence (Sloane's A000108). Please refer to Stanley [0].

Example 2. For $b=3, c=2$, partial entries are as follows:

$$
\left(a_{n, k}\right)=\left[\begin{array}{cccccccccccc}
n \backslash k & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 2 & 3 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 4 & 12 & 13 & 6 & 1 & 0 & 0 & 0 \\
3 & 0 & 0 & 8 & 36 & 66 & 63 & 33 & 9 & 1 & 0 & 0 \\
4 & 0 & 16 & 96 & 248 & 360 & 321 & 180 & 62 & 12 & 1 & 0 \\
5 & 32 & 240 & 800 & 1560 & 1970 & 1683 & 985 & 390 & 100 & 15 & 1
\end{array}\right],
$$

$$
\begin{aligned}
&\left(m_{n, k}\right)= {\left[\begin{array}{ccccccc}
n \backslash k & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 0 \\
2 & 11 & 6 & 1 & 0 & 0 & 0 \\
3 & 45 & 31 & 9 & 1 & 0 & 0 \\
4 & 197 & 156 & 60 & 12 & 1 & 0 \\
5 & 903 & 785 & 372 & 98 & 15 & 1
\end{array}\right], } \\
&\left(b_{n, k}\right)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 & 0 & 0 \\
0 & 11 & 6 & 1 & 0 & 0 & 0 \\
0 & 45 & 31 & 9 & 1 & 0 & 0 \\
0 & 197 & 156 & 60 & 12 & 1 & 0 \\
0 & 903 & 785 & 360 & 98 & 15 & 1
\end{array}\right]
\end{aligned}
$$

The 32 -Motzkin sequence $1,3,11,45,197, \ldots$ of the first column of $\left(m_{n, k}\right)$ is the little Schroeder sequence (Sloane's A001003).

Example 3. Let $b=4, c=3$. Partial entries are as follows:

$$
\begin{gathered}
\left(a_{n, k}\right)=\left[\begin{array}{cccccccccc}
n \backslash k & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 3 & 4 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 9 & 24 & 22 & 8 & 1 & 0 & 0 \\
3 & 0 & 27 & 108 & 171 & 136 & 57 & 12 & 1 & 0 \\
4 & 81 & 432 & 972 & 1200 & 886 & 400 & 108 & 16 & 1
\end{array}\right], \\
\left(m_{n, k}\right)=\left[\begin{array}{cccccc}
n \backslash k & 0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 & 0 \\
2 & 19 & 8 & 1 & 0 & 0 \\
3 & 100 & 54 & 12 & 1 & 0 \\
4 & 562 & 352 & 105 & 16 & 1
\end{array}\right], \\
\left(b_{n, k}\right)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 4 & 1 & 0 & 0 & 0 \\
0 & 19 & 8 & 1 & 0 & 0 \\
0 & 100 & 54 & 9 & 1 & 0 \\
0 & 562 & 356 & 105 & 16 & 1
\end{array}\right] .
\end{gathered}
$$

3 Main results

We now give a bijective proof for

Theorem 4．$a_{n, k}=\sum_{i=0} c^{i} m_{n}, 2 i+k$ for $n, k \geq 0$ ．
Proof．Let P be a lattice path in $A(n, k)$ ．Find the leftmost lowest point of the path，and let this point be $p=(m,-i)$ ．Now we obtain path P^{\prime} in $M(n, 2 i+k)$ from P as follows： first，replace U with D ，and D with U for the section of P before the point p ．Next，reverse the order of those steps and attach those steps to the end of the rest of the path．This gives us a path P^{\prime} with i fewer down steps and $w(P)=c^{i} w\left(P^{\prime}\right)$ ．Note that the attached point is the rightmost point of height $i+k$ ；this identification suggests the inverse mapping．

Example 5．Let $P=(U D D D) L U D U U U D U \in A(15,1), P^{\prime}=L U D U U U D U(U U U D) \in$ $M(15,5)$ ．

Remark 6．Theorem ⿴囗⿱一一 $^{\text {6 }}$ shows us the relationship between $\left(m_{n, k}\right)$ and $\left(a_{n, k}\right)$ ．
For Example［1

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
5 & 4 & 1 & 0 & 0 & 0 \\
14 & 14 & 6 & 1 & 0 & 0 \\
42 & 48 & 27 & 8 & 1 & 0 \\
132 & 165 & 110 & 44 & 10 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
6 & 4 & 1 & 0 & 0 & 0 \\
20 & 15 & 6 & 1 & 0 & 0 \\
70 & 56 & 28 & 8 & 1 & 0 \\
252 & 210 & 120 & 45 & 10 & 1
\end{array}\right] .
\end{aligned}
$$

For Example 2

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 & 0 \\
11 & 6 & 1 & 0 & 0 & 0 \\
45 & 31 & 9 & 1 & 0 & 0 \\
197 & 156 & 60 & 12 & 1 & 0 \\
903 & 785 & 360 & 98 & 15 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 & 0 \\
4 & 0 & 2 & 0 & 1 & 0 \\
0 & 4 & 0 & 2 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 & 0 \\
13 & 6 & 1 & 0 & 0 & 0 \\
63 & 33 & 9 & 1 & 0 & 0 \\
321 & 180 & 62 & 12 & 1 & 0 \\
1683 & 985 & 390 & 100 & 15 & 1
\end{array}\right] .
\end{aligned}
$$

For Example 3

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 & 0 \\
19 & 8 & 1 & 0 & 0 \\
100 & 54 & 12 & 1 & 0 \\
562 & 352 & 105 & 16 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 \\
9 & 0 & 3 & 0 & 1
\end{array}\right] } \\
&=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 & 0 \\
22 & 8 & 1 & 0 & 0 \\
136 & 57 & 12 & 1 & 0 \\
886 & 400 & 108 & 16 & 1
\end{array}\right] .
\end{aligned}
$$

We now give a bijective proof for
Theorem 7. $a_{n,-k}=c^{k} a_{n, k}$.
Proof. Let P be in $A(n,-k)$. Then P has k more D steps than U steps. We obtain $P^{\prime} \in A(n, k)$ from P by interchanging D steps and U steps. Then P has k more D steps than P^{\prime}. Hence $a_{n,-k}=c^{k} a_{n, k}$.

For examples, see Examples 1, 2 and 3.
We now give a bijective proof for
Theorem 8. $(1+b+c)^{n}=\sum_{k=-n}^{n} a_{n, k}=a_{n, 0}+\sum_{k=1}^{n}\left(c^{k}+1\right) a_{n, k}$.
Proof. For each step we have $(1+b+c)$ choices. Let us index the columns of $\left(a_{n, k}\right)$ by the power k of y. The generating function going from one row to next is multiplied by
$w(y)=y+b+c y^{-1}$. Hence the generating function of the $n^{t h}$ row of $\left(a_{n, k}\right)$ is $w(y)^{n}$. By setting $y=1$ we have

$$
\begin{aligned}
(1+b+c)^{n} & =\sum_{k=-n}^{n} a_{n, k} \\
& =\sum_{k=-n}^{-1} a_{n, k}+a_{n, 0}+\sum_{k=1}^{n} a_{n, k} \\
& =\sum_{k=1}^{n} c^{k} a_{n, k}+a_{n, 0}+\sum_{k=1}^{n} a_{n, k} \\
& =a_{n, 0}+\sum_{k=1}^{n}\left(c^{k}+1\right) a_{n, k} .
\end{aligned}
$$

Remark 9. Apply Theorem to
Example 1]:

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
6 & 4 & 1 & 0 & 0 & 0 \\
20 & 15 & 6 & 1 & 0 & 0 \\
70 & 56 & 28 & 8 & 1 & 0 \\
252 & 210 & 120 & 45 & 10 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
16 \\
64 \\
256 \\
1024
\end{array}\right]
$$

Example 2

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 & 0 \\
13 & 6 & 1 & 0 & 0 & 0 \\
63 & 33 & 9 & 1 & 0 & 0 \\
321 & 180 & 62 & 12 & 1 & 0 \\
1683 & 985 & 390 & 100 & 15 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
5 \\
9 \\
17 \\
33
\end{array}\right]=\left[\begin{array}{c}
1 \\
6 \\
36 \\
216 \\
1296 \\
7776
\end{array}\right] .
$$

Example 3

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 & 0 \\
22 & 8 & 1 & 0 & 0 \\
136 & 57 & 12 & 1 & 0 \\
886 & 400 & 108 & 16 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
4 \\
10 \\
28 \\
82
\end{array}\right]=\left[\begin{array}{c}
1 \\
8 \\
64 \\
512 \\
4096
\end{array}\right] .
$$

Please refer to Getu [ֶ] for Riordan matrices.

Definition 10. A lower triangular matrix $A=(g, f)$ is said to be a Riordan matrix if the generating function A_{k} of the $k^{t h}$ column is $g f^{k}$, where $g=g(x)=1+g_{1} x+g_{2} x^{2}+\cdots$ and $f=f(x)=x+f_{2} x^{2}+f_{3} x^{3}+\cdots$. Let R be the set of all Riordan matrices.

Lemma 11. Let $D=\left(d_{n, k}\right)=(g, f) \in R$ and $A=\left[a_{i}\right]$ a column vector with generating function $A(x)=\sum a_{i} x^{i}$. Then the generating function for $B=D A$ is $g A(f)$.

Proof. $b_{n}=\sum a_{i}\left(\left[x^{n}\right] g f^{i}\right)=\left[x^{n}\right] \sum a_{i} g f^{i}=\left[x^{n}\right] g A(f)$.
Remark 12. Let $M=(g, f)$ and $N=(h, l)$ be in R. Then $M N=(g, f)(k, l)=$ $(g k(f), l(f))$ and R is a group with $(g, f)^{-1}=\left(\frac{1}{g\left(f^{-1}\right)}, f^{-1}\right)$.

Definition 13. For each $A \in R$, we define the Stieltjes Matrix. $S_{A}=A^{-1} \bar{A}$ or $A S_{A}=\bar{A}$, where \bar{A} is the matrix obtaining from A by removing the first row. The entries of the Stieltjes matrix are of the following form:

$$
S_{A}=\left[\begin{array}{cccccc}
\times & 1 & 0 & 0 & 0 & 0 \\
\times & \times & 1 & 0 & 0 & 0 \\
\times & \times & \times & 1 & 0 & 0 \\
\times & \times & \times & \times & 1 & 0 \\
\times & \times & \times & \times & \times & 1 \\
\times & \times & \times & \times & \times & \times
\end{array}\right] .
$$

For the following Remark please refer to Peart (3] and Spitzer [⿴囗
Remark 14. Let $A=(g, f) \in R$ be a matrix with tridiagonal Stieltjes matrix of the form

$$
\left[\begin{array}{llllll}
a & 1 & 0 & 0 & 0 & 0 \\
d & b & 1 & 0 & 0 & 0 \\
0 & c & b & 1 & 0 & 0 \\
0 & 0 & c & b & 1 & 0 \\
0 & 0 & 0 & c & b & 1 \\
0 & 0 & 0 & 0 & c & b
\end{array}\right]
$$

Then $f=f(x)=x\left(1+b f+c f^{2}\right), g=\frac{1}{1-a x-d x f}$.
For Example [], $f=x\left(1+2 f+f^{2}\right)=\frac{1-2 x-\sqrt{1-4 x}}{2 x}$,

$$
\begin{aligned}
& \left(a_{n, k}\right)=(g, f) \text { with } g=\frac{1}{1-2 x-2 x f} \\
& \left(m_{n, k}\right)=\left(\frac{f}{x}, f\right)
\end{aligned}
$$

$$
S_{\left(a_{n, k}\right)}=\left[\begin{array}{cccccc}
2 & 1 & 0 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right], \quad S_{\left(m_{n, k}\right)}=\left[\begin{array}{cccccc}
2 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

For Example (2), $f=x\left(1+3 f+2 f^{2}\right)=\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x}$,

$$
\begin{aligned}
& \left(a_{n, k}\right)=(g, f) \text { with } g=\frac{1}{1-3 x-4 x f} \\
& \left(m_{n, k}\right)=\left(\frac{f}{x}, f\right)
\end{aligned}
$$

$$
S_{\left(a_{n, k}\right)}=\left[\begin{array}{cccccc}
3 & 1 & 0 & 0 & 0 & 0 \\
4 & 3 & 1 & 0 & 0 & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & 1 & 0 \\
0 & 0 & 0 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 2 & 3
\end{array}\right], S_{\left(m_{n, k}\right)}=\left[\begin{array}{cccccc}
3 & 1 & 0 & 0 & 0 & 0 \\
2 & 3 & 1 & 0 & 0 & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & 1 & 0 \\
0 & 0 & 0 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 2 & 3
\end{array}\right] .
$$

Theorem 15. For bc-Motzkin sequences we have $\left(m_{n, k}\right)\left(\frac{1}{1-c x^{2}}, x\right)=\left(a_{n, k}\right)$.
Proof. It follows by Theorem 6 .
Theorem 16. For bc-Motzkin sequences we have $\left(a_{n, k}\right)\left(\frac{1}{1-c x}+\frac{x}{1-x}\right)=\frac{1}{1-k x}, k=1+b+c$. Proof. By Theorem 8 .
Theorem 17. For bc-Motzkin sequences we have $\left(m_{n, k}\right)\left(\frac{1}{(1-c x)(1-x)}\right)=\frac{1}{1-k x}$.
Proof. By Theorems 15, 16.
Remark 18. Apply Theorem 17 to
Example 17.

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
5 & 4 & 1 & 0 & 0 & 0 \\
14 & 14 & 6 & 1 & 0 & 0 \\
42 & 48 & 27 & 8 & 1 & 0 \\
132 & 165 & 110 & 44 & 10 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
16 \\
64 \\
256 \\
1024
\end{array}\right] .
$$

Example 2. Please refer to Cameron [1] for this example.

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 & 0 \\
11 & 6 & 1 & 0 & 0 & 0 \\
45 & 31 & 9 & 1 & 0 & 0 \\
197 & 156 & 60 & 12 & 1 & 0 \\
903 & 785 & 360 & 98 & 15 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
7 \\
15 \\
31 \\
63
\end{array}\right]=\left[\begin{array}{c}
1 \\
6 \\
36 \\
216 \\
1296 \\
7776
\end{array}\right] .
$$

Example 3.

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 & 0 \\
19 & 8 & 1 & 0 & 0 \\
100 & 54 & 12 & 1 & 0 \\
562 & 352 & 105 & 16 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
4 \\
13 \\
40 \\
121
\end{array}\right]=\left[\begin{array}{c}
1 \\
8 \\
64 \\
512 \\
4096
\end{array}\right]
$$

Remark 19. Theorem 17 applies only to Stieltjes matrices of the form

$$
\left[\begin{array}{llllll}
b & 1 & 0 & 0 & 0 & 0 \\
c & b & 1 & 0 & 0 & 0 \\
0 & c & b & 1 & 0 & 0 \\
0 & 0 & c & b & 1 & 0 \\
0 & 0 & 0 & c & b & 1 \\
0 & 0 & 0 & 0 & c & b
\end{array}\right]
$$

The following is a generalization.
Theorem 20. Let $A=(g, f) \in R$ be a Riordan matrix with tridiagonal Stieltjes matrix of the form

$$
\left[\begin{array}{llllll}
a & 1 & 0 & 0 & 0 & 0 \\
d & b & 1 & 0 & 0 & 0 \\
0 & c & b & 1 & 0 & 0 \\
0 & 0 & c & b & 1 & 0 \\
0 & 0 & 0 & c & b & 1 \\
0 & 0 & 0 & 0 & c & b
\end{array}\right]
$$

and $A(x)=\frac{(1-c x)+(k-a-1) x+(c-d) x^{2}}{(1-x)(1-c x)}$,
then $(g, f) A(x)=\frac{1}{1-k x}$, where $k=1+b+c$.
Proof. Let $A(x)=1+(k-a) x+[(k-a-1) c+(c-d)+(k-a)] x^{2}+[((k-a-1) c+c-$ d) $c+(k-a-1) c+(c-d)+(k-a)] x^{3}+\cdots$.

Then $A(x)-x A(x)=\frac{(1-c x)+(k-a-1) x+(c-d) x^{2}}{1-c x}$.

Now

$$
\begin{aligned}
&(g, f) A(x)=\frac{1}{1-a x-d x f} \frac{1+(k-a-c-1) f+(c-d) f^{2}}{(1-f)(1-c f)} \\
&=\frac{1}{1-a x-d x f} \frac{1+(b-a) f+(c-d) f^{2}}{(1-f)(1-c f)}=\frac{1}{1-a x-d x f} \frac{1+b f+c f^{2}-a f-d f^{2}}{(1-f)(1-c f)} \\
&=\frac{1}{1-a x-d x f} \frac{\frac{f}{x}-a f-d f^{2}}{(1-f)(1-c f)} \\
&=\frac{f}{x(1-f)(1-c f)} \\
&=\frac{f}{x\left(1-f-c f+c f^{2}\right)} \\
&=\frac{f}{x-x f-c x f+c x f^{2}} \\
&=\frac{f}{f-x b f-x f-c x f} \\
&=\frac{1}{f-x f(b+c+1)} \\
& 1-k x
\end{aligned}
$$

Remark 21. Apply Theorem 20 and Peart [3].
Example 1.

$$
S_{A}=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right], A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
2 & 3 & 1 & 0 & 0 & 0 \\
5 & 9 & 5 & 1 & 0 & 0 \\
14 & 28 & 20 & 7 & 1 & 0 \\
42 & 90 & 75 & 35 & 9 & 1
\end{array}\right]=(g, f),
$$

where $f=x\left(1+2 f+f^{2}\right)=\frac{1-2 x-\sqrt{1-4 x}}{2 x}, g=\frac{1}{1-x-x f}=\frac{1-\sqrt{1-4 x}}{2}$,
$A(x)=\frac{1+x}{(1-x)(1-x)}=1+3 x+5 x^{2}+7 x^{3}+9 x^{4}+11 x^{5}+13 x^{6}+O\left(x^{7}\right)$,

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
2 & 3 & 1 & 0 & 0 & 0 \\
5 & 9 & 5 & 1 & 0 & 0 \\
14 & 28 & 20 & 7 & 1 & 0 \\
42 & 90 & 75 & 35 & 9 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
5 \\
7 \\
9 \\
11
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
16 \\
64 \\
256 \\
1024
\end{array}\right]
$$

Example 2.

$$
S_{A}=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
2 & 3 & 1 & 0 & 0 \\
0 & 2 & 3 & 1 & 0 \\
0 & 0 & 2 & 3 & 1 \\
0 & 0 & 0 & 2 & 3
\end{array}\right], A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
6 & 5 & 1 & 0 & 0 \\
22 & 23 & 8 & 1 & 0 \\
90 & 107 & 49 & 11 & 1
\end{array}\right]=(g, f)
$$

where $f=x\left(1+3 f+2 f^{2}\right)=\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x}, g=\frac{1}{1-2 x-2 x f}$,
$A(x)=\frac{1+x}{(1-x)(1-2 x)}=1+4 x+10 x^{2}+22 x^{3}+46 x^{4}+94 x^{5}+190 x^{6}+382 x^{7}+O\left(x^{8}\right)$,

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
6 & 5 & 1 & 0 & 0 \\
22 & 23 & 8 & 1 & 0 \\
90 & 107 & 49 & 11 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
4 \\
10 \\
22 \\
46
\end{array}\right]=\left[\begin{array}{c}
1 \\
6 \\
36 \\
216 \\
1296
\end{array}\right]
$$

4 Acknowledgments

The author wishes to thank the referee for the valuable comments that improved the presentation of the paper.

References

[1] N. Cameron and A. Nkwanta, On some (Pseudo) involutions in the Riordan group, J. Integer Seq., 8 (2005), article 05.3.7.
[2] S. Getu, L. Shapiro, W. J. Woan and L. Woodson, The Riordan groups, Discrete Appl. Math., 34 (1991), 229-239.
[3] P. Peart and W. J. Woan, Generating functions via Hankel and Stieltjes matrices, J. Integer Seq., 3 (2000), article 00.2.1.
[4] F. Spitzer, Principles of Random Walk, Van Nostrand, Princeton, 1964.
[5] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 05A19.
Keywords: Motzkin paths, combinatorial identity.
(Concerned with sequences A000108 and A001003.)

Received October 4 2005; revised version received January 28 2006. Published in Journal of Integer Sequences, January 292006.

Return to Journal of Integer Sequences home page.

