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Brownian Motion and the Heat Kernels
of Iwasawa NA-Type Groups

M. J. Cornwall

Communicated by M. Cowling

Abstract. Let G be a semisimple Lie group with a finite centre and Iwasawa
decomposition NAK. We shall consider the heat equation on NA and prove
a structure theorem for a diffusion on the group which is typically called a
Brownian motion. This theorem then shows how we may calculate the heat
kernel of real hyperbolic space in a relatively easy fashion.

1. Introduction

Throughout this paper we shall consider a semisimple Lie group G with
finite centre and Iwasawa decomposition NAK . The Lie algebra g of G then has
the decomposition n @ a @ €. We recall that the tangent vectors at the identity
correspond to unique left invariant vector fields. Using the Killing form and a
Cartan involution we may construct a Riemannian metric on G' and hence on the
component NA. We may then consider the heat equation on NA:

0

Ay = pra (1)

where A is the Laplace-Beltrami operator associated with the metric. Using the
root space decomposition of n we may form a distinguished Laplacian L on NA,

L= % (ZY,E+ZH,§) ,
k=1 k=1

where {Y7,...,Y,} is an orthonormal basis of n compatible with its root space
decomposition and {Hq,..., H,} is an orthonormal basis of a (see [2]). To solve
the heat equation on N A, it is then enough to solve the equation
0
Lu = —u. 2
ot (2)

That we may consider this equation rather than (1) follows from the geometric
relationship between them. The following discussion about this relationship was
communicated to the author by Professor J. C. Taylor.
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For the solvable group NA that occurs in the Iwasawa decomposition of a
semisimple Lie group we always have A = L +Y where Y = —2H,,, p is the half
sum of the positive roots and H, is the unique element of a associated with p
(see [13, Cor. A.1.2]). Now for any Riemannian manifold M there is an intrinsic
number determined by the spectrum of —A in L?. This number \o(M) is the
minimum of the L?-spectrum. If A > X\(M), there are positive global solutions
of the equation Au + Au =0 (see [11, 14]). When M = G/K, a symmetric space
of noncompact type, this constant A\g(M) is ||H,|| = ||p||. Consequently on NA
we have (see [1])

e—p(log(a))%A(fep(log(a))) +lpl?f = Lf.

Thus with u = fer(os(e))

saut lolu =% itand only it 1f =%
Hence if v(z,t) = e“u(z,t) and g(x,t) = e f(z,t) we have

0
LAv+ (||pl] = ¢)v = 8—: if and only if Lg—cg=

99

ot’

and we may use the heat kernel for one value of ¢ to determines all the others.
In this paper we shall consider the stochastic process (&);>o which has L

as its generator and satisfies the stochastic differential equation

m

dg = Yi(&) odB + Y Hy(&) o dB™™, (3)
k=1 k=1

where (By);>o is a standard (n+m)-dimensional Brownian motion and o indicates
a Stratonovich stochastic integral. This process is often called a Brownian motion
on NA or an L-diffusion (see [5]). Using the structure of the Lie algebra n® a we
show it is possible to write down the solution of (3) in a way which is compatible
with the root space decomposition. Consequently since the density of & is the
kernel p; of (2) we may write p, compatibly with this decomposition.

2. Review of Results

In this section we shall present some results for stochastic differential equa-
tions on manifolds that we shall require later. These results have been proved in
[7, 8] and are collected here for convenience.

A key result in stochastic calculus is It6’s lemma. In [8], Kunita extends the
Ito6 formula and gives a general discussion about its formulation for processes on
manifolds. We will now summarise this discussion by stating a proposition found
in [8].

Proposition 2.1. Extended It6 Formula (see [8]) Suppose that M is a smooth
n-dimensional manifold and (Fy(p))i>o ts an R-valued process which is continuous
in (t,p) almost surely and satisfies

1. for each t >0, p— Fy(p) is a smooth map from M into R almost surely
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2. for each p, Fy(p) is a continuous semimartingale with the representation
m t . .
Fip) = Fap) + Y [ 19(0) 0 aN®,
j=1 "0

where (Ns)s>0 = ((Ns(l), . .,Ns(m)))szo is a continuous semimartingale and
for each j, (fs(])(p))szo is a process, continuous in (s,p), such that
(a) for each s, p— fs(j)(p) is a smooth map of M into R

(b) for each p, (fs(j)(p))szo the stochastic integral with respect to N s
well defined.

Then if (&)i>0 satisfies the stochastic differential equation

d
dg =" Xi(&) o dM?,

=1

where (My);>o is a continuous semimartingale, we have
m t . . d t .
Fl&) = Fo@) + Y [ 19 0dN® + Y [[(6R)(E) 0 du.
j=170 i=1 70

This result underlies the main result of [7] on the decomposition of solutions.
Its proof is an easy application of Proposition 2.1, once we know that the stochastic
process generates a stochastic flow. For then we may consider the notion of a
“pullback” of a stochastic process and its inverse. Kunita shows in [7] that the
processes we are considering do indeed generate stochastic flows. For a process
(m)e>0 on the manifold satisfying the stochastic differential equation

dim =" Xi(m) 0 dW?,
=1

we define the “pullback” to be the process (ni):i>0, where for each vector field X
and smooth function f on the manifold we have

(7 (X)) f(p) = X (f o me) (7 (0))

for each p € M. The inverse of the pullback (n;');>o satisfies the stochastic
differential equation

m_o ot
(m) " =Td + Z/ (n5) " ad(X;) 0 AW
i=1 70

Theorem 2.2.  (see [7, Theorem 4.3]) Suppose that (n,)i>0 and (()e>o0 are
processes on M which satisfy the stochastic differential equations

1=1
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and
d

A6 =" (me) 1Y;(G) 0 AN,
Jj=1
Then the process (n; o (¢)i>0 satisfies the stochastic differential equation

m d
d(m o G) =Y Xi(m 0 G) o dM + 3" Yi(m 0 G) 0 dNY.

1=1 j=1

We may use this theorem to reflect the structure of the Lie algebra generated
by the vector fields of the manifold in the solution of the stochastic differential
equation.

3. Solutions of Stochastic Differential Equations on Symmetric
Spaces.

By repeatedly applying the theorem on the decomposition of solutions and
the Dambis, Dubins-Schwarz theorem (see [6, Theorem 3.4.6]) we may write down
the solution of a stochastic differential equation on a symmetric space as the
combination of a solution of an stochastic differential equation on N and a solution
of an stochastic differential equation on A.

Firstly let G be a real semisimple Lie group with a finite centre K and
an Iwasawa decomposition NAK. We shall denote the Lie algebras by g, & and
n®ad . Let X denote a set of positive roots.

Theorem 3.1.  Suppose that {Y1,...,Y,, Hy,..., H,} is an orthonormal basis
of n®a such that {Hy, ..., H,} is an orthonormal basis of a and {Y1,...,Y,} is
an orthonormal basis of n which is compatible with its root space decomposition.
Consider the stochastic differential equation

dé =) Hi(&) o dB{” + ) Yj(&) 0 dB™
i—1 =1

50265

and suppose that ¥t = {\i,..., Ay}, where the multiplicity of \; is m;. Then
(&)i>0 may be decomposed as & = - o, where oy = exp(H;) with

H, = Z BYH,,
i=1

and there is an n-dimensional Brownian motion (Wy);>o such that (n,)i>0 may be
decomposed as

1
nt:CAi\lo"'OCi/\p7
t

where
G = S VE oW
j=1
ki+m;

dGi= Y (@) (ST TG 0 W)

j=ki+1
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fori=2,...,p,

t
)= [ em(ea) ds,
0
T} = inf{s: A} >t}

for a root \, and forq=1,...,i—1,

. Tti
T =1t+ / exp(2XA,(Hs)) ds.

Ag
T

Proof. By Theorem 2.2, we may decompose (&);>0 as & = oy o 1(e), where

doy =Y Hi(ow) 0 dB”

i=1
dn =3 (o) i) 0 dBH). (1)
7j=1
Since Hy, ..., H, commute, oy = exp(H;) where

H, = Z BYH;.

=1

Note that then

()™ = e
Thus we may write (4) as
P kit+m;
dnt Z Z ead(Ht O dB(’”-H) (5)
1=1 j=k;+1
where k; = 0 and k; = my +---+m;—; for ¢ = 2,...,p. Since each Y; is an

eigenvector we may rewrite (5) as

P ki+m;

dp=>_ > Yi(n)eN ) o dB*Y.

=1 j=k;+1

Now for each j we may apply the Dambis, Dubins-Schwarz theorem to yield a
standard Brownian motion (W, )t>0 such that

P kitm;

dne=3_ > Yilm)odW,

i=1 j=k;+1

where

t
A :/ exp(2X;(Hy)) ds.
0
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For notational convenience we shall now restrict our attention to the case where
p = 2. By Theorem 2.2, we may write (1;):>o as the decomposition of the solutions
to the stochastic differential equations

mi

dct =D Yi(G) o dW i,
j=1
m1+msa

A= 3 (G odW R,

j=mi+1

By a corollary to the Dambis, Dubins-Schwarz Theorem (see [6, Proposition 3.4.8])
we have

¢ = <o+Z / Y(Chy) o dW?,

where TM = inf{u : A)' > s}. Therefore

§0+Z/ ) o dW

and hence if (Ztl)tzo is the unique solution to the stochastic differential equation
mi
dg) =Y Y5(¢) o dW,?,
j=1
then C;s“ = Ztl, or in other words, ¢ A= ¢;. Applying the same corollary to
()0, we get

ka2+mo2 A A2
=0+ ) / (Ch,) Y5 (2 0 W)
j=ka+1
Now (M(T22) = ZI(A?AQ), and

A1 A2

T; Ts
AN =/ 21 (Hu) du+/ e ) dy,
TS 0 Ts)‘l
T2
=s+ / M Hu) gy,
M
2,1
— TS

(say). Thus if we consider the unique solution to the stochastic differential equation

ka+ma

it = > (C{TPM)TY(aw,

j=ko+1

we have me = (?. For p > 2, a similar argument gives the other 5; and we are
t

done. ]
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Corollary 3.2.  If (§);>0 is the solution to the stochastic differential equation

ki+m;

dé; = ZH ) OdB(J + Z gt odBt(J,

j=ki+1

then there is an m;-dimensional Brownian motion (Wy)i>o such that (&)i>o has
the decomposition & =1 5 - o where a; = exp(BVHy +---+ B H,) and
t

ki+m;

dpy= > Y;(m)odWw
Jj=ki+1

It follows from the above corollary that we may immediately write down
the density of the random variable 7; - a; once we have the densities of 7, and .
For the density of a; we have the following result from [15].

Proposition 3.3.  (see [15, Section 6, Proposition 2/) Suppose (Bi)i>o is a real
Brownian motion starting from 0 and

t
A, :/ e?Bs ds.
0

If we let P(A; € du | By = x) = ay(x,u) dz, then we have

1 2 1
e_l' /Ztat(x7 u) = — eXp(—(l + €2m)/2u)®ew/u(t)7
U

V27t

where

Oce/u(t) = ™)/2t exp(—e® cosh(y) /u) sinh(y) sin(my/t) dy

uvV 2m3t

Thus from Corollary 3.2 and Proposition 3.3, we get the following result.

Proposition 3.4. Under the assumptions of Theorem 3.1, suppose dima = 1
and (&)i>o is the solution of the stochastic differential equation

dé, = Hi(&) o dB{Y + " Y;(&) 0 dBI™
7j=1
50 =€,
with A\1(Hy) = 1. Then there is an n-dimensional Brownian motion (Wy)i>o such
that & = na, - o, where ay = eXp(Bt(l)Hl) and

dny =Y Yi(m) o dWj.

=1

Moreover & has the density

—x2 /2t
p(n, €°) qu(n)ai(z,u)e 2t qu,
\/27r /

where q;(n) is the density of 1.

We shall now use this proposition to calculate heat kernels of the real
hyperbolic spaces.
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4. The Heat Kernel of the NA-component of SOy(n,1)

The NA-component of SOg(n, 1) may be identified with R* ! xR (see [1]).
We may choose H € a such that, in local coordinates, we have

(H ) a) = a2 (x,a).

Thus the A-component, ((0,)):>o satisfies the stochastic differential equation
d(O, at) = H(O, at) e} dBt,

where (By);>o is a standard one-dimensional Brownian motion. Therefore o, =
exp(By).

If we consider N in isolation it is just R*~! and so the left Brownian motion
on N is (W, 1))i>0, where (Wy);>o is a standard (n — 1)-dimensional Brownian
motion. Thus the N-component (1;);>o of the Brownian motion on R* ' x R" is

= (WAH 1)a

t
Ay :/ e?Bs (s,
0

Ny - Qp = (WAta eBt)

where

and hence

is the Brownian motion on R*' x R*. This stochastic process has also been
considered in [1]. The expression given by Bougerol for the Brownian motion

(Ct)ezo 1s t
= Be dWsa Bt) ’
Gt (/0 € €

where (B,);>o is a standard one-dimensional Brownian motion and (W;):>o is a
standard (n—1)-dimensional Brownian motion. However by the Dambis, Dubins—
Schwarz theorem we have equality of the random variables in his expression and
our own. In [1, Proposition 2.3.2] the expression for the density of n; - o is also
given. The proof given uses an expression derived by Lohoué and Rychener [9],
which is ultimately based on pages 329 and 330 of the thesis of Takahashi [12].
Bougerol notes that the expression in [9] has some minor mistakes in the constants
and corrects these.

Rather than follow the route of [9], we shall now give our own derivation of
the heat kernel. The density of W; is

o—lxll/2t

Consequently, by Proposition 3.4, the density of (Wj,,eP) is given by

o lzl/2u

z,e ) =

ar(z,u) e %1 du,
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This expression for py(z,e”) differs from that which appears in [1]. We shall now
show how they are in fact the same by transforming our expression into the one
given in [1].

Substituting in the expression for a;(x,u) given in Proposition 3.3 we get

. P 0 o—(y?—m?)/2t _ .
ne) = —— | i S sy ) F (s, )
where
. 00 o—(||zl|+1+€%)/2u ,—e” cosh(y)/u
F(y,Z,e ) = /0 u(nfl)/Z u2 du
— /oo u(n—l)/Qe—uez(%e_m||z||+cosh(ac)+cosh(y)) du
0
_ I'((n+1)/2)
~ (e®(ie*||z|| + cosh(z) + cosh(y)))r+1/2’
Hence
e inh(y) sin(my/t)
Ty _ ¢ (y>—n2)/2t Sin dy,
pi(2,€") = K(, )/0 ¢ (cosh(r) + cosh(y))+1/2 y
where

—(n+1)z/2
K(z,t) = (2m) VP

V2rst

1
cosh(r) = 56"”||z||2 + cosh(z).

I'(n+1)/2)

We shall now consider

I /°° o~ =) 2t sinh(y) sin(my/t)
0 (cosh(r) + cosh(y))(n+1)/2

1 % yin) sinh(y)
=1 (y—im)? /2t d
2 (/_oo ‘ (cosh(r) + cosh(y))+1)/2 y> ’

and suppose that n —1 is of the form 2k +1. On integrating by parts, we see that
I is equal to

2r ((2k1+ 1)/2) m (/—Z (@ d%/) - S \/coshs(i;h—(i-yiosh(y) dy) .

To find the imaginary part of the integral we let R be large and € be small
and consider

[ 1=y [ e

where

i) . (cl&-im7 /2t sinh(¢)

1
f:Ca3¢&— (sinh(f) d¢ \/cosh(r) + cosh(&)
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Im
Y3 —r +im V5| o T4y
Y2 s
Re
_R "N R

Figure 1: Odd case Contour

and each +; is as in Figure 1.
It is straightforward to show that the integrals along v, and ~s tend to zero
as R tends to infinity, and that

f)de= [ f(&)d¢

73 v

_; R ok 1 d htd v /2t sinh(y)
a /r—|—e( g <sinh(y) dy) ( )\/cosh(y)—cosh(r) .

It is also easy to show that the integrals along 4 and 74 tend to zero as € tends
to zero. Finally the integral along <5 is real, and hence we need not consider it
further.

By letting R tend to oo and e tend to zero the above considerations allow
us to conclude that

_ 1 o0 Nk 1 i k1 o0 /2t sinh(y)
= I'((2k+1)/2) /r =) (sinh(y) dy> ( \/cosh(y) — cosh(r) a,

and hence

7. %) = ko1 ” 1 d - e v/ Sinh(y)
p(z, €°) 2 ,t)/r (sinh(y) dy) ( )\/COSh(y) — cosh(r) W

where
. (\/2_71_)—%—1 e—(2k+1)w/2

V43 V2t

The above expression is that given by [1] for the heat kernel of R*+1 x R* .
When n — 1 is of the form 2k, we may follow a similar procedure.
After integrating by parts we consider the contour integral

/7 7€) d,

1 i) * (e (€ im?/2) sinh(¢)
sinh(§) d¢ cosh(r) + cosh()

ra(e,t) = (=1)

where

f:(CBfr—)(
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Im

Y3 2mi

Y —r 4w T 4w Y

Re

R "N R

Figure 2: Even case Contour

and 7 is the contour in Figure 2.
After finding the imaginary part, we can show that

T\ __ —k 671“8 1 d ¢ —r2/2t
pi(z,€") = (=2m) V2rt (sinh(r) 5) (e7),

which is the expression given in [1] for the heat kernel of R?* x R.

5. Some sub-Laplacians and heat kernels from H-type groups

For the N A-component of SOg(n,1) the Laplacian and the sub-Laplacian
coincide. However we may also apply Proposition 3.4 for groups where N is an H -
type group and consider the sub-Laplacian. Initially let us consider the Heisenberg
group Hy,., of real dimension 2n + 1. Accordingly we may realise Ho,,; as the
group R” x R" x R with

n
(XaYat) : (u,v,s) = (X + u,y + Vat+ s — Z(yzuz - szl)>
i=1

The process (1;)i>0 on Ha,y1 associated with the sub-Laplacian adapted to the
root space decomposition is well known (see [3, 4]), namely

e = Xt;YtaZ/ X dY / Y(Z dX( ))a

where (X¢);>0 and (Y}):>o are independent n-dimensional Brownian motions. In
[3, 4], we also find the density ¢:(x,y,7) of n,

x )_/00 25 \" . (25T _llx+yl? 2 i
WY, 1) = o \sinh(2s) P\ 2t tanh(2s) >

If we now consider Ha, 1 X RY | which is the NA-component of SU(n, 1), then the
process on R is again ((0, a))¢>0, where oy = exp(B;). As before the density of
the process on Ho, 1 X Rt is

1 o 2
—v /Qtd
wW\X, Y, T)a (v, u)e u.

pt(xa y, 7, ev) =
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We may write this explicitly as

2 *° 2s " e’ * (522 . JN ~ ~ ~
2y / (Fh(%)) v /0 e W2 sinh(§) sin(rg/t) F(g, s) dy ds,

where

I'(n+2)
(s]|x + y||?/2 tanh(2s) + e¥(cosh(v) + cosh(y')) — is7)"+2’

F(y',s;x,y,1,€e") =

by taking the required Laplace transform.

Suppose now that N is a generalized Heisenberg or H-type group. Then
the heat kernel h;(v,() of N is known (see [10]) to be

1 1 % gh/2 o 4 —|v|o
24 (2rt)k/2+d /0 g1 k2 (elel/?) (sinh(a)) exp (4ttanh(a)) 4o,

where Jy/o_1 is a Bessel function. Again by applying Proposition 3.4, we may
write down the heat kernel p;(v,(,e%) of N x R" ) namely,

(v, C,e° (v, Oay(z, w)e */* du.

\/ﬁ

This may be written more explicitly as

e’ o o d —( -/t )
Jomly s (i) | e 0 sl

where

F(y,o;v,(,€") = Lhd) Pla | s
Y,0;,V, 6, (m)k/2+d+1 k/2+d \/m >

where P,c /o +/dQ is a Legendre function and

_ bl + e®(cosh(y) + cosh(z))
P=1 tanh(o) Y '

The function F' is a Laplace transform.
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