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Abstract. For any triple (g, b, f) where @ is a nilpotent Lie algebra
over a field k of characteristic zero, B is a subalgebra of g, and f is
a homomorphism of u(b) onto K, a subquotient ‘D(g, b, f) of u(g) is
studied which generalizes the algebra of invariant differential operators on
a nilpotent homogeneous space. A generalized version of a conjecture of
Corwin and Greenleaf is formulated using geometry of eXp(ad*f))—orbits
in the variety L f of linear functionals in g whose restriction to ) agree
with f Certain constructions lead to a procedure by which the question
of non-commutativity of @(g, b, f) is reduced to a case where (g, b, f)
has a special structure. This reduction is then used to prove that the
Corwin-Greenleaf conjecture about non-commutativity of D( g, b, f) holds
in certain situations, in particular when the exp(ad*f)) -orbits in Lf have
dimension no greater than one.

1. Introduction

Given a real nilpotent Lie group G, an analytic subgroup H of G, and a
unitary character x of H, it is known (see [4]) that the corresponding induced
representation 7 of G can be of two types: uniformly bounded multiplicity
a.e. (abbrev. FM), or uniformly infinite multiplicity a.e. (abbrev. IM). In
the FM case, it is known that the algebra of 7-invariant differential operators
is commutative, and much evidence has accumulated that indicates that the
converse is true, that is, that in the IM case, there are two invariant differential
operators that do not commute with each other.

In this paper we study this conjecture from a purely algebraic/geometric
standpoint. We begin with a nilpotent Lie algebra g over a field k of character-
istic zero, a Lie subalgebra § of g, and an algebra homomorphism f : u(h) — k.
The spectral variety Ly C g* is the set of all linear functionals on g whose re-
striction to b agrees with f. The triple (g,b, f) is defined to be an IM-triple if
the generic dimension of the coadjoint orbits in g* that meet L exceeds twice
the dimension of the exp(ad*h)-orbits in L;; of course this reduces to the well-
known Corwin-Greenleaf condition when k = C and f is the differential of a
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unitary character on the real analytic subgroup H. The algebra of “generalized”
invariant differential operators is the subquotient D(g, b, f) = ¢(h,J)/T in the
enveloping algebra u(g) where J is the left ideal in u(g) generated by the kernel
of f and c(h,J) = {W € u(g) : [W, h] C I}. We make the following.

Conjecture 1. Let (g, b, f) be an IM-triple with g nilpotent. Then D(g, b, f)
is not commutative.

A standard way to analyse the algebra D(g, b, f) has been to take a
sequence of subalgebras § = hy C hy C --- C b,, = g where dimensions
increase one at a time, and in trying to prove Conjecture 1, one quickly reduces
to the situation where (g,b,f) is an IM-triple while (hy,—1,0,f) is an FM-
triple. Greenleaf in [7], and Fujiwara, Lion, and Mehdi in [6] have shown in this
situation (and with k = C and f the differential of a unitary character), that
D(g, b, f) # D(hm—1, b, f) implies non-commutativity of D(g, b, f).

Our attack on Conjecture 1 also involves a reduction, although with a
bit more algebraic information. First we introduce a class of triples (g, b, f) of a
special form: those for which there is an ideal 3 in g and an element Y € g with
the properties that [g,3] C J, [g,Y] C 3, and that the centralizer g¥ of ¥ modulo
J is codimension one in g. We say that triples with a pair (3,Y") as just described
admit a “Kirillov structure”. What is the utility of this notion? First of all, this
sort of structure occurs naturally: after laying out basic algebraic framework
in Section 2, Section 3 is devoted to showing that for any triple (g, b, f), one
can construct an associated triple (g, f), f) that admits a Kirillov structure, and
for which all the necessary information about orbit dimensions and D(g, b, f) is
preserved. The tradeoff is that the scaler field is extended (in fact to a subfield
of the invariant rational functions on Lf) when passing to the associated triple;
thus the necessity of considering arbitrary fields of characteristic zero. Secondly,
suppose that we are given that a triple (g, b, f) has a Kirillov structure, that
h C g¥, and that (g¥,b, f) is an FM -triple. Then it is extremely easy to show
that D(g, b, f) # D(g¥,b, f) (or equivalently c(h,J) ¢ u(g¥) + J) implies non-
commutativity of D(g, b, f). Finally, and perhaps most significantly, suppose
that we are given that a triple (g, b, f) has a Kirillov structure and that b ¢ g¥ .
Setting bY = h N g¥, a crucial result (Proposition 4.1.1) is that D(g, b, f) is
commutative if and only if D(g¥,hY, f) is commutative. Thus, in the presence
of a Kirillov structure one can always pass to the triple (g¥,bY, f), whether
h C g¥ or not.

Now given an IM-triple (g, b, f), the process of passing to an associated
triple, and then to a codimension one centralizer, allows the construction of a
sequence of triples {(g(j), h(j), f(j))};j=0, where
(a) (a5, f) = (8(0), 5(0), J(0)),

(b) (9(5),5(5), f(4)) IM implies that (g(j —1),b(j — 1), f(j — 1)) is IM,

(c) D(g(4),b(4), f(5)) non-commutative implies that D(g(j—1), h(j—1), f(j—1))
is non-commutative, and

(d) the exp(ad*(g))-orbits that meet Ly are single points.

Such a sequence is called a reducing sequence. We emphasize that the scalar
fields may get larger with the index j, and in particular, g(j) is not necessarily
a subalgebra of g(j—1), although its dimension (over its scalar field) is necessarily
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smaller. Also, the construction of the reducing sequence does not require that the
subalgebras h(j) " be contained in the respective codimension one centralizers;
as a result it is possible that the dimension of h(j) will be smaller than that of
h(j —1).

In any case, there will necessarily be some m for which the triple
(g(m),h(m), f(m)) is IM but (g(m—+1),h(m+1), f(m+1)) is FM, and consider-
ation of the associated triple allows one to reduce Conjecture 1 to the following.
Conjecture 2. Let (g,b, f) be an IM triple with g nilpotent. Assume that
(g,b, f) admits a Kirillov structure (3,Y) for which h C g¥ and for which
(g¥,b, f) is FM. Then c(bh,J) ¢ u(g¥) + 7.

Specifically, we prove the following result in Section 4.

Theorem 4.2.1.  Let {(g(4),0(j), f(4)) : 0 < j < k} be a reducing sequence
for the IM-triple (g, b, f) with g nilpotent. Set

m = maa{j : (a(7), 6(3), £(j)) is an IM-triple},

and assume that Conjecture 2 holds for ((g(m)", h(m)", f(m)~). Then D(g,b, f)
18 not commutative.

In Section 5 we apply the above theorem to prove Conjecture 1 in
two situations. First, we consider the case where all of the exp(ad*h)-orbit
dimensions in L; are no greater than one. The result is that Conjecture 1
always holds in this case.

Theorem 5.1.4.  Let (g,h, f) be an IM-triple with g nilpotent and with the
property that §(g, b, f) < 1. Then D(g,bh, f) is not commutative.

Secondly we consider the situation where f = 0 (or “essentially zero”;
see Section 5.2) and a certain generic condition is satisfied. Recall that, given
increasing sequences {g;}j-; and {h;}}_, of exp(ad*h)-modules in g and h
respectively, with dim(g;) =4,1 <4 <n and dim(h;) = j,1 < j < p, one has a
definition of “generic” exp(ad*h)-orbits.

Lemma 5.2.2. Let (g,h, f) be an IM-triple with g nilpotent and with f = 0.
Assume that (g,b, f) admits a Kirillov structure (3,Y) for which b C g¥ and
for which (g¥,b, f) is FM. Assume further that there are increasing sequences
of exp(ad*h)-modules in g and b as described above and with g,_1 = g*,
such that Ly meets the corresponding set of generic exp(ad*h)-orbits . Then
(b,9) £ u(g¥) +7.

From Theorem 4.2.1 and Lemma 5.2.2, one obtains the following.

Theorem 5.2.3.  Let (g,h, f) be an IM-triple with g nilpotent and suppose
that a reducing sequence for (g, b, f) is given such that the hypothesis of Lemma
5.2.2 holds for (g(m) 5 h(m)" f(m)”~). Then D(g,h, f) is not commutative.

Thanks go to Chal Benson and Gail Ratcliff for many helpful conver-
sations concerning this work. We also thank the referee for several important
corrections and suggestions.
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2. Basic Definitions

2.1 Let k be a field of characteristic zero, let g be a Lie algebra over k, and
let u(g) be the enveloping algebra of g over k. Let h be a Lie subalgebra of g;
we regard u(h) as a subalgebra of u(g) in the usual way. Let f :u(h) — k be
an associative algebra homomorphism, and let J = (g, b, f) be the left ideal in
u(g) generated by the kernel of f.

We use multi-indices in the same way as [2]: given an ordered set of
elements X1, Xo,...,X,, in g and a € Z'", let X* denote the element

X = XPXg2 . Xom
in u(g).

Proposition 2.1.1.  Let g be any Lie algebra over a field k of characteristic
zero, let b be a subalgebra of g, and let f be a k-algebra homomorphism of u(h)
onto k. Let Y1,Ys,..., Yy, X1, Xo,..., Xy, be any basis for g over k with

h =k-span{Y1,Ys,..., Y}

and define U; =Y; — f(Y)I,1 < j <p. Then one has the following.

(a) The monomials X°UP, a0 € Z7, 8 € Z%_, form a basis for u(g) over
k.

(b) The left ideal I generated by the kernel of f is spanned by the
monomials X*U? |8 > 0.

(¢) Define a(h, f) = k-span{Y — f(Y)1:Y € b}. Then J=u(g)a(b, ).
Proof. = We imitate the proof of [2, Lemma 4.2]. Let u"(g) be the subspace
spanned by the monomials X*Y?, with |a| 4+ |8| < r. For each o and 3, we

have
XyP=3%" ('B> (f(Y))P=7 Xy
Y8 i
where v < 8 means that v; < f;, 1 <j <p, ('g) = 5:1 (gj), and f(Y)P7 =
[T%_, f(Y;)Pi=7 . This shows that {X*V? : |a|+ |8 < r} spans u"(g). Part
(aj then follows by counting dimensions.

As for (b), let X = ker(f) C u(h). We claim that KX = k-span{U” :
|B| > 0}. Since it is obvious that X D k-span{U? : |3| > 0}, then we need
only show that k-span{U? : |3| > 0} has codimension one in u(f). This follows
from considering the fact that for » = 1,2,3,..., u"(h) = k-span{U” : |B| =
r} +u"~1(h) and then using induction on 7.

The claim being verified, we see that any monomial UPU?”, with |y| > 0
can be written as a linear combination of monomials U*, A > 0, and hence any
monomial X®UPU? is a linear combination of monomials X*U* XA > 0. But
by part (a), u(g) is spanned by the monomials X*U#, and (b) follows. Part (c)
now follows immediately from part (b). n
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Corollary 2.1.2. Let g, b and f be as in Proposition 2.1.1. Then I(g, b, f)N
g=hnker(f).

Proof. From parts (a) and (b) above we see that J(g,b, f) N g C k-span{U; :
1 < j < p}. On the other hand, one computes that k-span{U; : 1 < j <p}ng C
hNker(f): if W € k-span{U, : 1 < j <p},

can belong to g only if Z?:l a; f(Y;) = 0, showing that W € bh and that
f(W) =0. Hence J(g,h, f) Ng C hNker(f). The reverse inclusion is obvious. m

Corollary 2.1.3. Let g, b and f be as in Proposition 2.1.1 and suppose
that € is a Lie subalgebra of g. Set ho = bN¢E, and fo = fluw,) - Then
J(g, ha f) N u(E) = J(Ea h()a fO) -

Proof. Let T1,T5,...,T, be a basis of by, Z1, Z>, ..., Z; a basis of a subspace of
¢ complementary to by, Y7, Ys, ..., Y, a basis of a subspace of ) complementary
to ho, and X;, Xs, ..., X, a basis of a subspace of g complementary to h+¢€. The
union of these bases is obviously a basis of g. Set V; =T; — f(T3)[,1 <i<u
and U; =Y; — f(Y;)I,1 < i < s. From Proposition 2.1.1 (b) we have that the
set {X*Z,UPVY : |B|+ |v| > 0} is a basis for I(g, b, f) and by Proposition 2.1.1
(a), that {Z#V"¥ : p € Z%,v € Z' } is a basis for u(€). The intersection of these
two bases is {Z#V" : |v| > 0} which by part (b) of the Proposition is a basis for
j(é, bo, fg) . |

2.2 Let g be a nilpotent Lie algebra over a field k of characteristic zero. For
£ € g*, define

g(6) ={Z € g: £([X, Z]) = 0 holds for all X € g}

and set d(¢) = dim(g/g(¢)). Let g have the nilpotent group operation defined
by the Campbell-Baker-Hausdorff formula. It is easily seen that for each £ € g*,
g(£) is the stabilizer of £ in g with respect to the coadjoint action: for X, Y in

g7
(exp(ad” (X))E)(¥) = (Y ~ [X, Y]+ X, [X, Y]] = £ [X, [X,[X, V][ + ).

It is well-known that there is a finite partition P of g* with the properties

(i) each © in P is exp(ad*(g))-invariant,

(ii) there is a total ordering < on P such that for each Q, [J{' : @' < Q}
is Zariski open in g*,

(iii) d is constant on each €2, and

(iv) ' < Q implies d(2') > d(Q).
The construction of the partition P depends only upon the choice of a Jordan-
Holder sequence for g.
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Let b be a Lie subalgebra of g, and set h(¢) = hnNg(¥),£ € g*. For
each £, h(¢) is the stabilizer of £ in h with respect to the coadjoint action of
h. Set 6(¢) = dim(h/h(¢)),£ € g*. There is a similar partition Py of g* having
properties (i) - (iv) with exp(ad*(g)) replaced by exp(ad*(h)) and d replaced
by 4.

Given f :u(h) — k an associative algebra homomorphism, set

Ly={teg":Ly=flp}

Lemma 2.2.1. There is a Zariski open subset U of Ly on which the dimension
functions d and 0 are constant.

Proof. From property (ii) of the partitions P and Py, we can choose Q € P
and Qy € Py such that QN Qy N Ly is a Zariski open subset of Ly; set
U=Qn Q[J M Lf . ]

We denote these “generic” values of d and 0 by d(g, b, f) and 6(g, b, )
respectively. (Note that from property (iv) above one has that d(g,b, f) =
max{d(¢) : £ € Ly} and 06(g,h, f) = max{d(£) : £ € Ly}, hence these values are
independent of the choice of Jordan-Holder sequence.)

Lemma 2.2.2. Let g, b, and f as above, and let d(g, b, f) and 6(g,b, f) be
the associated generic coadjoint orbit dimensions. Then d(g,b, f) > 2-4(g, b, f).

Proof. For any £ € Ly, h + g(¢) is a subspace of g that is isotropic with
respect to the alternate bilinear form defined by /4, so

d(£) = dim(g/g(£)) > 2 - dim((h + g(£))/g(£)) = 2 - dim(h/b(¢)). m

A triple (g, b, f), where g is a nilpotent Lie algebra, b is a Lie subalgebra,
and f :u(h) — k is an algebra homomorphism, will be called an “IM-triple” if
d(g, b, f) >2-6(g,b, f). Otherwise (g,b, f) will be called an “FM-triple.”

3. Construction of an associated triple

3.1 Let g be a Lie algebra over a field k of characteristic zero, and let u(g) be
its enveloping algebra. For any subsets M and N of u(g), set

c(M,N) ={W € u(g) : [W,M] C N}.
Let (g, b, f) be a triple with 3 =13(g, b, f).

Lemma 3.1.1. Let 3 be an ideal in g such that 3 C ¢(g,J). Then |[g,3] C
3N bhNker(f). In particular, 3N Y is an ideal in g.

Proof. By Corollary 2.1.2, 3NnJ = 3N hNker(f), and by definition of 3,
9.3l C3n7J. m
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An ideal 3 in g will be called an J-central ideal if 3 C ¢(g,J).
Definition. A Kirillov structure for (g,b, f) is a pair (3,Y) where 3 is an J-
central ideal in g and Y is an element of g that belongs to ¢(g,3) and for which
¢(Y,J) N g is codimension one in g. The element Y will be called a Kirillov
element for (g, b, f).

Given a Kirillov structure for (g,b, f), we shall employ the notation
g¥ =c(Y,J)Ng. If g is nilpotent, then any triple (g, b, f) obviously has a non-
zero J-central ideal. However, even in cases where exp(ad*(h)) acts non-trivially
on L¢, (g,h, f) may not have a Kirillov element. The goal of this section is to
give a construction for any triple (g, b, f) with g nilpotent and (g, b, f) > 0, of
an associated triple (g, 6, f) that does admit a Kirillov structure, and for which
important aspects of the coadjoint orbits and quotient algebras D(g, b, f) are
preserved.

Choose an J-central ideal 3, and set bo = hN3. Set fo = f|u(n,), and let
d be the left ideal in u(g) generated by ker(fy), that is, d = (g, ho, fo). Since
ho is an ideal in g, J is a two-sided ideal in u(g).

Let Ty,T5,...,T, be a basis of by, Z1, 4, ..., Z; a basis of a subspace of
3 complementary to by, Y1, Ys, ..., Y, a basis of a subspace of h complementary
to ho and X1, Xo, ..., X, a basis of a subspace of g complementary to h+3. The
set

B:{T13T2a"'aTuaZ1aZ2a"'aZta}/laY2a'"1Y83X13X2a"'3X7‘}

is then a basis of g, where it is understood that if any of the above vector
subspaces of g are trivial, then the corresponding basis is the empty set. Set
Vi=T,— f()I[,1<i<wuand U; =Y; — f(YV;)I,1 <i<s. From Proposition
2.1.1 and its corollaries we have the following.

(i) The monomials X*YAZ,VY o € 7" ,eZ5, peZl,veZf form
a basis for u(g) over k,

(ii) g is spanned by the monomials X*Y?Z+V", |v| > 0,

(iii) the monomials Z*V¥, € Z% v € Z% form a basis of u(3) over k,

(iv) u(3) N3 = I(3 bo, fo), and

(v) u(3) N J is spanned by the monomials {Z#V" : |v| > 0}.

Proposition 3.1.2.  Let 3 be an J-central ideal in g, let W be any element of
u(g), and let T belong to u(3) such that WT € J. Then either W €J or T € 7.
Proof. In accordance with Proposition 2.1.1 (b) (applied to h), we write
W= > GapuX*Z'UPV",
a’ﬂ’l"‘?y

and similarly
T =) bAZ°V
a,A,

Now by Lemma 3.1.1, u(3) C c(u(g),d), so for each set «, S, u,v,o, A of multi-
indices, there is ) € J such that

XezrUPVYZevr = XeZr e uPy it 4 Q.
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Hence we can write

(*) WT= 3 (Y Gapubor) XOZUVY 1 Q
S o

where @ € {.

Now assume that niether W nor T' belongs to J. Then there are multi-
indices «, B, p, v, 0, A for which angu, # 0 and |B] + |v| = 0, and for which
box # 0 and [A] = 0. Set N = {p € Z% : anpu # 0and |B] + |v| = 0}
and L = {0 € Z% : by) # 0 and |A| = 0}. We order Z lexographically, and
set po = max(N), o9 = max(L), and ¢g = po + 0o. If aapubon # 0 and
18] + [v| + |A]| = 0 then p+ o < ¢¢ with equality only if y = py and o = oy.
Hence there is a term in * whose monomial has the form X*Z% and whose
coefficient is angu,0boox # 0. By Proposition 2.1.1, this means that WT ¢ J. m

Lemma 3.1.3. Let W be an element of u(g) of the form

W =Y X*YPQup
a,B

where each Qqup belongs to u(z). Then W € J if and only if Quap € u(3)NJ
holds for all o and (.

Proof. The “if” part of the lemma is obvious, so let us suppose that W
belongs to J. By (ii) above we have

W= > aupuX*YPZ'V".
a,,B,,U:,V
>0

Set
Qlaﬁ = Z aa,@uuzuvy;
w50
Now by [5, 2.2.7. Proposition], {X?Y”? :a € Z' ,B € Z3 } is a basis for u(g) as
a right module over u(3). Hence for each a and 8, Qap = QLg, and Qup € J.W

3.2 Let (g, b, f) be a triple, with 3 an J-central ideal, and with hg, fo, and J
as in the previous subsection. Set A = u(g)/d, and let 7 : u(g) — A be the
canonical homomorphism. By Corollary 2.1.2, g J = ho Nker(fy), and hence

m(g) =~ g/ (ho Nker(fo)). Set R = 7(u(3)).

Lemma 3.2.1. The subalgebra R of A is contained in the center of A, and
the elements of R are not divisors of zero in A.

Proof.  The ideal hy N ker(f) generates a two-sided ideal Jp in u(g) that
is contained in J. Since 3/ho N ker(f) is central in g/ho N ker(f), then the
canonical image of u(3) in u(g)/do = u(g/ho Nker(f)) is central. It follows that
R is central in A. That elements of R are not divisors of zero follows immediately
from Proposition 3.1.2. [ ]
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Lemma 3.2.2. The monomials {n(X°YPZ*) : a € Z.,B € Z%,u € Z4}
form a basis of A, and w(J) is spanned by the monomials m(X*UPZ"),|B| > 0.

Proof. The first statement follows immediately from (ii) above. For the
second, Lemma 3.2.1 shows that m(X®UPZ#) = n(X*Z*UP). On the other
hand by Proposition 2.1.1 (b), J = k-span{X®Z+*UPV" |B| + |v| > 0}, and
hence 7(J) is spanned by the monomials w(X*Z*U®),|8| > 0. u

3.3 Retaining the setup and notation from the previous subsection, we now
bring in the language and results from [5, Sect. 3.6] : by Lemma 3.2.1, the set
R* = R\{0} allows an arithmetic of fractions in A, and we let B = Ag- be
the resulting fraction algebra. As in loc. cit., B = A X R*/ ~ where ~ is the
equivalence relation on A x R* defined by

(a,r) ~ (b, s) if and only if as = br.

(Since R* C cent(A) , the definition of ~ in loc. cit. reduces to the above.) We
have the natural ring homomorphisms

u(g) — A — A x R* =5 B.

The above produces a canonical injection of A into B, and we identify A with
its image in B. For an element of u(g) denoted by an upper case Roman letter,
denote its image in A by the lower case counterpart; in particular denote (1)
by i. For X € u(g) and Z € u(3), denote the equivalence class in B of (z,z) by
x/z. In keeping with the above mentioned identification, denote z /i by z,z € A.
For any subset M of A, let (M) denote the subset of fractions in B having
numerators in M, that is, o(M) = ¢(M x R*), and in particular, B = o(A).

Set K = ¢(R x R*). Since R is a commutative integral domain, K is
a field of characteristic zero and B has in a natural way the structure of an
associative K-algebra. More generally, we have the following.

Lemma 3.3.1. Let M be an R-submodule of A with R-basis B. Then o(M)
1s a K-subspace of B with basis B. Moreover, if M is also a subalgebra of A,
then (M) is a K-subalgebra of B.

Proof. It is clear that o(M) is a K-subspace of B. It is spanned by B since,
for z/z € c(M), x = > zz; where z; € R and z; € B, so x/z =) (zi/2)x; €
K-span(B). Suppose that » ¢;z; = 0 with ¢; € K and z; € B. There is
p € R* such that for each i, pg; € R. Since B is an R-basis, Y pgix; = 0
implies pg; = 0 for all ¢, and hence ¢; = 0 for all z. The “moreover” part follows
from the fact that the canonical injection of A into B is a ring homomorphism.m

Define the Lie bracket in B as usual: for v and w belonging to B,
[v,w] = vw — wv. There is a connection between the Lie brackets in g, A, and
B:let X,Y €g, with z=n(X),y=n(Y), and let p,q € R,r,s € R*. Then

(3.3.1) [(pz/r), (ay/s)] = [(p/r)z, (a/s)y] = (pa/rs)[z,y] = (pg/rs)m([X,Y]).

This allows us to associate Lie subalgebras of g to finite dimensional Lie algebras
in B.
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Lemma 3.3.2. Let ¢ be a subalgebra of g, and let Y1,Ys,...,Ys be a basis of a
subspace of € complementary to €N 3. Let u(3)€ be the u(3) -module generated by

€, and set A
t=o(r(u(3)e) + R).

Then {i,y1,Y2,-.-,Ys} is a K-basis for E. Moreover, t is a Lie algebra over K,
and is a Lie subalgebra of § = o(n(u(3)g) + R).

Proof. We need only show that {,y1,¥2,...,¥ys} is an R-basis for 7(u(3)¢) +
R. Let v+p € w(u(3)e) + R, with v = «(V),V € u(3)¢,p € R. We have
V =371 PiY;+ Py, where P; €u(3),0<j <s,s0v+p =3 "_, pjyi+po+p€
R -span{i, y1, Y2, ..., ys} . Now suppose that po,p1,...,ps are elements of R for
which Z;lejyj +po = 0. Then we have Py, Py,...,P, € u(3) for which
2;21 Y;P; + Py € J. By Lemma 3.1.3, we have P; € J, hence p; = 0 holds for
each j.

That € is a Lie algebra over K, and is a Lie subalgebra of g, follows
from the equations (3.3.1). u

Let }L(ﬁ) be the enveloping algebra of g over K; denote its identity
element by I.

Proposition 3.3.3. The K-algebra B is a canonical image of u(g) with
kernel u(g)(i — I) , and has as a K -basis the set {z*y? :a € 27,8 € Z5 }.

Proof. By Proposition 2.1.1 (applied to the Lie subalgebra Ki of §), the set
{zPG— D" :a e Z',BeZ’,pel}

is a K-basis of u(g), and the ideal u(§)(i — I) is spanned by the monomials
z2yP (i — )", > 0. The identity map from § to itself extends to a canonical
homomorphism h from u(g) into B. The image of the above basis of u(g)
is the set {z°y® : a € Z7,8 € Z%} and (since h(I) = i) the monomials
z2yP (i — I)#, . > 0 are obviously contained in the kernel of A. On the other
hand, it is immediate from Lemma 3.2.2 that {z%y® : o € Z",,8 € Z5%} is an
R-basis for A, and hence by Lemma 3.3.2, it’s image in B is a K-basis of B.
Hence the restriction of h to K-span{z®y? : a € Z7,8 € Z5} in u(g) is a
bijection. The proposition follows. [ ]

3.4 Let (g,b, f) be a triple, with 3 an J-central ideal, and with A, B and

g as above. A triple (g, b, f) is associated with this data as follows. Let b
be the Lie-subalgebra of § associated with h via Lemma 3.3.2. An argument

A

similar to that of Proposition 3.3.3 shows that A(u(h)) is canonically isomorphic
with o(R7(u(h))), and has the monomials y?,3 € Z% as a K-basis. Let
By = {T1,Ts,...,Ty,Y1,Ys,...,Ys} be the basis of h chosen in Section 3.1.

By Lemma 3.3.2, a basis By for h over K is given by {i,y1,-.-,Ys}. Now f
drops to a homomorphism f of m(u(h)), and m(u(h)) contains B;. Let f be the
Lie algebra homomorphism from h onto K whose restriction to By coincides
with f, and extend f to u(fh) in the canonical way. The triple (g, b, f) will be

referred to as the triple associated with (g, b, f) and 3. Let J= I(8, b, f) be the
left ideal in u(g) generated by the kernel of f.
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Lemma 3.4.1. Given any triple (g,b, f) with associated triple (ﬁ,[a,f), we
have h(J) = o(n(J)) and h(J)NA ==(J).

Proof. By Proposition 2.1.1, J has as a K-basis the set {z®uf(i — [)*:a €
Z',B8 € Z%,p € Zy}, and this set is mapped by A onto the set {zuf : a €
Z' , € Z%}. By Lemma 3.2.2, this set is an R-basis for m(J), and so by Lemma
3.3.1, it is a K-basis for o(m(J)). This proves the first part of the lemma.

A

Let v/z = w belong to h(J) N A with v € w(J), z € R*, and w € A.
Taking preimages gives V =W Z € J with Z ¢ J. By Proposition 3.1.2 we have
W el. |

Proposition 3.4.2.  Let (g,h, f) be a triple with associated triple (g, f),f)

A~

Let t be a subalgebra of g with € the corresponding subalgebra of g. Then
h(c(¢,9)) = o(mw(c(¢,9))).
Proof. From the definitions of ¢ and &, and formula (3.3.1) above, in order to
show that o(m(c(€,9))) C h(c(t,T)), it is enough to show that [r(c(E, 7)), w(€)] C
7(J). But this is obvious since [c(8,7), €] C J.

On the other hand, let w = Zaﬁ qagmayﬁ be an element of B that

belongs to h(c(E,J)). Choose some p € R* such that z = pw € A , and let
X = PW € u(g) be a pre-image of pw in u(g). I claim that X € c(¢,J). Let
Y €t. Then y = n(Y) € ¢, and it follows that [z,y] € h(J) NA. By Lemma
3.4.1, this means [z,y] € 7(J), whence [X,Y] € J and the claim is proved. Now
by definition of o we have w = z/p € o(w(c(¢,7))). u

Corollary 3.4.3.  Let (g,h, f) be a triple with associated triple (g, b, f). Then
c(h,9)/3 is commutative if and only if ¢(h,3)/I is commutative.

Proof. Clearly c¢(h,J)/3 is commutative if and only if w(c(b,J))/n(J) is
commutative, so we may as well assume that § = 0. Set M = ¢(b,J), M = M/J,
and let R be the image of R in M. Then R allows an arithmetic of fractions
with respect to M, and Ms is commutative if and only if M is. Now the map
¢: Mz — c(M)/o(J) defined by ¢(m/2z) = m/z+ o(J) is easily seen to be an
isomorphism. Thus we have that M/J is commutative if and only if o(M)/c(J)
is commutative.

Now set M = ¢(h,J). Since both M and J contain u(§)(i—1I), by Lemma
3.4.1 and Proposition 3.4.2,

o(M)/a(9) = h(M)/h(T) ~ M/3.
The Corollary follows. [ ]

Finally we make good on our claim that if g is nilpotent, then (g, b, f)
admits a Kirillov structure. Actually this is not necessarily true for any associated
triple; indeed if we choose 3 = (0), then the associated triple is the same as its
progenitor (g, b, f). The point is that 3 must be sufficiently large.

Proposition 3.4.4.  Let (g,bh, f) be a triple with g nilpotent, and let 3 be

mazimal among all J-central ideals in g. If 3 # g, then (ﬁ,f),f) admits a
Kirillov structure.
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Proof. Since g is nilpotent and 3 # g, ¢(g,3)Ng # 3; choose Y € ¢(g,3)Ng but
not in 3. Then y € ¢(§, Ki)N§, so the dimension of §/(c(y,T) N§) over K is no
greater than one. By maximality of 3, we have g ¢ ¢(Y,7), so if X € g\c¢(Y,7),
then z € g\c(y, ﬁ) Thus (§,h, f) admits the Kirillov structure (Ki,y). [

Note that if 3 = g, then for any X € g, one has [X,g] C hnNker(f), so
X € g(¢) holds for all £ € Ly and d(g,h, f) = 0. The converse is also true: if
d(g, b, f) =0 then g is J-central.

3.5 Let (g, b, f) be a triple with the associated triple (g, b, f), let S(g) denote
the symmetric algebra of g, and let w : S(g) — u(g) be the symmetrization
mapping. We have a natural surjective homomorphism 7 : S(g) — S(7(g)), and
in view of the inclusion 7 (g) < g, we have a natural injection ¢ : S(7(g)) — S(g).

Whenever convenient we regard S(g) as the algebra of polynomial func-
tions on g* in the usual way. Set

Lfo = {K € 9* : £|ho = f0|‘)0}’

and let J be the ideal in S(g) of elements which vanish on Ly . Then J is the
ideal generated by the elements in S(fhy) for which fy is a zero, and S(g)/J is
canonically isomorphic with the algebra k[Ly,] of k-valued polynomial functions
on Ly, . We denote this algebra by A and the canonical map from S(g) onto
A by TI. For P € S(g), denote II(P) by P. Set R = II(S(3)) and form the
fraction ring B = Ar. We have a canonical injective homomorphism from A
into B, and we thereby regard A as a subset of B. Let p;, : g* — 3" be the
restriction mapping. The field of fractions K = {Z,/Z, 7, € R, Z, € R*} in B
can be regarded as the field k[p(Ly,)] of k-valued rational functions on p(Ly,).
On the other hand, the map Z — w(w(Z)) from S(3) to R is surjective with
kernel S(3) NJ. Hence R ~ R and K ~ K in a canonical way, and B is an
algebra over the field K. More explicitly, let P € S(g) and write

P= > GupuX*YPZ'T".
a)ﬂ’ll"y

Then

P=>Y" (Z Gofuv f(T)”Z”) XYP,
a8 \ v

This shows that the monomials X®Y? o € 7,8 € Z%, span A as an R-

module. In the same way as for the corresponding objects in u(g), we see that

in fact the monomials X?Y? o € 7", € Z% constitute an R-basis for A, and

hence a K basis for B.

In g*, set
L« ={leg":L(:)=1}.

We regard S(§)/S(§)(i—1I) as the algebra K[L;-] of K-valued polynomial func-
tions on L;« , and we denote the image of an element p € S(g) in S(g)/S(§)(:—1)
by p. Given p € S(g), write

P=Y qapuzy’it;
a,B,p
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then
p=> (Z C]aﬂp) P,
a,p ®

In the same way as Proposition 3.3.3, we find that the monomials z%y?, a €

A

Z' 3 € 77, constitute a K-basis for S(g)/S(g)(¢—1). Thus we have an obvious

A

isomorphism between B and S(g§)/S(g)(: —I).
Now for P € S(g), let P be the restriction of P to Ly. In a similar
way we find that k[Lf] has as a k-basis the monomials X*Z*, o € Z",, p € Z7, ,

and that it has the monomials X%, o € Z", as an R-basis. Also the monomials
I a € 27y constitute a K-basis for K[L;]. Note that p;(Ly) = p;(Ly,) and so

for all Z € S(3), Z = Z. We have a mapping

ZaauZ”Xa — Z (Z aauz“> T
a,p a w

which is an injective homomorphism of k[L;| onto the subring of R-valued
elements of K[L f]' We sum up the preceding in the following commutative
diagram where the vertical arrows are surjective restriction mappings, and the
horozontal arrows are monomorphisms.

S(g)

S(r(g) —— S()

(3.5.1) " ﬁl
k[Ls] —— K[Li]

6 0|

k[L;] —— KI[Lg]

3.6 Let g be a nilpotent Lie algebra over k and let h be a subalgebra. It is
desirable to describe in explicit terms a scheme for layering the exp(ad*(h))-
orbits in g*. For simplicity of notation we set exp(ad*(Y)) = a(Y),Y € b.
Let (0) =go C g1 C --- C g, = g be a sequence of a(h)-modules in g with
dim(g;) = 4,1 < j <mn,and (0) =hy C h C -+ C h, = bh a Jordan-Holder
sequence of ideals in h. Choose X; € g;\g;—1 and Y; € b;\b;_1.

Fix £ € g*. Our scheme involves the definition of a pair (¢(£),v(£)) of
index sequences associated with £ and the «a(h)-module sequences chosen above.
If the a(h)-orbit of £ is just {£}, then set ¢(£) = @ and ¥ (¢) = @. Otherwise
set ¢1(¢) = min{j : g; ¢ b*}, and ¢1(¢) = min{j : h; € (94,(r))"}- Define
the codimension one ideal h(¢) by h1(£) = hn 9551(2)3 then dim(a(h)(£)) =1
if and only if h*(£) = h(¢) = h N g*, and if dim(a(h)(£)) = 1, then a(h)(£) =
{a(tYy, ) (#) : t € k}, and we are done. If dim(a(h)(£)) > 1, then set

¢2(¢) = min{j : g; € (h*(£))"}
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and

$o(£) = min{j : b; N g, o) E (84200}
Note that ¢1(£) < ¢2(£). Define the subalgebra h2(£) by h?(£) = hn 9552(6);
and we have dim(a(h)(¢)) = 2 if and only if h2(£) = h(¥). If dim(«a(h)(¥)) = 2,
then a(h)(£) = {a(t1Yy, @) a(taYy, @) (£))(£) : t1,t2 € k}. Here Yy, (p)(£) is the
projection of Yy, into hl(¢) parallel to Yy, (e); explicitly,

f([Yw(e),Xm(e)])Y ,
L([Yyy ) Xopr (o)) Y1)

If dim(«a(h)(£)) = 2, then we stop here; otherwise continue the process
until the following objects are obtained.
(a) Index sequences ¢(£) and 9(£) where #(4(£)) = (v (£)) = 6(£) and ¢(£) is
increasing.
(b) Subalgebras h(£) = h°(¢) C --- C h*(£) C b, where h*(¢) is codimension k
in h. (Here 6 =4(¥).)
(C) Elements le(g) = Yl/h(e) (K), Y¢2 ®) (E), ey Y¢6 ®) (f) in f] with
Yy (£) € 65 (O\B*(6), and

a(5)(©) = {a(t: Vo () ataYy0(0)) - tsY o () (O (b1, . 1) € KP).
Let ® = {(¢(£),¢(¢)) : £ € g*} and for each (¢,9) € D, set

Qg ={L € g": (0(0),9(0) = (&,9)}-
Obviously P = {Qg : (¢,9) € ®} is a partition of g* and it is easily seen that
each element of P is a(h)-invariant.

We shall now define an ordering < on all pairs (¢, ) of index sequences
with 1 < ¢1 < o < -+ < ¢s <n and 1 < ¢; < p. For two pairs (¢,1) and
(¢',4") of index sequences as above, we say that (¢,9) < (¢',4') if one of the
following conditions hold:

(i) §(¢) > #(¢'), or

(i) i £(6) = (6/) and & = min{j : (dy,7) # (&%, #1)} , then dy < 6}, or

(ii) if £(6) = £(¢) and k = min{j : (65, %5) # (&9} , then ¢, = ¢} and
Vi < Py -

Next we define polynomial functions Q4 on g* that determine the
layers 2 € P. Fix an any index sequence pair (¢,1) with § = f(¢), and for each
kE,1<k<9, set

Yo (0) () = Yy, 0) —

Qf,4 (&) = det [£([Yy,, Xg,D1<rs<ks
and define
QWP(K) = Qéﬂ/}(f)@é,w(ﬂ) e -Qi,w (K)

Lemma 3.6.1. Let (¢,v) be an index sequence pair with 6 = #(¢). For any
Le g, if Qpu(f) #0, then 6(¢) > 4.

Proof.  Suppose that Q4 (¢) # 0. Then the scheme above can be used to
define § elements

Yy, (6)7 Yy, (E), coes Yoy (K)
in b with the property that for each 1 < k < 9, £([Yy,(£), Xy,]) =0 if j <k
and £([Yy, (£), X¢,]) # 0. It follows that 6(¢) = dim(h/h(¢)) > u
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Lemma 3.6.2. For any ¢ € g*, we have
(6(£), ¥(£)) = min{(¢,¥) : Qg4 (£) # 0}

Proof.  Suppose that (¢,1) < (#(£),9(£)); we show that Qg ,(¢) = 0. Set
d =1(¢). If § > 6(¢), then by Lemma 3.6.1, Q4 (£) = 0. Suppose that 6 = 6(¢).
Set k = min{j : (¢;,v;) # (¢;(£),¢;(£))}. By definition of <, we have either
b < (L), or ¢ = ¢ (£) and ¢ < Yr(€). Let Yy, (£) be the projection of
Yy, into h*=1(£) parallel to k-span{Yy, (£), Yy,(£), ..., Yy, ,(O)}. If ¢ < ¢ (€),
then Xy, € (bk—l(g))e’ 80 ’e([Ylpk(g)’quk]) = 0. Otherwise ¢, = ¢5(¢) and
Yr < ¥r(£), whence Yy, (£) € (g4, )¢ so again £([Yy, (£), X4,]) = 0. Now

Q.5 (0) = £[Yy, (£), X, (ODE([Yy (€), X5, (O]) -+ - £([Y (0), X, (0)]),
which shows that Q. (¢) = 0. The Lemma follows. u

The following description of the layers is immediate.

Proposition 3.6.3. With all the data retained from the above, fix an index
sequence pair (¢,1) € . Then

Qgp =
{Leg":Qu g (&) =0, forall (¢/,¢") with (¢',9") < (#,¢) and Qg (£) # 0}.

3.7 In this subsection we show that generic orbital dimensions in Ly are pre-
served when passing to Lz. Let (g,b, f) be a triple with g nilpotent, let 3
be an J-central ideal in g, and let (g, b, f) be the associated triple. Choose
a Jordan-Holder sequence (0) = go C g1 C --- C g, = g with the following
properties.

(a) For some a,g, = 3.

(b) For some u, g, = h N3 (recall that h N3 must be an ideal in g.)

There are indices 1 < j; < jo < --- < jp, < n for which hng;, , € hNg;,
and for which (0) = ho C b1 C--- C b, = b is a Jordan Holder sequence for h

Choose XJ'- € g;\gj—1,1 < j < n such that ng € br\br—1,1 < k < p.
Set Y, = X ;-k,l < k < p. Denoting this basis by B, the first u elements of
B are a basis for 3 N b, and the first a elements of B are a basis for 3. With
reordering if necessary, B can be written

B = {T13T2a'"aTuaZ15Z2a"'aZta}/laYZa"')YSaXlaXQa"'aXT}
as in Section 3.1 (a = t+u). There is a corresponding Jordan-Holder sequence
(0)=80CHCHC--Cm=24

where g1 = 3 = Ki, g2 = (go+1), etc., with a compatible basis {z; : 1 <1 < m}
that can be written (again with reodering) as

{Zaylay2a'"7ysumlax2a"'ax7"}
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(where z} = 7). Let Py be the layering for the a(h)-orbits as defined in Section
3.6 relative to the sequences of a(h)-modules for g and h chosen above, and in
the same way let P; be the layering for the a(h)-orbits in §* relative to the
corresponding sequences of a(h)-modules for § and h. Now given any index
sequence pair (¢,) with the property that ¢1 > a and 9; > u,1 < j < p,
define (¢,7) by (ﬁj =¢;—a+1 and % = 1; —u+ 1. This obviously defines a
bijection between the set of all index sequence pairs (¢, 1) relative to the chosen
a(h)-modules with ¢; > a and 9; > u,1 < j < p, and the set of all index

sequence pairs relative to the a(f))—modules whose values are greater than one.
We denote elements of S(g) by lower case letters.

Lemma 3.7.1. Let (¢,v) be an index sequence pair relative the above «(h)-
modules with the property that ¢1 > a and ¢¥; > u,1 < j <p. Then

1(4g.5) = o(T(Qg,p)))-
Proof. It is enough to show that
(g5 5) = ((T(Qf4)))
).

holds for each 1 < k < § = #(¢). We have

Q¢¢ - Z szgn Y¢1’X¢ (1)][Y¢2’X¢a(2)] [Y'lzk’X:f’a(k)]

o)
and so

i (QF,y)

=1 ( ; sign(o)[m(Yy,), 7(Xg_  Ir(Yy,) 7(Xg, , )] [W(Yzlk)’W(Xéa(k))]>
= (Z; sign(o)lyy, w5 W5, 5 1 --[y:&k,w;gg(k)o

T

Now by commutativity of the diagram 3.5.1, we have

w(n(®@5,4)) = A0EQ ) = 1k ).

A version of the above lemma also holds for the index sequence pairs
relative to the a(g)-action and the «(g)-action. We omit the proof.

Lemma 3.7.2. Let (¢,%) be an index sequence pair relative the a(g)-modules
chosen above with the property that ¢1 > a and ¢; > u,1 < j < p. Then

1(4g.5) = o(T(Qgp)))-
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Proposition 3.7.3.  Let (g,h,f) be a triple with associated triple (g, B,f)
Then d(g,b, f) = d(g,h, f) and 6(g,b, f) = 6(8,h, f).

Proof. We have d(g, b, f) = t#(do), where (¢po,?p) is the minimum index
sequence pair (¢,v) for which Qg ., N Ly # @. By Proposition 3.6.3, this is
equal to the minimum index sequence pair (¢, 1) for which 6(n(7(Qe,4))) # 0.
A similar statement holds for d(g, b, f). Applying Lemma 3.7.2 and diagram
3.5.1, we see that the minimum index sequence pair that determines d(g, , f)
is (¢o,v0). Hence d(g,b,f) = d(@,b,f). A parallel argument shows that

6(gab7f):5(g76af) | ]

Finally we examine the case where (g, b, f) admits a Kirillov structure.

Proposition 3.7.4.  Suppose that (g,b, f) is a triple with g nilpotent, and
that admits a Kirillov structure (3,Y). Set g¥ = c¢(Y,9)Ng and h¥ = c(Y,I)NH.
Then d(gy,f)y,f\hy) = d(g,h,f) — 2 and J(QY,bY,f\hy) is equal either to
5(97b7f) or 5(97b7f)_ L.

Proof. Choose a Jordan-Holder sequence for g that includes 3, 3 + kY, and
g¥, and let a = dim(3). Apply the constructions of Section 3.6 with h = g, and
we find that for any £ € Ly, ¢1(£) > a, and that ¢1(£) = a + 1 if and only if
£([X,Y]) # 0, and in this case ¥(£) = n, and g¥ = h1(£). It follows that if
Qgo yo is the generic layer in (g¥)* for L fl,v » then the generic layer in g* for
L is Qg ., where ¢1 = a+1,¢; = 2_1 and Y1 = n,y; = zp;?_l,j > 1. This
shows that d(gY, Y, flov) =d(g,b, f) — 2.

Turning to the a(h)-action, a similar analysis shows that if h # h¥ , then
$1(£) =a+1 and 91(¢) = n hold for generic £ € Ly, whence §(g¥,hY, flpv) =
5(g,b, f) — 1. On the other hand, if h = Y, then Lf|hy is just the set of

restrictions of elements in Ly. For any £, if £y denotes its restriction to g,
then g is codimension one in (g¥)%  and since h(¢) = hNg* (and similarly for
£y), the two possibilities for 6(g¥, b, f|sv) are evident. n

4. Non-commutativity of D(g, b, f)

4.1 Let g be a nilpotent Lie algebra over a field k of characteristic zero. Let
0=u_1(g) C up(g) C uz(g) C --- C u(g) be the standard filtration of u(g) and
fix a strong Malcev basis {X1, Xo,..., X,} for g. Let A, = {(a1,a9,...,an) :
a; € {1,2,....,n},1 < i < mya; <ag < --- < ap}. For each a € A,,, set
X* = X, Xa,_y+--Xa,. Order A, as follows: a < a' if ap < a},, where
k =min{j: a; #aj}. Set

U (8) = tm_1(g) ® Span{X“’ ca' <a}.

We have a total ordering on the set of pairs P = {(m,a) : m > 0,a € A,,} that
has the following property. For p = (m,a) € P denote u? (g) by u,. If Y € g,
then [Y,u,] C up,_1, where p — 1 is the predecessor of p.
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Proposition 4.1.1.  Let (g,bh, f) be a triple that admits a Kirillov structure
(3,Y). Set g¥ =c(Y,I)Ng and Y =c(Y,I)Nh. Assume that h #bhY . Then
(i) there is a monomorphism of D(g, b, f) into D(gY¥, f)Y,f|hy), and
(i) D(g,b, f) is commutative if and only if D(g¥, Y, flyv) is commu-
tative.

Proof. Choose X € h\g¥, and set = = u(g)(X — f(X)I). By Proposition
2.1.1, we have u(g) = u(g¥) ® Z. Since = C ¢(bh,J), it follows that c(h,J) =
c(h, N Nu(g¥) ®=. Let J¥ be the left ideal in u(g¥) generated by the kernel of
flpv , and c(hY,TY) the centralizer in u(g¥) of h¥ modulo J¥. Then Corollary
2.1.3 gives ¥ =JINu(gY), and again by Proposition 2.1.1, I =¥ @ =. Thus

D(g, b, f) = c(h,9) Nu(g") /9"

But c(h,J) Nu(g¥) C c¢(h¥,3¥). Thus D(g,bh, f) injects into D(g¥, hY, flsv),
and (i) is proved.

It is immediate from (i) that if D(g¥,hY, f|yv) is commutative, then
D(g, b, f) is also. Assume then that D(g¥,pY, flpv) is not commutative. Let

pr=min{p € P:c(h”,3) Nuy(g") & cc(h”,77), )}
and let W € c(hY,3Y) Nuy, (¢¥)\e(e(hY,3Y),Y). Now let
g = min{g € P (¥, 7) Nug(g¥) & e(W,3%)}
and choose V € ¢(hY,T¥) Nugy, (g¥)\e(W,TY). Set
r=max{j : (adX)'V # 0} and s = max{j : (adX)!W # 0}.
Now by definition of Kirillov structure, [X,Y] € 3\J. For any positive integer
j we have (adX)’(Y?) = jY[X,Y)’ modulo J, hence (adX)’(Y’) ¢ J and
(adX )7 tH(Y7) € TN u(3). Define

p(V) =V (adX)" (Y") — adX (V) (adX)" " (Y")+(adX)*(V)(adX)" "2(YT)
— e (=D (@dX)" (V)Y

and

p(W) = W (adX)3(Y?®) — adX (W)(adX)* 1 (V?)+(adX)*(W)(adX)5~2(Y?)
— o (=1)%(adX) S (W)Y,

Then it is easily seen that [X, p(V)] = [X, p(W)] = 0. Now I claim that p(V)
belongs to ¢(h¥,J). For this it is enough to show that for each j, (adX)’V
belongs to c(hY,TY), since (adX)*(Y") € u(kY +3) C c(g¥,7¥) for all k. But
this fact follows from an easy induction argument and the formula

(S, (adX ) (V)] = [[S, X], (adX)? (V)] + [X, [S, (ad X )1 (V)]

Therefore p(V) and p(W) belong to ¢(h,J). It remains to show that [p(V'), p(W)]

does not belong to J. Since (adX)?(Y") belongs to u(kY +3), then (adX)?(Y")
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lies in the center of u(g¥) modulo g, where J is the (two-sided) ideal in u(g)
generated by JNu(3). Hence we can write

[p(V), p(W)] = [V, W]rls![X,Y]"* +

D (=17 *[(adX ) (V), (adX)*(W)] (adX )" (Y7) (adX)*~*(Y*) modulo 3.
Jtk2>1

Now by definition of p;, (adX)*(W) liesin c(c(h¥,3Y),IY) for all k > 0.
Hence every term in the above sum with k£ > 0 lies in J¥. On the other hand,
if j > 0, then adX7(V) lies in ¢(W,JY), so that the terms for which j > 0 and
k = 0 belong to J¥ also. Hence

[p(V), p(W)] = [V, W]r!s![X, Y]"* modulo J¥.

Now by choice of V and W, [V,W] ¢ 7V, and since J¥ = I Nnu(g¥),
we have [V,W] ¢ J. Since [X,Y]"™* € u(3)\J, Proposition 3.1.2 obtains that
[p(V), p(W)] is not in J. u

4.2 Let (g, b, f) be an triple with g nilpotent. Thus far we have established two
principles.

(1) There is an associated triple (§, b, f) that admits a Kirillov structure,

and for which d(g,b, ) = d(§,h, ), 6(s,b,f) = 6(8,b,f), and D(g,b, ) is
commutative if and only if D(g, b, f) is commutative.

(2) If (g,b, f) admits a Kirillov structure (3,Y), and b+ g¥ = g, then
D(g, b, f) is commutative if and only if D(gY¥, h¥, flpv) is commutative.

What happens in the case where (g, b, f) admits a Kirillov structure, and
h C g¥? At present, all we know in this case is that D(g¥,b, f) € D(g,b, f)
(this is easily seen using Corollary 2.1.3 with € = g¥), and so if D(g¥,b, f) is
not commutative, then D(g, b, f) is not commutative.

Based upon the work in [2] and [7], we conjecture that if h C g¥, then

(3) if 6(g¥,h, f) = (g, b, f) — 1, then D(g¥, b, f) = D(g, b, f), while
(4) if 6(g¥, b, f) = (g, b, f), then D(g",h, f) < D(g,h, f)-

In any case the above facts (1) and (2) suggest the following reduction
procedure. Let (g,b,f) be a triple with g nilpotent and with d(g,b, f) >
0. Choose 3 an J-central ideal in g for which the associated triple (§,5, f)
admits a Kirillov structure (3(1),y(1)). Define the triple (g(1), (1), f(1)) by
g(1) = (8) *@ (1) = (h) ¥ , and f(1) = f |p1y. Note that by Propositions
3.7.3 and 3.7.4, d(g(1),b(1),f(1)) = d(g,bh,f) — 2, and by the preceding, if
D(g(1),h(1), f(1)) is not commutative, then D(g, b, f) is not commutative also.
Now provided d(g(1),h(1), f(1)) > 0 we can apply the reduction procedure to
(g(1),H(1), f(1)) to produce another triple (g(2), h(2), f(2)), and so on. Thus if
{(8(9),5(4), f(4)) : 0 < j <k} is any sequence of triples so obtained, then g(j) =
(g(j—1)") ¥ where y; is a Kirillov element in g(j — 1)", h(j) = (h(j—1))"Ng(y),
and £(j) = (f( — 1))l 1 < 5 < k.
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Definition. Let (g,b, f) be a triple. A sequence of triples {(g(5), h(4), f(4)) :
0 < j <k} will be called a reducing sequence for (g, b, f) if

(i) ((0),6(0), f(0)) = (8,5, f),

(i) for cach j > 1, (g(7),b(j), /(7)) is obtained from (g(j — 1),h(j —
1), f(j — 1)) by the reduction procedure described above, and

(iii) (g(k),b(k), f(k)) is an FM-triple whose associated coadjoint orbits
have zero dimension.

Let d(j) = d(g(5),b(5), f(45)) and () = 6(a(4),b(4), f(4)), 0 < j < k.
From Propositions 3.7.3 and 3.7.4, we have d(j) =d(j —1) —2,1 < j <k, and
that §(j) =6(j—1) or §(j—1)—1. From this and Proposition 3.4.4 the following
is immediate.

Proposition 4.2.1.  Let (g,h, f) be a triple with g nilpotent. Then (g, b, f)
has a reducing sequence.

It seems plausible that a determination of the conjectures (3) and (4)
above in complete detail, together with the results contained herein, would
provide a complete description of D(g, b, f).

In this paper we are concerned with the application of the above to estab-
lish non-commutativity of D(g, b, f) in certain situations. Note that if (g, b, f)
is an IM-triple with g nilpotent, then any reducing sequence that terminates
with a FM-triple has a minimal term that is IM; that is, there is m > 0 such
that (g(j),h(5), f(4)) is an IM-triple for 0 < j <m, and (g(4), b(4), f(5)) is an
FM-triple for 57 > m. The following shows that proof of non-commutativity of
D(g, b, f) hinges on Conjecture 2.

Theorem 4.2.2.  Let {(g(5),0(j), f(4)) : 0 < j <k} be a reducing sequence
for the IM-triple (g, b, f) with g nilpotent. Set

m = maafj : (a(3), 6(7), F(j)) is an IM-triple},

and assume that Congjecture 2 holds for ((g(m)"h(m)" f(m)"). Then D(g,b, f)
18 not commutative.

Proof. From Corollary 3.4.3 and Propostion 4.2.1, it is enough to show that
the algebra D((g(m)), (h(m)), (f(m))) is not commutative, which is to say, we
may assume that m =0 and g =g.

Let (3,Y) be a Kirillov structure for (g, b, f). Now from Conjecture 2,
we have an element V € c(h,J) \ u(g¥) +J. Now a standard algebraic argument
(see for example Proposition 2.1 of [7]) shows that we may assume that V has the
form V = PX +Q where X € g\g¥, Pcu(g¥) \ J, and Q € u(g¥). It is clear
that Y € ¢(h,9)\J, and that [VY] = P[X,Y]. Since P ¢ J and [X,Y] € 3\J,
then Proposition 3.1.2 shows that [V,Y] ¢ J. The Theorem follows. n

5. Two Applications

5.1 Let (g,b, f) be a triple with g nilpotent and (g, b, f) = 1. As before we
denote exp(ad*(Y)) by a(Y). Let (0) =go C g1 C--- C g, = g be a sequence
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of a(h)-modules in g with dim(g;) =j,1<j <n. Set a={j:g; Cgj—1+ b},
and write @ = {a1 < aa < -+ < ap}; for 1 <k < p, set hr = hNg,, . Then
{bx} is a Jordan-Holder sequence for h. Choose X; € g;\ gj—1, with X; €
for j € a. Let P be the partition of g* relative to the chosen «a(f)-modules,
and let (¢,v) be the minimal index pair for which Q4 , meets L;. For ease of
notation set b = ¢1,c =1, Q= Qpp, X = Xp, S = X4, € be \ he1, and
p(¢) = £([S, X]), £ € g*. Then

QﬂLfZ{KELf:p(E)#O}.

We now make some helpful observations, based on the simple fact that
N{ker(¢) : £ € Ly} = hNker(f). Only (4) requires the assumption that
6(g, b, f) =1.

(1) If 3 is an ideal in g such that 3 C N{h®: £ € L;}, then 3 C c(h,J),

(2) A{b(0) : L€ Ly} € c(a,9),

(3) b=min{j:g; € c(h,9)}, and

(4) ¢ =min{k : b, € c(g,9)}-

Detailed proofs are omitted here, but we sketch an argument for (4): if h._; €
c(g,J), then by observation (2), there would be X, € g and Yy € h.—1 such that
(Yo, Xo] ¢ J. Since £([Yp, X]) = 0 for all £ € Lf, then the polynomial function
Q =[S, X|[Yo, Xo] =[S, X0][Yo, X] would not vanish on L;. Lemma 3.6.1 would
then imply that (g, b, f) > 1.

The well-known description of the collective a(h)-orbit structure due to
Pukanszky and summarized in [3] has the following form. For each j,1 < j <mn,
there is a rational function Fj :k x £ — k such that the collection {F}} has the
properties

(i) for 1 <j<b—1, Fj(z2,¢) ={¢;,

(ii) Fy(z,4) = z,

(111) for b < ] <n, Fj(Z,é) = £j + Fj(z,£1,£2, .. -agj—l)-

Let K(g) be the field of fractions of S(g). We explicitly compute elements
R; € K(g),, j #b,1 <j < n, with the property that for any £ € QN L¢, we
have R;(¢) = F;(0,£). It is obvious that for j < b, one takes F; = X;. Fix
£ € QN Ly; then the H-orbit of £ is Oy = {a(tS)l : t € k}; for each ¢ € k,
(a(tS))y = £y — te([S, X]). The functions Fj(z,£) are obtained by making the

substitution
. eb —z

t =
p(4)
into the functions («(tS)f);,b < j < n. The result is that we obtain

By =~ () 1950+ 2 (o) IS8, 0 -

= () ey

r>0

Note that the form of the functions R; shows that for some non-
negative integer N, p™ R, belongs to S(g). Set I(L;) = {W € S(g) :
W vanishes on Ly} .
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Lemma 5.1.1. Let (g, b, f) be a triple with g nilpotent and with §(g, b, f) < 1.
Set m = gp—1 + go,—1. Then w(S(m)NI(Ls)) CJ.

Proof. Set mg=mnNI(Ls) =mnNhnker(f). I claim that my is an ideal in
m. Let X €ém and Y € my. If a. > b, then mgy is a subspace of h._1 and so
mp is an ideal in g. On the other hand if a. < b, then we have m C ¢(h,J); in
either case the claim follows.

Let n: m — m/mgy be the canonical map. We have maps ns : S(m) —
S(m/mpy) and 7, : u(m) — u(m/my) so that the following diagram

S(m) SELEN S(m/myp)
u(m) ey u(m/mygp)

commutes. Now for any ¢ € S(m), Y € mn b, ng(Y — f(Y)I) is central in
S(m/mg), so

M (W(@(Y = fFV)I)) = w'(ns(q))w' (ns(Y — fF(Y)I)) = nu(w(@))n (Y — F(Y)I).
Hence
w@Y —fWI) =w(@)Y - fYV) )+ W

where W € u(m)mg C J. Therefore w(g(Y — f(Y)I)) belongs to J. Since every
element in S(m) N I(Ly) is a sum of elements of the form ¢(Y — f(Y)I), the
lemma follows. |

Proposition 5.1.2.  Let (g,b, f) be a triple with g nilpotent and 6(g, b, f) =
1. Then for each j,1 < j <mn,j#b, w(pR;) belongs to c(h,J).

Proof. Fix 5,1 <j<m,j#b,and fix Y € h. We compute that

(_l)m —m— m
YoV Ri = Po+ Y pN T g X
m>0

where ¢, = (adY (adS)™X;) - p — ((adS)™'X;) - [V, X],m = 0,1,2,..., and
where Py has [Y,p] as a factor. Now by observation (3), p = [S, X| belongs to
c(h,J), and hence by observation (4), [Y,p| belongs to ¢(g,J) NI (we regard g
as a subset both of S(g) and u(g), of course.) It follows that w(Py) € J.

Turning our attention now to the second term of the above, we begin
by showing that w(pN~1qe) € J. Since 6(g, b, f) = 1, then linear algebra shows
that go € I(Lys). Now each of p, [S, X;], and [Y, X] belong to m. Therefore we
must have

Y, X;] = Yo + 7

where Yy € h and Z € m. Hence

pV g =pNUs + W
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where Uy = Yo — f(Yo)I and W € S(m). Since p € gy_1, one gets w(p™Up) € J.
Since pV g and p¥Uy both belong to I(Ly), then W € S(m)NI(Lys). Lemma
5.1.1 now gives w(W) € J, and linearity of w now gives w(p™ 1qo) € J.

Next we turn to T = > (_n}b)!m . pN=-m=1g X™. To show that
w(T') € J, observe that if a, > b,then T' € S(m)NI(Ly), so again by Lemma 5.1.1
we get w(T) € J. Suppose then that a. < b. Set T, = pN """ 1g,, X™ m > 1.
Since [S, X;] € ¢(h,J) (observation (3)), then for m > 1, we have adY (adS)™X;
and (adS)™*!1X; both belong to hNker(f). In fact by choice of S, they lie in

he—1. Hence

Tm — pN—melfo +pN—m—1[Y7 X]XmY]_

where Yy and Y7 belong to h._1Nker(f). Now by definition of ¢ and observation
(4) above, Yy and Y7 belong to ¢(g,J) N J. It is immediate from this that
w(Ty) € J holds for each m, so w(T) € J. u

Corollary 5.1.3. Let (g,b,f) be an IM-triple with g nilpotent and
d(g, b, f) < 1. Then Conjecture 2 holds for (g,b, f).

Proof. To prove that Conjecture 2 holds for (g, b, f), we assume that the
IM-triple (g, b, f) admits a Kirillov structure (3,Y) with h C g¥, and with
(¥, b, f) an FM-triple. Choose X € g \ g¥. If 6(g,h, f) =0, then g C ¢(h,J),
and we have that X and Y belong to c(h,J) and [X,Y] ¢ J. Hence Conjecture
2 holds in this case.

Suppose then that 6(g,bh, f) = 1. Choose a sequence {g;} of Ad(h)-
modules as above with g,_1 = g¥. Since (g¥,b,f) an FM-triple, we have
5(g¥,h,f) =1 and so n # b. Set V = w(pY¥R,,); then it is easily seen that
V = PX + @, where P and @ belong to u(g¥), and where P is of the form
pV . Now it follows from Proposition 2.1.1, Corollary 2.1.2, and the fact that
p€ g\ (hNnker(f)), that every power of p does not lie in J. Thus Conjecture 2
is proved. [ ]

Theorem 5.1.4.  Let (g,h, f) be an IM-triple with g nilpotent and with the
property that §(g, b, f) < 1. Then D(g, b, f) is not commutative.

Proof. Let {(g(5),5h(4), f(4)): 0 < j <k} be areducing sequence for (g, b, f)
and define the index m as in Theorem 4.2.1. Then by Corollary 5.1.3, Conjecture
2 holds for ((g(m)",h(m)", f(m)"). Hence by Theorem 4.2.2, Conjecture 1 holds

for (g,b, f). u

5.2 Let (g,bh, f) be a triple with g nilpotent. Let us say that f is ”essentially
zero” if there are ideals h; and g¢ in g such that g is the direct sum of gy and
b1, b1 C c(g,9), and such that f vanishes on hNgo.

Lemma 5.2.1. Let (g,b, f) be a triple for which f is essentially zero. Let
P € S(go) be a homogeneous element for which w(P) € 3. Then P vanishes on
L.

Proof. Choose a basis of gy that passes through hy = h N gg, say:

{Ylayv%"'7Y;7’X17X27"-5Xm}
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with {Y1,Ys,...,Y,} a basis of . Using multi-indices in the usual way, let
P.s = X°Y? € S(go) and write P as a finite sum

P = Z aaﬂPa,B
a+p=d

where d is the degree of P. Now let P,s be the element in u(go) defined by the
same expression: Pn,g = X®Y#. Then

w(P) = Z aagﬁag + Z
a+p=d

where Z € ug_1(go) = k-span {X*Y" : |u|+|v| < d—1}. Now a basis of INu(gp)
is given by the monomials X#Y" with |v| > 0. Since w(P) € INu(go), it follows
that Z € JNug_1(go) and that anp # 0 only if |5| > 0. Thus P vanishes on
Lf . |

We recall the constructions of Section 3.6. Given an increasing sequence
{gj : 1 < j < n} of a(h)-modules in g with dim(g;) = j, and a Jordan-Holder
sequence for b, one has a partition of g* into the «(h)-invariant algebraic subsets
as defined in Section 3.6. Let €2 be the minimal element of the partition, that
is, = Qg where (¢,1) is the smallest index pair for which Qg4 4 # @. Then
Q) is Zariski open in g*.

Lemma 5.2.2. Let (g,b, f) be an IM-triple with g nilpotent and with f es-
sentially zero. Assume that (g, b, f) admits a Kirillov structure (3,Y) for which
b C g¥ and for which (g¥,b, f) is FM. Assume further that there is an increas-
ing sequence {g;} of a(h)-modules in g with g,—1 = g¥ and a Jordan-Holder
sequence for b, such that Ly N Q2 # Q. Then c(h,9) € u(g¥) +7.

Proof. Let X € g\ g¥. It is well-known that there is an h-invariant element
P € S(g) of the form P = QX + R where Q and R belong to S(g¥), and where
() is h-invariant and never zero on (2. From the definition of essentially zero
and the construction of P we see that Q € S(go). Now w(P) € ¢(h,J) since P
is h-invariant, and it is easily seen that w(P) has the form

wP)=w(@)X+Z

where Z € u(g¥). Hence [w(P),Y] = w(Q)[X,Y] modulo J. Since Q is never
zero on {1, then () is non-vanishing on L;, and Lemma 5.2.1 allows us to
conclude that w(Q) ¢ J. Now from Proposition 3.1.2 we have [w(P),Y] ¢ J.
Since Y € c(h,J) it follows that w(P) € c(h,J) \ u(g¥) +7. u

The following is now immediate from Theorem 4.2.2.

Theorem 5.2.3.  Let (g,h, f) be an IM-triple with g nilpotent and suppose
that a reducing sequence for (g,h, f) is given with (g(m),h(m), f(m)) defined
as in Theorem 4.2.2. Assume that the hypothesis of Lemma 5.2.2 holds for
(g(m) " h(m) " f(m)"). Then D(g,b, f) is not commutative.
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