Journal of Lie Theory Vol. 12, No. 2, pp. 535--538 (2002) |
|
Two observations on irreducible representations of groupsJorge Galindo, Pierre de la Harpe, and Thierry VustJorge GalindoDepartamento de Matemáticas Universidad Jaume I 8029-AP, Castellón Spain jgalindo@mat.uji.es, Pierre de la Harpe Section de Mathématiques Université de Genève C.P. 240, CH-1211 Genève 24 Switzerland Pierre.delaHarpe@math.unige.ch, Thierry Vust Section de Mathématiques Université de Genève C.P. 240, CH-1211 Genève 24 Switzerland Thierry.Vust@math.unige.ch Abstract: For an irreducible representation of a connected affine algebraic group $G$ in a vector space $V$ of dimension at least 2, it is shown that the intersection of any orbit $\scriptstyle\pi(G)x$ (with $x\in V$) and any hyperplane of $V$ is non-empty. The question is raised to decide whether an analogous fact holds for irreducible continuous representations of connected compact groups, for example of SU(2). Full text of the article:
Electronic fulltext finalized on: 6 May 2002. This page was last modified: 21 May 2002.
© 2002 Heldermann Verlag
|