EMIS ELibM Electronic Journals Journal of Lie Theory
Vol. 12, No. 2, pp. 535--538 (2002)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

Two observations on irreducible representations of groups

Jorge Galindo, Pierre de la Harpe, and Thierry Vust

Jorge Galindo
Departamento de Matemáticas
Universidad Jaume I
8029-AP, Castellón
Spain
jgalindo@mat.uji.es,

Pierre de la Harpe
Section de Mathématiques
Université de Genève
C.P. 240, CH-1211 Genève 24
Switzerland
Pierre.delaHarpe@math.unige.ch,

Thierry Vust
Section de Mathématiques
Université de Genève
C.P. 240, CH-1211 Genève 24
Switzerland
Thierry.Vust@math.unige.ch

Abstract: For an irreducible representation of a connected affine algebraic group $G$ in a vector space $V$ of dimension at least 2, it is shown that the intersection of any orbit $\scriptstyle\pi(G)x$ (with $x\in V$) and any hyperplane of $V$ is non-empty. The question is raised to decide whether an analogous fact holds for irreducible continuous representations of connected compact groups, for example of SU(2).

Full text of the article:


Electronic fulltext finalized on: 6 May 2002. This page was last modified: 21 May 2002.

© 2002 Heldermann Verlag
© 2002 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition