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Abstract. The representation theory of a class of infinite-dimensional groups
which are inductive limits of inductive systems of linear algebraic groups leads to
a new invariant theory. In this article, we develop a coherent and comprehensive
invariant theory of inductive limits of groups acting on inverse limits of modules,
rings, or algebras. In this context, the Fundamental Theorem of the Invariant
Theory is proved, a notion of basis of the rings of invariants is introduced, and a
generalization of Hilbert’s Finiteness Theorem is given. A generalization of some
notions attached to the classical invariant theory such as Hilbert’s Nullstellensatz,
the primeness condition of the ideals of invariants are also discussed. Many
examples of invariants of the infinite-dimensional classical groups are given.
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1. Introduction

In the preface to his book, The Classical Groups: Their Invariants and Represen-
tations, Hermann Weyl wrote “The notion of an algebraic invariant of an abstract
group γ cannot be formulated until we have before us the concept of a represen-
tation of γ by linear transformations, or the equivalent concept of a “quantity of
type A.” The problem of finding all representations or quantities of γ must there-
fore precede that of finding all algebraic invariants of γ .” His book has been and
remains the most important work in the theory of representations of the classical
groups and their invariants.

In recent years there is great interest, both in Physics and in Mathematics,
in the theory of unitary representations of infinite-dimensional groups and their
Lie algebras (see, e.g., [10], [9], [8] and the literature cited therein). One class of
representations of infinite-dimensional groups is the class of tame representations
of inductive limits of classical groups. They were studied thoroughly in the
comprehensive and important work of Ol’shanskĭı [13].
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As in Weyl’s case with the classical groups, we also discovered a new type
of invariants when we studied concrete realizations of irreducible tame represen-
tations of inductive limits of classical groups [22, 23]. One type of invariants that
is extremely important in Physics is the Casimir invariants (see, e.g., [2]). Several
of their generalizations to the case of infinite-dimensional groups may be found in
[10], [14], [6], and [22]. However, to our knowledge, there is no systematic study of
the invariant theory of inductive limits of groups acting on inverse limits of mod-
ules, rings, or algebras. In this article we develop a coherent and comprehensive
theory of these invariants. To illustrate how they arise naturally from the rep-
resentation theory of infinite-dimensional groups we shall consider the following
typical examples.

Example 1.1. Set Vk = C
1×k and let Ak = P (Vk) denote the algebra of

polynomial functions on Vk . Set Gk = SOk(C) and G0
k = SOk(R). Then Gk

(resp. G0
k ) acts on Vk by right multiplication, and this induces an action of Gk

(resp. G0
k ) on Ak . Then the ring of Gk (resp. G0

k )-invariants is generated by

the constants and p0
k =

∑k
i=1 X

2
i , where (X1, . . . , Xk) = X ∈ Vk , and the Gk -

invariant differential operators are generated by 4k = p0
k(D) =

∑k
i=1 ∂

2
i , where

∂2
i = ∂2

∂X2
i

. If Hk (resp. Hd
k ) denote the subspace of harmonic polynomials (resp.

harmonic homogeneous of degree d), i.e., polynomials that are annihilated by 4k ,
then for k > 2 we have the “separation of variables” theorem

P (m)(Vk) =
∑

i=0,... ,[m/2]

⊕(p0
k)

(i)H(m−2i)
k , (1.1)

where P (m)(Vk) denotes the subspace of all homogeneous polynomials of degree

m ≥ 0, and [m/2] denotes the integral part of m/2. Moreover, each (p0
k)

(i)H(m−2i)
k

is an irreducible Gk (resp. G0
k )-module of signature (m− 2i, 0, . . . , 0︸ ︷︷ ︸

[k/2]

). Now

observe that a polynomial in k variables (X1, . . . , Xk) can be considered as a
polynomial in l variables (X1, . . . , Xl) for k ≤ l in the obvious sense. It follows
that Ak can be embedded in Al so that the inductive limit A of Ak can be
considered as the algebra of polynomials in infinitely many variables; in the sense
that an element of A is a polynomial in n variables, where n ranges over N . Let
G =

⋃∞
k=1 Gk (resp. G0 =

⋃∞
k=1 G

0
k ); then G acts on A in the following sense:

If g ∈ G then g ∈ Gk , for some k ; if f ∈ A then f ∈ Al , for some l .
We may always assume that k ≤ l and g ∈ Gl , so that g · f is well-defined.
Thus under the identification defined above, it makes sense to define Hd as the
subspace of A which consists of all harmonic homogeneous polynomials of degree
d . Then it was shown in [23] that Hd is an irreducible G-(resp. G0 )-module.
But now what are the G-invariants? It is easy to see that no elements of A
as well as no polynomial differential operators can be G-invariant. Now observe
that if we let p0 denote the formal sum

∑∞
i=1 X

2
i and X = (X1, . . . , Xk, . . . )

denote the formal infinite row matrix, then Xg, g ∈ G (i.e., g ∈ Gk for some k ),
equals ((X1, . . . , Xk)g,Xk+1, . . . ), and it follows p0 is formally G-invariant. Set
4 =

∑∞
i=1 ∂

2
i and let 4 operate on A as follows:

If f ∈ A then f ∈ Ak for some k ∈ N , and 4f := 4kf .

Thus f ∈ A is harmonic if 4f = 0, and Hd = {f ∈ Ad | 4f = 0} .
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This intuitive generalization of invariants can be rigorously formalized by
defining p0 as an element of the inverse (or projective) limit A∞ of the algebras
Ak . Then A∞ is an algebra over C and one can define an action of G on A∞ .
The subalgebra J of all elements of A∞ which are pointwise fixed by this action
is called the algebra of G-invariants, and p0 ∈ J . It turns out that this can be
done in a very general context.

It is also well-known that the ideal in Ak generated by p0
k is prime if k > 2.

It will be shown that the ring of G-invariants in A∞ is generated by the constants
and by p0 , and the ideal in A∞ generated by p0 is prime.

Example 1.2. This example will be studied in great detail in Subsection 4.7.,
but since we want to use it to motivate the need to introduce a topology on A∞
in Section 2., we shall give a brief description below.

Let Xk = (xij) ∈ C
k×k and let Ak denote the algebra of polynomial

functions in the variables xij . Let Gk = GLk(C); then Gk operates on Ak via the
co-adjoint representation. Set

T nk = Tr(Xn
k ), 1 ≤ n ≤ k;

then the subalgebra of all Gk -invariants is generated by the constants and by the
algebraically independent polynomials T 1

k , . . . , T
k
k . Let G denote the inductive

limit of the Gk ’s and let A∞ denote the inverse limit of the Ak ’s. Let T n denote
the inverse limit of T nk ; then it will be shown that {T n;n ∈ N} is an algebraically
independent set of G-invariants. However, if we let 〈T n;n ∈ N〉 denote the
subalgebra of A∞ generated by the T n ’s, and J denote the subalgebra of G-
invariants in A∞ , then we can only show that 〈T n;n ∈ N〉 is dense in J under
the topology of inverse limits defined on A∞ . In general, we can give examples
of ideals that are not closed in A∞ (see Example 2.12). Thus in order to have a
notion of basis for the rings of invariants it is necessary to introduce a topology
on A∞ .

It turns out that, in general, the topology introduced in Section 2. is the
most natural and the only nontrivial that one can define on inverse limits of
algebraic structures.

In the spirit of Hilbert’s Fourteenth Problem (see [12]) we shall also prove a
sufficient condition for our rings of G-invariants to be finitely generated (Theorem
3.6) . Some of the results in this article were presented in [20], [21] and [24].

2. Inverse limits of algebraic structures as topological spaces

Let I be an infinite subset of the set of natural numbers N . Let C be a category.
Suppose for each i ∈ I there is an object Ai ∈ C and whenever i ≤ j there is a
morphism µji : Aj → Ai such that

(i) µii : Ai → Ai is the identity for every i ∈ I ,

(ii) if i ≤ j ≤ k then µki = µji ◦ µkj .

Then the family {Ai;µji} is called an inverse spectrum over the index set I
with connecting morphisms µji .
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Form
∏

i∈IAi and let pi denote its projection onto Ai . The subset

{a = (ai) ∈
∏
i∈I

Ai | ai = pi(a) = µji ◦ pj(a) = µji (aj), whenever i ≤ j}

is called the inverse (or projective) limit of the inverse spectrum {Ai;µji} and is
denoted by A∞ (or lim

←
Ai ). The restriction pi|A∞ : A∞ → Ai is denoted by µi

and is called the ith canonical map. The elements of A∞ are called threads.

In this article C can be either the category of modules, vector spaces, rings,
or algebras over a field; then clearly if A∞ 6= ∅ it belongs to the same category
of the Ai . For example if each Ai is an algebra over the field F then A∞ is an
algebra over F with the operations defined as follows:

For a = (ai), b = (bi) in A∞ and c in F ,

(a+ b)i := (ai + bi), (ab)i := aibi, (ca)i := cai.

These operations are well-defined since the connecting morphisms µji are algebra
homomorphisms. It follows that the canonical maps are also morphisms. In general
the inverse limit A∞ can be made into a topological space as follows:

Endow each Ai with the discrete topology. Then the Cartesian product∏
i∈IAi has a nontrivial product topology. Since each mapping µji is clearly

continuous it follows that the projection maps pi , and hence, the canonical maps µi
are continuous. It follows from Theorem 2.3, p. 428, of [5] that the sets {µ−1

i (U) |
all i ∈ I , all subsets U of Ai} form a topological basis for A∞ . We have the
following refinement.

Lemma 2.1. The space A∞ equipped with the topology defined above satisfies
the first axiom of countability with the sets {µ−1(ai) | all i ∈ I} forming a countable
topological basis at each point a = (ai) of A∞ . Moreover, µ−1

j (aj) ⊂ µ−1
i (ai)

whenever i ≤ j .

Proof. Let a = (ai) ∈ V , where V is open in A∞ . Then there exist an
i ∈ I and a subset Ui of Ai such that a ∈ µ−1

i (Ui) ⊂ V . This implies that
ai = µi(a) ∈ Ui , and therefore, µ−1

i (ai) ⊂ µ−1
i (Ui) ⊂ V . Since the set {ai} is

open in Ai , µ
−1
i (ai) is a basic open set in A∞ containing a . This shows that

A∞ is first countable. Now let i ≤ j and let b ∈ µ−1
j (aj). Then bj = µj(b) ∈

µj(µ
−1
j (aj)) = {aj} , or bj = aj . This implies that bi = µji (bj) = µji (aj) = ai , and

thus b ∈ µ−1
i (ai). This shows that µ−1

j (aj) ⊂ µ−1
i (ai).

Remark 2.2. In this article when we refer to the topological space A∞ we
mean that A∞ is equipped with the topology defined by the topological basis
{µ−1

i (ai) | all i ∈ I , and all a = (ai) ∈ A∞} , unless otherwise specified.

For S any subset of A∞ let S̄ denote the closure of S in A∞ . Lemma 2.1
implies the following

Lemma 2.3. Let S ⊂ A∞ . Then x ∈ S̄ if and only if there is a sequence {xn}
in S converging to x.
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Proof. See [5, Theorem 6.2, p. 218].

Theorem 2.4. Let {xn} be a sequence in A∞ . Then xn → x if and only if for
every i ∈ I there exists a positive integer Ni , depending on i, such that xni = xi
whenever n ≥ Ni .

Proof. By definition the sequence {xn} converges to x if: “for every neighbor-
hood U of x ∃N ∀n ≥ N : xn ∈ U ”. By Lemma 2.1 it is sufficient to consider
the neighborhoods of x of the form µ−1

i (xi), ∀ i ∈ I. This means that xn → x if
and only if

“∀ i ∈ I ∃Ni ∀n ≥ Ni : xni = xi”.

Theorem 2.5. If A∞ belongs to the category C of modules, rings, etc., then
the operations in A∞ are continuous.

Proof. For example, A∞ is an algebra over a field and the operation is the
multiplication in A∞ . Let f : A∞ × A∞ → A∞ be the map defined by

f(a, b) = a · b, ∀ a, b ∈ A∞.

Since A∞ is first countable it follows that A∞ × A∞ is first countable. It follows
from Theorem 6.3, p. 218, of [5] that f is continuous at (a, b) if and only if
f(an, bn)→ f(a, b) for each sequence (an, bn)→ (a, b). By Theorem 2.4

“an → a if and only if ∀ i ∈ I ∃Na
i ∀n ≥ Na

i : ani = ai”,

“bn → b if and only if ∀ i ∈ I ∃N b
i ∀n ≥ N b

i : bni = bi”.

Thus ∀ i ∈ I let Ni = max(Na
i , N

b
i ); then ∀n ≥ Ni we have ani = ai and bni = bi .

This implies that

“∀ i ∈ I ∃Ni ∀n ≥ Ni (a · b)i = ai · bi = ani · bni = (an · bn)i”

which implies that f(an, bn)→ f(a, b), or f is continuous at (a, b).

For each i ∈ I , let Si ⊂ Ai and assume that µji (Sj) ⊂ Si whenever i ≤ j .
Then {Si;µji |Sj} is an inverse spectrum over I . Theorem 2.8, p. 423, of [5] implies
that the inverse limit S∞ is homeomorphic to the subspace A∞ ∩

∏
i∈I Si . In this

article we shall identify S∞ with this subspace.

Theorem 2.6. Let S be any subset of A∞ , and let Si = µi(S), all i ∈ I; then
S∞ = S̄ .

Proof. Let s ∈ S ; then si = µi(s) ∈ Si , ∀ i ∈ I , and µji (sj) = µji ◦ µj(s) =
µi(s) = si . Thus µji (Sj) ⊂ Si and S ⊂ S∞ . Let us show that S∞ is closed in
A∞ . Let s0 ∈ S̄∞ ; then Lemma 2.3 implies that there exists a sequence {sn} in
S∞ converging to s0 . By Theorem 2.4 it follows that for every i ∈ I , there exists
Ni such that sni = s0

i whenever n ≥ Ni . This implies that s0
i ∈ Si for every i ∈ I ,

and hence, s0 ∈ S∞ . Thus S∞ is closed, and it follows that S̄ ⊂ S∞ . Now let
s ∈ S∞ ; then by definition, for every i ∈ I , there exists an element si ∈ S such
that si = sii . Now the set {si | i ∈ I} is a sequence in S since I is an infinite subset
of N . For any i, j ∈ I such that j ≥ i ; then sji = µji (s

j
j) = µji (sj) = si . It follows

that, for every i ∈ I , there exists Ni = i such that sji = si whenever j ≥ Ni = i .
Theorem 2.4 implies that sj → s , and thus s ∈ S̄ . Therefore, S∞ ⊂ S̄ , and hence
S̄ = S∞ .
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In the following theorems C is the category of (unital) rings but whenever
it is appropriate the theorems remain valid if C is either the category of modules,
vector spaces or algebras over a field F . The proofs of Theorems 2.7 and 2.8 and
Corollary 2.9 are straightforward.

Theorem 2.7. Let {Ri;µ
j
i | i ∈ I} be an inverse spectrum in the category C of

unital rings. Then R∞ is a unital ring and the following hold:

(i) If for all i ∈ I, Si are subrings of Ri such that µji (Sj) ⊂ Si whenever j ≥ i,
then S∞ is a subring of R∞ .

(ii) If S is a subring of R∞ and Si = µi(S), all i ∈ I, then each Si is a subring
of Ri . Moreover, S∞ is also a subring of R∞ such that S∞ = S̄ .

Theorem 2.8. Let {Ri;µ
j
i | i ∈ I} be an inverse spectrum in the category C of

commutative and unital rings. Then the following hold:

(i) If for all i ∈ I, Ii are ideals of Ri such that µji (Ij) ⊂ Ii whenever j ≥ i,
then I∞ is an ideal of R∞ .

(ii) If I is an ideal of R∞ , if Ii = µi(I), and if the canonical homomorphisms
µi : R∞ → Ri are surjective, then each Ii is an ideal of Ri . Moreover, I∞
is also an ideal of R∞ such that I∞ = Ī .

Let R be a unital commutative ring and let S 6= ∅ be any subset of R .
Let 〈S〉 denote the subring generated by S ; i.e., the smallest subring containing
S . Similarly if S 6= ∅ is a subset of R there exists a smallest ideal containing S .
This ideal is called the ideal generated by S and is denoted by (S). The set S is
then called a system of generators of this ideal. In fact an element of (S) can be
written as

∑
finite risi where ri ∈ R , and si ∈ S .

Corollary 2.9. Let S be any non-empty subset of R∞ and set 〈S〉i = µi(〈S〉),
(S)i = µi((S)), all i ∈ I. Then the following hold:

(i) lim
←
〈S〉i is the smallest closed subring of R∞ that contains S .

(ii) If the canonical homomorphisms µi are surjective, all i ∈ I, then lim
←

(S)i is

the smallest closed ideal of R∞ that contains S .

A subset L of the index set I is called cofinal in I if ∀ i ∈ I ∃l ∈ L : i ≤ l .
Since I ⊂ N it is clear that L ⊂ I is cofinal in I if and only if L is an infinite
subset of I .

Let {Ai;µji} be an inverse spectrum in a category C and let L be cofinal
in I . Then Theorem 2.7, p. 431, of [5] implies that lim

←
Ai∈I is homomorphic to

lim
←
Al∈L . Clearly both limits are in the category C and they are also isomorphic.

So we may without loss of generality assume that lim
←
Ai∈I = lim

←
Al∈L .
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Theorem 2.10. If for every i ∈ I, Ri is an integral domain, then R∞ is an
integral domain. If the connecting homomorphisms µi are surjective, all i ∈ I,
then every principal ideal I in the integral domain R∞ is closed.

Proof. If a, b ∈ R∞ are such that a ·b = 0 then ai ·bi = (a ·b)i = 0 for all i ∈ I .
Since each Ri is an integral domain either ai = 0 or bi = 0. We may suppose
without loss of generality that ai = 0 for infinitely many indices i ∈ I . Since this
set of indices is cofinal in I , Theorem 2.7 of [5] implies that a = 0. This implies
that R∞ is an integral domain. Now let I be a principal ideal of the integral
domain R∞ and let a be a generator of I . Since each µi is surjective, Theorem
2.8(ii) implies that each Ii = µi(I) is an ideal in Ri . For each si ∈ Ii there exists
an s ∈ I such that µi(s) = si . Since I is a principal ideal there exists r ∈ R∞
such that s = ra . This implies that si = riai , and thus each Ii is a principal ideal
in Ri with ai as a generator. Let b ∈ I∞ ; then bi ∈ Ii , all i ∈ I . Therefore, for
each i ∈ I there exists ri ∈ Ri such that bi = riai . We have, for all j ≥ i ,

riai = bi = µji (bj) = µji (rjaj) = µji (rj)µ
j
i (aj), or (2.1)

riai = µji (rj)ai.

If I = {0} then obviously I is closed in R∞ . If I 6= {0} then we may assume
without loss of generality that ai 6= 0 for sufficiently large i . For such an i , Eq.
(2.1) implies that µji (rj) = ri since Ii is an integral domain. Set r = (ri); then
since µji (rj) = ri whenever j ≥ i it follows that r ∈ R∞ and b = ra ∈ I . Thus
I = I∞ and I is closed.

Theorem 2.11. For each i ∈ I let Ii be an ideal of Ri such that µji (Ij) ⊂ Ii
whenever j ≥ i. If Ii are prime for infinitely many i ∈ I then I∞ is a prime ideal
of R∞ .

Proof. Since the set L of indices l ∈ I for which Il are prime is infinite
lim
←
Ii∈I = lim

←
Il∈L as remarked above. Thus we may assume without loss of

generality that Ii are prime for all i ∈ I . Suppose a, b ∈ R∞ such that ab ∈ I∞ .
Then by definition aibi = (ab)i ∈ Ii , ∀ i ∈ I . Since each Ii is prime either ai ∈ Ii
or bi ∈ Ii . Suppose that there are infinitely many j ∈ I such that aj ∈ Ij . Then
for each i ∈ I there exists j ≥ i such that aj ∈ Ij . Since µji (Ij) ⊂ Ii it follows
that ai = µji (aj) ∈ Ii . Since i is arbitrary it follows that a = (ai) ∈ I∞ . If there
is only a finite number of j ∈ I such that aj ∈ Ij there must be infinitely many
j ∈ I such that bj ∈ Jj , and the same argument as above shows that b ∈ I∞ .
Thus, ab ∈ I∞ implies either a ∈ I∞ or b ∈ I∞ , and therefore I∞ is prime.

Example 2.12. We are giving below a class of examples which is typical of the
category of objects that we will study in the remainder of this article.

Let R denote a commutative unital ring. Let k be a positive integer and
let Ak denote the free commutative algebra R[Xk] ≡ R[(Xij)] of polynomials
with respect to the indeterminates Xij , where i is any integer ≥ 1 and 1 ≤
j ≤ k (see [3], Chapter 4, for polynomial algebras in general). Let (α)k =
(α11, . . . , α1k, α21, . . . , α2k, . . . ) be a multi-index of integers ≥ 0 such that all but
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a finite number of the αij are nonzero. Set X
(α)k
k = Xα11

11 . . . X
αij
ij . . . . Then the set

{X(α)k
k } is a basis for the R-module Ak when (α)k ranges over all multi-indices

defined above. Set |(α)k| =
∑

i,j αij . Then every polynomial pk ∈ Ak can be
written in exactly one way in the form

pk =
∑
|(α)k|≥0

c(α)kX
(α)k (2.2)

where c(α)k ∈ R and the c(α)k are zero except for a finite number; the c(α)k are
called the coefficients of pk ; the c(α)kX

(α)k are called the terms of pk. For l ≥ k
every polynomial pl =

∑
c(α)lX

(α)l of Al can be written uniquely in the form

pl =
∑
(α′)l

c(α′)lX
(α′)l +

∑
(α′′)l

c(α′′)lX
(α′′)l (2.3)

where in each (α′)l all the integers α′ij are zero whenever j > k , and in each (α′′)l
there must be an integer α′′ij > 0 whenever k < j ≤ l . Identify each (α′)l with an
element (α)k and define the map µlk : Al → Ak by

pk = µlk(pl) =
∑
(α′)l

c(α′)lX
(α′)l =

∑
(α)k

c(α)kX
(α)k . (2.4)

Using Eqs. (2.3) and (2.4) we can easily deduce that µlk is an algebra homo-
morphism and we have µmk = µlk ◦ µml whenever k ≤ l ≤ m . In fact Ak can
be considered as a subalgebra of Al whenever k ≤ l . Thus all the connecting
homomorphisms µlk are surjective. These connecting homomorphisms are called
truncation homomorphisms.

Let A∞ denote the inverse limit of the inverse spectrum {Ak;µlk} . Then
since every element p ∈ Ak can be considered as an element of Al for l ≥ k we
can identify p with a thread (p) in A∞ by defining pl = p whenever l ≥ k . Since
the set of all integers l ≥ k is cofinal in I = N the thread (p) is well-defined. It
follows from Theorem 2.7 that A∞ is nonempty and each Ak is a subalgebra of
A∞ . If R is an integral domain then Théorème 1, p. 10, of [3] implies that each
Ak is an integral domain, and hence by Theorem 2.10, A∞ is an integral domain
and every principal ideal I in A∞ is closed.

For a fixed integer n ≥ 1 let An,k denote the algebra R[(Xij)] for 1 ≤ i ≤ n
and 1 ≤ j ≤ k ; then obviously An,k is a subalgebra of Ak such that µlk(An,l) = An,k
whenever l ≥ k . Set An,∞ = limk

←
An,k ; then Theorem 2.7 implies that An,∞ is a

subalgebra of A∞ .

For each i ≥ 1 define pik ∈ Ak by pik =
∑k

j=1 X
2
ij . Consider the thread

f i = (pik) in A∞ . As remarked above for each k , pik can be considered as an
element of A∞ so that if we set f i,k = pik then the set {f i,k | k ∈ N} is a sequence
in A∞ . This sequence has a particular property in that its kth term f i,k is a
stationary thread at k . We claim that lim

k→∞
f i,k = f i . Indeed, for every k there

exists Nk = k such that f i,lk = µlk(p
i
l) = pik = f ik whenever l ≥ k . Theorem 2.4

implies that lim
k→∞

f i,k = f i . In general, if Sk =
∑k

i=1 g
i, k ∈ N , is a convergent

sequence in A∞ , then we write its limit as
∑∞

i=1 g
i . Similarly, if P k =

∏k
i=1 g

i is
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a convergent sequence in A∞ , then we write its limit as
∏∞

i=1 g
i . Thus with this

convention we have f i =
∑∞

j=1 X
2
ij , all i ∈ N .

We claim that the ideal I generated by the set {f i | i ∈ N} is not closed in
A∞ . Indeed, let Sn =

∑n
i=1 Xiif

i ; then {Sn | n ∈ N} is a sequence in I such that

Snk = µk(S
n) =

n∑
i=1

µk(Xii)µk(f
i) =

{ ∑n
i=1 Xiif

i
k, k > n,∑k

i=1 Xiif
i
k, k ≤ n.

(2.5)

Set S =
∑∞

i=1 Xiif
i and let us show that S ∈ A∞ and lim

n→∞
Sn = S . First

consider {(
∑k

i=1 Xiif
i
k)k | k ∈ N} . Then µlk(

∑l
i=1 Xiif

i
l ) =

∑k
i=1 Xiif

i
k whenever

l ≥ k . Thus ((
∑k

i=1 Xiif
i
k)k) is a thread in A∞ and S = ((

∑k
i=1 Xiif

i
k)k). Now

we have from Eq. (2.5) “ ∀ k ∈ N ∃Nk = k ∀n ≥ k : Snk = Sk”, which means that
lim
n→∞

Sn = S ∈ Ī .

Now let us show that S /∈ I . A general element in I is of the form g =∑m
i=1 h

if i where hi ∈ A∞, 1 ≤ i ≤ m . Then gk = µk(g) =
∑m

i=1 µk(h
i)µk(f

i) =∑m
i=1 h

i
kf

i
k where the hik belong to Ak, 1 ≤ i ≤ m . Thus each hik is a polynomial

in the indeterminates Xrs, 1 ≤ r ≤ ni, 1 ≤ s ≤ k . Let n = max{ni | 1 ≤ i ≤ m} ;
then clearly n is independent of k . Now choose k > n ; then Sk =

∑k
i=1 Xiif

i
k ,

and S cannot be an element g in I since the term Xkkf
i
k of Sk does not occur

in gk .

3. Invariant theory of inductive limits of groups acting on inverse
limits of rings

Let I be an infinite subset of the set of natural numbers N . Let C be a category.
Let {Yi | i ∈ I} be a family of objects in the category C . Suppose for each pair of
indices i, j satisfying i ≤ j there is a morphism λij : Yi → Yj such that

(i) λii : Yi → Yi is the identity for every i ∈ I ,

(ii) if i ≤ j ≤ k then λik = λjk ◦ λij .

Then the family {Yi;λij} is called a direct (or inductive) system with index
set I and connecting morphisms λij .

The image of yi ∈ Yi under any connecting morphism is called a successor
of yi . Let Y =

⋃
i∈I Yi and call two elements yi ∈ Yi and yj ∈ Yj in Y

equivalent whenever they have a common successor in the spectrum. This relation,
R , is obviously an equivalence relation in Y . The quotient Y/R is called the
inductive (or direct) limit of the spectrum, and is denoted by Y ∞ (or lim

→
Yi ). Let

p :
⋃
i∈I Yi → Y ∞ be the projection; its restriction p|Yi is denoted by λi and is

called the canonical morphism of Yi into Y ∞ . In general, Y ∞ may not have the
same algebraic structure as the Yi , but in many instances it does. For example, if
{Gi;λij} is an inductive system of groups, the inductive limit of the operations on
Gi defines on lim

→
Gi a group structure. Similar results hold for inductive limits of

rings, modules, algebras, or Hilbert spaces; for details see [4, p. 139].

Now assume that for each k ∈ I we have a linear subgroup Gk of GLk(C)
such that Gk is naturally embedded (as a subgroup) in Gl , k < l ; then we can
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define the inductive limit G∞ =
⋃
k∈IGk , and the connecting morphisms λkl are

just the embedding isomorphisms of Gk into Gl .

Let A∞ be the inverse limit of an inverse spectrum {Ai;µji} of a category
of objects considered in Section 2.. Suppose that each Ak is acted on by the group
Gk .

Lemma 3.1. Assume that the homomorphisms µkj and λjk satisfy the following
condition

g · (µkj (ak)) = µkj (λjk(g) · ak), (3.1)

for all g ∈ Gj , ak ∈ Ak and k ≥ j . Then there is a well-defined action of G∞ on
A∞ given by 

(g · a)k := g · ak,

(g · a)n := λkn(g) · an, if n ≥ k,

(g · a)j := µkj (g · ak), if j ≤ k,

∀ g ∈ Gk, ∀ a = (ak) ∈ A∞.

(3.2)

Proof. First, let us prove that g · a ∈ A∞ whenever g ∈ Gk and a ∈ A∞ . For
this we need to show that (g · a)i = µli((g · a)l) whenever l ≥ i .

If l ≥ i ≥ k then by Eq. (3.1) we have

µli((g · a)l) = µli(λkl(g) · al) = µli(λil(λki(g)) · al)
= λki(g) · (µli(al)) = λki(g) · ai = (g · a)i.

If l ≥ k > i then by definition we have

µli((g · a)l) = µli(λkl(g) · al) = µki (µ
l
k(λkl(g) · al))

= µki (g · µlk(al)) = µki (g · ak) = (g · a)i.

If k > l ≥ i then by definition we have

µli((g · a)l) = µli(µ
k
l (g · ak)) = µki (g · ak) = (g · a)i.

Now let us show that Eq. (3.2) defines an action of G∞ on A∞ . Let g1 ∈ Gi

and g2 ∈ Gk . If i < k we may identify g1 with λik(g1), if k < i we may identify
g2 with λki(g2). So we may assume without loss of generality that g1, g2 ∈ Gk .
We must show that

(g1g2) · a = g1 · (g2 · a), for all a = (ak) ∈ A∞.

For n ≥ k we have

((g1g2) · a)n = λkn(g1g2) · an = (λkn(g1)λkn(g2)) · an
= λkn(g1) · (λkn(g2) · an) = λkn(g1) · (g2 · a)n = (g1 · (g2 · a))n.

For j ≤ k we have

((g1g2) · a)j = µkj ((g1g2) · ak) = µkj (g1 · (g2 · ak))
= µkj (g1 · (g2 · a)k) = (g1 · (g2 · a))j.

Let ei denote the identity element of Gi for all i ∈ I . Then the unique
element e ∈ G∞ such that e = λi(ei) for all i ∈ I is obviously the identity of G∞ ,
and we can easily verify that e · a = a , ∀ a ∈ A∞ .
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Definition. An element ak ∈ Ak is said to be Gk -invariant if gk · ak = ak for
all gk ∈ Gk . An element a = (ak) ∈ A∞ is said to be G∞ -invariant if g · a = a
for all g ∈ G∞ .

The proofs of Lemmas 3.2 and 3.3 are straightforward.

Lemma 3.2. An element a = (ak) ∈ A∞ is G∞ -invariant if and only if each
ak is Gk -invariant.

Lemma 3.3. If x ∈ Ak is Gk -invariant then µkj (x) is Gj -invariant for all
j ≤ k .

Now let F = R or C and consider the free commutative algebra F[Xk] =
F[(Xij)], i ≥ 1, 1 ≤ j ≤ k , of polynomials as described in Example 2.12. For every
p ∈ F[(Xij)] let p̃ denote the polynomial function obtained by substituting Xij

by xij ∈ F . Since F is an infinite field the mapping p → p̃ of F[Xk] onto F[xk]
is an algebra isomorphism (cf. [3, Proposition 9, p. 27]). Thus we can identify
F[Xk] with F[xk] = Ak and continue to call elements of Ak polynomials for the
sake of brevity. Let µlk be the truncation homomorphisms described in Example
2.12. Let A∞ denote the inverse limit of the inverse spectrum {Ak;µlk} . Let
{Gk;λkl} be an inductive system of groups such that each Gk acts on Ak . Then
it can be easily verified that condition (3.1) is satisfied, and thus the action of
G∞ on A∞ given in Lemma 3.1 is well-defined. We have now the Fundamental
Theorem of the Invariant Theory of inductive limits of groups acting on inverse
limits of polynomial algebras. Since the action of each Gk on Ak is such that
g · (p + q) = gp + g · q , g · (cp) = c(g · p), and g · (pq) = (g · p)(g · q) for all
g ∈ Gk , p, q ∈ Ak , and c ∈ F , it follows that the action of G∞ on A∞ has the
same algebraic structure (see [4, Section 6, p. 140]). This implies immediately that
the subset of all G∞ -invariants in A∞ is a subalgebra of A∞ .

Theorem 3.4. For each k ∈ I let Jk denote the subalgebra of Gk -invariants in
Ak . Let J denote the subalgebra of G∞ -invariants in A∞ . Then J∞ = lim

←
Jk = J ,

and hence, J is closed in A∞ .

Proof. For each k ∈ I , Theorem 2.7(ii) implies that µk(J) is a subalgebra of
Ak . Lemma 3.2 implies that µk(J) ⊂ Jk for all k ∈ I . Lemma 3.3 implies that
µlk(Jl) ⊂ Jk whenever l ≥ k . Now Theorem 2.7(i) implies that J∞ is a subalgebra
of A∞ , and Theorem 2.7(ii) implies that lim

←
µk(J) is also a subalgebra of A∞ .

Obviously we have lim
←
µk(J) ⊂ J∞ . Lemma 3.2 implies that J∞ ⊂ J . Theorem

2.7(ii) implies that lim
←
µk(J) = J̄ . Thus, finally we have the chain of inclusions.

J ⊂ J̄ = lim
←
µk(J) ⊂ J∞ ⊂ J . (3.3)

Then the Theorem now follows immediately from Eq. (3.3).

In the Invariant Theory of the Classical Groups the subalgebra of invariants
is generated by an algebraically independent set of polynomials. We shall gener-
alize this result by introducing a notion of algebraic basis for an inverse limit of
polynomial algebras.
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Definition. 1. A family {fα}α∈Λ of elements in A∞ is said to be alge-
braically independent if the relation p({fα}) = 0, where p is a polynomial
in F[{Xα}]α∈Λ where Xα is an indeterminate, implies p = 0. The family is
said to be algebraically dependent if it is not algebraically independent.

It is clear from the definition of a polynomial that a family is algebraically
independent if and only if every finite subfamily of this family is algebraically
independent.

2. A family {fα}α∈Λ of elements in A∞ is said to generate A∞ if 〈{fα}α∈Λ〉 =
A∞ , where 〈{fα}α∈Λ〉 denotes the subalgebra generated by the fα , and the
bar denotes the closure in the topology of inverse limits defined in Section 2.

3. An algebraically independent family of elements in A∞ that generates A∞
is called an inverse limit basis of A∞ .

4. For the standard definition of an algebraically independent family of poly-
nomials see [3, p. 95].

Theorem 3.5. Let {fα}α∈Λ be a family of elements in A∞ . If for every
finite subset of indices {α1, . . . , αn} ⊂ Λ there exists an integer k ∈ I, possibly
depending on n, such that the subset of polynomials {fα1

k , . . . , fαnk } is algebraically
independent in Ak , then {fα}α∈Λ is algebraically independent in A∞ .

Proof. Suppose p({fα}) = 0, p ∈ F[{Xα}]α∈Λ ; then p(fα1 , . . . , fαn) = 0
for some finite subset of indices {α1, . . . , αn} . By hypothesis there exists an
integer k such that {fα1

k , . . . , fαnk } is algebraically independent in Ak . Since
the canonical map µk : A∞ → Ak is an algebra homomorphism it follows that
p(fα1

k , . . . , fαnk ) = 0. Hence p = 0 and the theorem is proved.

Theorem 3.6. Let {fα}α∈Λ be a family of elements in A∞ . If there exists
k0 ∈ I such that the family of polynomials {fαk0

}α∈Λ is algebraically independent
in Ak0 then {fα}α∈Λ is also algebraically independent in A∞ and 〈{fα}α∈Λ〉 is
closed in A∞ .

Proof. The fact that {fα}α∈Λ is algebraically independent follows immediately
from Theorem 3.5 . By Lemma 2.3 to prove that 〈{fα}α∈Λ〉 is closed we suppose
that ϕ is the limit of a sequence {ϕn} in 〈{fα}α∈Λ〉 and verify that ϕ ∈ 〈{fα}α∈Λ〉 .

By Theorem 2.4, ϕn → ϕ if and only if for every i ∈ I there exists a positive
integer Ni , depending on i , such that ϕni = ϕi whenever n ≥ Ni . In particular,
for i = k0 there exists Nk0 such that ϕnk0

= ϕk0 whenever n ≥ Nk0 . Thus for
i ≥ k0 we can choose Ni ≥ Nk0 . Therefore for n ≥ Ni we have

ϕi = ϕni = pn({fαi }) = (pn({fα}))i,

where pn is a polynomial depending on n . Since µik0
is an algebraic homomor-

phism, ϕk0 = ϕnk0
= µik0

(ϕni ) = pn({fαk0
}). The fact that {fαk0

}α∈Λ is algebraically
independent implies that all the polynomials pn are the same for sufficiently large
n . Let p denote such a polynomial. Then we have ϕi = (p({fα}))i for all i ∈ I .
This means that ϕ ∈ 〈{fα}α∈Λ〉 , and this achieves the proof of the theorem.
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Remark 3.7. Suppose {fα}α∈Λ is a family of elements in A∞ such that
{fαi }α∈Λ is an algebraic basis for the polynomial algebra Ai for all i ≥ k0 for
some k0 ∈ I , i.e., the family {fαi }α∈Λ is algebraically independent in Ai and
〈{fαi }α∈Λ〉 = Ai . Then Theorem 3.6 implies that {fα}α∈Λ is also an algebraic ba-
sis for A∞ . Thus in this case the notion of algebraic basis and inverse limit basis
for A∞ coincide, and the notion of (inverse limit) basis does indeed generalize the
notion of algebraic basis.

Corollary 3.8. We preserve the notations of Theorem 3.4. Suppose {jα}α∈Λ

is a family of elements in J such that {jαk }α∈Λ is an algebraic basis for Jk for all
k ≥ k0 . Then {jα}α∈Λ is an algebraic basis for J .

Proof. By Theorem 3.4, J = J∞ and Theorem 3.6 implies that {jα}α∈Λ is an
algebraic basis for J∞ . Thus the corollary is proved.

Example 3.9. Let Ak be the algebra of polynomials in k variables x1, . . . , xk
in F . Let {Ak;µlk} denote the inverse spectrum with connecting homomorphisms
µlk : Al → Ak , l ≥ k , l, k ∈ N . The µlk are truncation homomorphisms, which
in this case can be defined simply by setting µlk(xj) = xj for 1 ≤ j ≤ k and
µlk(xj) = 0 for k < j ≤ l , and by extending algebraically to all polynomials in
Al . Let A∞ denote the inverse limit of the inverse spectrum {Ak;µlk} . Then the
set {x(α)}(α)∈Λ , where x(α) = xα1 · · ·xαk , and (α) = (α1, . . . , αk) is a multi-index,
forms an inverse limit basis for A∞ when (α) ranges over all multi-indices, and
k = 1, 2, . . . , etc.

Now let Gk ⊂ GLk(C) be a reductive algebraic group, let Vk be a complex
vector space of dimension k on which Gk acts linearly. Let C[Vk] denote the
ring of all polynomial functions on Vk . Let C[Vk]

Gk denote the subring of all Gk -
invariant polynomial functions. Then we have the following Hilbert’s Finiteness
Theorem: There exist s algebraically independent G-invariants p1, . . . , ps such
that C[Vk]

Gk = C[p1, . . . , ps]. (See [7] and [16]). Set Ak = C[Vk] and Jk = C[Vk]
Gk .

We preserve the notation of Theorem 3.4 and assume in addition that each Gk, k ∈
I , is a reductive linear algebraic group. Then by Hilbert’s Finiteness Theorem there
exists a set of algebraically independent polynomials {fαk }α∈Λk that generates Jk ,
where the index set Λk is a finite subset of N . It follows that, for all pairs (l, k)
such that l ≥ k , we may assume that Λk ⊂ Λl . Set Λ =

⋃
k∈I Λk . In general if

the Vk are infinite-dimensional then the Jk may not be finitely generated but we
still have Λk ⊂ Λl for l ≥ k .

Theorem 3.10. For each k ∈ I let {fαk }α∈Λk be a set of generators for Jk . If
fα = lim

←
fαk then the family {fα}α∈Λ generates J . In particular, if {fαk }α∈Λk is

an algebraic basis for Jk then {fα}α∈Λ is an inverse limit basis for J .

Proof. Let J ′ = 〈{fα};α ∈ Λ〉 ; then by assumption µk(J
′) = Jk , for all k ∈ I .

By Theorem 2.6, J̄ ′ = J∞ . By Theorem 3.4, J∞ = J . Therefore J̄ ′ = J . Now if
in addition the sets {fαk }α∈Λk are algebraically independent, then by assumption
every finite subset of indices {α1, . . . , αm} of Λ is contained in Λk for some
k ∈ I ; therefore, the set {fα1

k , . . . , fαmk } is algebraically independent. Theorem 3.5
implies that the set {fα;α ∈ Λ} is algebraically independent. Thus by definition
{fα;α ∈ Λ} is an inverse limit basis for J .
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Remark 3.11. In some examples in Section 4., for each k ∈ I the set of
generators {fαk }α∈Λk are not algebraically independent yet the set {fα}α∈Λ can
be shown to be algebraically independent.

We conclude this section by generalizing to the case of inverse limits of poly-
nomial algebras one of the most fundamental theorems in the theory of polynomial
algebras, namely, Hilbert’s Nullstellensatz. This theorem plays an important role
in the theory of algebraic invariants.

Let I be a proper ideal in the polynomial ring in k complex variables
C[Z] = C[z1, . . . , zk] . Then the algebraic variety of I is defined as the set

V (I) = {Z ∈ Ck | p(Z) = 0, ∀ p ∈ I}.

If V is a subset of Ck then the ideal of V is the ideal in C[Z] defined by

I(V ) = {p ∈ C[Z] | p(Z) = 0, ∀Z ∈ V }.
The nilradical of I is defined as the set

√
I = {p ∈ C[Z] | pn ∈ I for some integer n ≥ 1}.

Then it can be easily shown that
√
I is the intersection of all prime ideals in

C[Z] which contain I . Then Hilbert’s Nullstellensatz can be simply stated as
I(V (I)) =

√
I (See [7, p. 142]).

For each k ∈ N let Ak = C[Z]k . For l ≥ k let µlk : Al → Ak denote
the truncation homomorphism. Let A∞ = lim

←
Ak . Let ikl : Ck → C

l denote the

embedding defined by ikl(Z) = ikl(z1, . . . , zk) = (z1, . . . , zk, 0, . . . , 0︸ ︷︷ ︸)
l

, ∀Z ∈ Ck .

Let C∞ =
⋃
k∈NC

k denote the inductive limit of the spectrum {Ck; ikl} . Then it
is easy to show that

p(ikl(Z)) = [µlk(p)](Z), ∀ p ∈ Al, ∀Z ∈ Ck, ∀ k, l ∈ N, l ≥ k. (3.4)

Then for every f = (fk) ∈ A∞ and every Z ∈ C∞ , i.e., Z ∈ Ck for some k ∈ N ,
we define

f(Z) := fk(Z). (3.5)

Eq. (3.4) implies that Eq. (3.5) is well-defined, i.e., the complex number f(Z) is
independent of k . This allows us to define the following concept: For any subset
V of C∞ let I(V ) = {f ∈ A∞ | f(Z) = 0, ∀Z ∈ V }.

Lemma 3.12. For any V ⊂ C∞ the set I(V ) is an ideal in A∞ . Moreover
I(V ) is closed.

Proof. If f, f ′ ∈ I(V ), h ∈ A∞ and c ∈ C , then (f + cf ′)(Z) = f(Z) +
cf ′(Z) = 0, ∀Z ∈ C∞ , and (hf)(Z) = h(Z)f(Z) = 0. Thus I(V ) is an ideal in
A∞ .

Suppose a sequence {fn} ⊂ I(V ) converges for f ∈ A∞ . Then by Theorem
2.4 we have

“∀ k ∈ N, ∃Nk ∀n ≥ Nk : fnk = fk ”.

This implies that for every k , fk(Z) = fnk (Z) = 0 for all Z ∈ V k , where
V k = V ∩ Ck . This means that f(Z) = 0, ∀Z ∈ V , and thus f ∈ I(V ).
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Now let I be an ideal in A∞ and set V (I) = {Z ∈ C∞ | f(Z) = 0,
∀ f ∈ I} . If f = (fl) ∈ I then Z ∈ V (I) if Z ∈ Ck for some k ∈ N , and
f(Z) = fk(Z) = 0. Choose k to be the smallest integer such that Z ∈ Ck\Ck−1

and define V k(I) = {Z ∈ Ck | fk(Z) = 0, ∀ f ∈ I} . Then V k(I) may be empty
but we always have V k(I) ⊂ V l(I), ∀ l ≥ k , and V (I) =

⋃
k∈N V

k(I). Indeed,
Z ∈ V (I) if and only Z ∈ V k(I) for some k ∈ N . And if l ≥ k then Eq. (3.3)
implies that Z ∈ V l(I). Thus if V (I) is not empty then there exists a smallest
integer k0 such that V k(I) = ∅ for k < k0 and V k(I) ⊃ V k0(I) 6= ∅ for k ≥ k0 .
Thus in any case we can write V (I) =

⋃
k∈N V

k(I).

Theorem 3.13. (The Nullstellensatz for inverse limits of polynomial rings)
Let I be an ideal in A∞ and let Ik = µk(I), ∀ k ∈ N. Then I(V (I)) = lim

←
(
√
Ik).

Proof. The proof of the theorem consists of the following logically equivalent
statements: Let f = (fk); then

“f ∈ I(V (I))”⇐⇒ “f(Z) = 0, ∀Z ∈ V (I)”

⇐⇒ “f(Z) = 0, ∀Z ∈ V k(I), ∀ k ∈ N”

⇐⇒ “fk(Z) = 0, ∀Z ∈ V k(Ik), ∀k ∈ N”

⇐⇒ “fk ∈
√
Ik, ∀ k ∈ N” (by the classical form

of the Nullstellensatz)

⇐⇒ f ∈ lim
←

(
√
Ik).

Corollary 3.14. In Theorem 3.13 suppose in addition that I is closed and that
each Ik is radical. Then I(V (I)) = I .

Proof. We have I(V (I)) = lim
←

(
√
Ik) = lim

←
(Ik) = I∞ = Ī = I .

4. Invariant theory of the infinite-dimensional classical groups

In this section we apply the results of Sections 2. and 3. to the invariant theory
of inductive limits of the classical groups and the symmetric groups as they act
on inverse limits of polynomials in many variables. Our basic reference is [26].
As remarked by H. Weyl, the results are valid in any field of characteristic zero,
but since in all our examples the underlying field is C , we shall restrict ourselves
to this case. Also, as noted by H. Weyl, “nothing of algebraic import is lost by
unitary restriction” (for Weyl’s “unitarian trick” see [25, Lemma 4.11.13, p. 349]),
and by the principle of permanence of the identities we shall consider only the case
of the complex classical groups acting on polynomial algebras over C . Also, all
theorems in this section are consequences of results in previous sections, especially
of Corollary 3.8 and Theorem 3.10. Thus we shall only give a detailed proof for
the case O∞ (C).
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4.1. Invariant theory of the orthogonal group O∞ (C).

For k ∈ N let Ok (C) = {g ∈ GLk (C) | g−1 = gt} and set Gk = Ok (C).
For k ≤ l define the connecting isomorphism λkl of Gk into Gl by

λkl (g) =

k︷︸︸︷ l−k︷︸︸︷
k{

(
g 0

)
l−k{ 0 1

, for all g ∈ Gk. (4.1)

Let O∞ (C) = G∞ =
⋃
k∈NGk denote the inductive limit of the inductive system

{Gk ; λkl} . Let Xk denote the matrix of indeterminates Xij , i ≥ 1, 1 ≤ j ≤ k .
Let X i

k denote the ith row of Xk . We shall consider both cases when 1 ≤ i ≤ n
and when the index set {i} is unbounded. As in Example 2.12 we let Ak = C [Xk]
and µlk : Al → Ak , k, l ∈ N , l ≥ k , denote the truncation homomorphisms. Let
A∞ denote the inverse limit of the inverse spectrum

{
Ak ; µlk

}
.

For a fixed k , Gk acts on Ak by right translation, i.e.,

(g, p) −→ g · p, where (g · p) (Xk) := p (Xkg) , g ∈ Gk, p ∈ Ak. (4.2)

Then according to [26, Theorem (2.9A), p. 53], the subalgebra Jk of Gk -invariants
in Ak is generated by 1 and the homogeneous quadratic polynomials

f i1i2k =
(
X i1
k , X

i2
k

)
=

k∑
j=1

Xi1jXi2j, ∀ i1, i2 ≥ 1. (4.3)

If 1 ≤ i1, i2 ≤ n ≤ k , then the f i1i2k are algebraically independent. Otherwise,
all relations between them are algebraic consequences of relations of the following
type (see [26, Theorem (2.17.A), p. 75]):∣∣∣∣∣∣∣∣∣

(
X i1
k , X

j1
k

)
. . .

(
X i1
k , X

jk+1

k

)
...

...(
X
ik+1

k , Xj1
k

)
. . .

(
X
ik+1

k , X
jk+1

k

)
∣∣∣∣∣∣∣∣∣ = 0. (4.4)

Example 4.1. Suppose that 1 ≤ i ≤ 3, k = 2, and X3 =

 X
Y
Z

 , where

X, Y, Z are two-dimensional row vectors. Then Jk is generated by 1 and

(X,X) , (X, Y ) , (X,Z) , (Y, Y ) , (Y, Z) , (Z,Z)

and the relations between these generators are algebraic consequences of the rela-
tion ∣∣∣∣∣∣

(X,X) (X, Y ) (X,Z)
(Y,X) (Y, Y ) (Y, Z)
(Z,X) (Z, Y ) (Z,Z)

∣∣∣∣∣∣ = 0.
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Let us verify that there is a well-defined action of G∞ on A∞ given by Eq. (3.2)
of Lemma 3.1; i.e., we must verify Eq. (3.1) for g ∈ Gk , p ∈ Al , and l ≥ k . We
have [

g ·
(
µlk (p)

)]
(Xk) =

[
µlk (p)

]
(Xkg) .

Since p ∈ Al , p is a polynomial in the indeterminates Xij , for 1 ≤ i ≤ m and
1 ≤ j ≤ l . By identifying the indeterminates Xij with the variables Xij ∈ C we
can write

p (Xl) = p (Xk Xl−k) ,

where Xl is an m× l matrix, Xk is an m× k matrix, and Xl−k is an m× (l − k)
matrix. And µlk (p) (Xk) is just p (Xk 0). Therefore,

µlk (p) (Xkg) = p (Xkg 0) .

On the other hand,

µlk (λkl (g) · p) (Xk) = [λkl (g) · p] (Xk 0)

= p

(
[Xk 0]

(
g 0
0 1

))
= p (Xkg 0) .

Since these relations hold for all Xk ∈ Cm×k and g ∈ Gk we have

µlk (λkl (g) · p) = g ·
(
µlk (p)

)
, ∀ g ∈ Gk, p ∈ Al, l ≥ k,

which is exactly the relation (3.1).

Let

f i1i2 =
∞∑
j=1

Xi1jXi2j, ∀ i1, i2 ≥ 1. (4.5)

Then we have the following Fundamental Theorem of Invariants for O∞ (C) acting
on A∞ .

Theorem 4.2. (i) The set {1, f i1i2 | i1, i2 ≥ 1} forms an inverse limit basis
for the subalgebra J of all O∞ (C)-invariants in A∞ .

(ii) If 1 ≤ i1, i2 ≤ n, then 1 and the 1
2
n (n+ 1) formal sums f i1i2 form an

algebraic basis for the subalgebra J of all O∞ -invariants in A∞ .

Proof. Part (i) follows from Theorem 3.10. Part (ii) follows from Corollary
3.8.

4.2. Invariant theory of the special orthogonal group SO∞ (C).

For k ∈ N let Gk = SOk(C) = {g ∈ Ok(C) | det(g) = 1} . Then in general
the subalgebra Jk of Gk -invariants is generated by 1, the homogeneous quadratic
polynomials fki1i2 as defined by Eq. 4.3, and the determinants

[(X i1
k , . . . , X

ik
k )] = det

 X i1
k
...

X ik
k

 , (4.6)
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where we again identify the indeterminate Xij with the variable Xij ∈ C (see
[26, pp. 41–53]). But since for l > k , µlk([(X

i1
l , . . . , X

il
l )]) = 0, it follows from

Theorem 3.10 and Corollary 3.8 that the Fundamental Theorem of Invariants for
SO∞(C) acting on A∞ has exactly the same form as Theorem 4.2.

Theorem 4.3. (The Nullstellensatz for the homogeneous ideal of invariants of
O∞(C) and SO∞(C)). In Theorem 4.2(ii) let I = (f i1i2) denote the homogeneous
ideal in A∞ generated by the 1

2
n(n + 1) elements f i1i2 , 1 ≤ i1 , i2 ≤ n. If Ik

denotes the ideal in Ak generated by the polynomials f i1i2k , 1 ≤ i1 , i2 ≤ n, and
I∞ = lim

←
Ik then we have I(V (I)) = I∞ .

Proof. Since obviously the canonical homomorphisms µk : A∞ → Ak are
surjective Theorem 2.8(ii) implies that µk(I) is an ideal in Ak . Clearly, µk(I) ⊂ Ik ,
and since µk(f

i1i2) = f i1i2k it follows that µk(I) = Ik . By [17, Theorem 2.5, p. 11]
the ideals Ik are prime for k > 2n . Hence by Theorem 2.11, I∞ is a prime ideal
of A∞ , and

√
I∞ = I∞ . Therefore, by Theorem 3.13, I(V (I)) = I∞ .

4.3. Invariant theory of the symplectic group Sp∞(C).

The symplectic group Gk = Sp2k(C) is defined as the group of all linear
transformations which leave a skew-symmetric bilinear form invariant. For our
purpose we choose the skew-symmetric bilinear form

[x, y] = (x1y2 − x2y1) + (x3y4 − x4y3) + · · ·+ (x2k−1y2k − x2ky2k−1) (4.7)

for all x, y ∈ C1×2k .

If we let Sk denote the k × k block diagonal matrix

(
0 1
−1 0

)
(

0 1
−1 0

)
. . . (

0 1
−1 0

)


(4.8)

then Eq. (4.7) can be written as [x, y] = xSky
t . Then Gk can be defined as

Gk = {g ∈ C2k×2k | gSkgt = Sk}. (4.9)

It can be easily verified that if g ∈ Gk then automatically det(g) = 1.

For k ≤ l define the connecting isomorphism λkl of Gk into Gl by

λkl (g) =

2k︷︸︸︷ 2(l−k)︷︸︸︷
2k{

(
g 0

)
2(l−k){ 0 1

, for all g ∈ Gk. (4.10)

Let Sp∞(C) = G∞ =
⋃
k∈NGk denote the inductive limit of the inductive system

{Gk;λkl} . Let Xk denote the matrix of indeterminates Xij , i ≥ 1, 1 ≤ j ≤ 2k .
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Let X i
k denote the ith row of Xk . Let Yk denote the matrix of indeterminates

Yij , i ≥ 1, 1 ≤ j ≤ 2k . Let Y i
k denote the ith row of Yk . Let Ak = C[Xk, Yk] and

µlk : Al → Ak , l ≥ k , denote the truncation homomorphisms. Let A∞ denote the
inverse limit of the inverse spectrum {Ak;µlk} . For a fixed k , Gk acts on Ak via

(g, p) −→ g · p, where

(g · p)(Xk, Yk) := p(Xkg, Ykg
X),

g ∈ Gk, p ∈ Ak, gX = (g−1)t.

(4.11)

Then according to [26, Theorem (6.1.A), p. 167] the subalgebra Jk of Gk -invariants
in Ak is generated by 1 and by the homogeneous quadratic polynomials

f i1i2k = [X i1
k , X

i2
k ] = X i1

k Sk(X
i2
k )t, i2 > i1 ≥ 1,

ϕj1j2k = [Y j1
k , Y

j2
k ] = Y j1

k Sk(Y
j2
k )t, j2 > j1 ≥ 1,

hi1j1k = (X i1
k , Y

j1
k ) = X i1

k (Y j1
k )t, i1, j1 ≥ 1.

(4.12)

These generators are not algebraically independent. All relations between them
are algebraic consequences of relations of the type (4.4) for the hijk ’s and of the
types J1 ≡ 0, . . . ,Jk ≡ 0 for the f isjsk ’s and ϕisjsk ’s (see [26, Theorem (6.1.B),
p. 168] for the definition of J1 ≡ 0, . . . ,Jk ≡ 0).

Similarly to the case G∞ = O∞(C) we can easily verify that there is a
well-defined action of G∞ = Sp∞(C) on A∞ .

Let X = lim
k→∞

Xk , Y = lim
k→∞

Yk , and S = lim
k→∞

Sk . Set
f i1i2 = X i1S(X i2)t, i2 > i1 ≥ 1,

ϕj1j2 = Y j1S(Y j2)t, j2 > j1 ≥ 1,

hi1j1 = X i1(Y j1)t, i1, j1 ≥ 1.

(4.13)

Then we have the following Fundamental Theorem of Invariants of Sp∞(C) acting
on A∞ .

Theorem 4.4. (i) The set {1, f i1i2 , ϕj1j2 , hi1j1} forms an inverse limit basis
for the subalgebra J of all Sp∞(C)-invariants in A∞ .

(ii) If both X and Y have only a finite number of rows then the set
{1, f i1i2 , ϕj1j2 , hi1j1} forms an algebraic basis for the subalgebra J of all
Sp∞(C)-invariants in A∞ .

Proof. Part (i) follows from Theorems 3.5 and 3.10. Part (ii) follows from
Corollary 3.8.

If Xk is an n × 2k matrix for all k ∈ N , and Ak = C[Xk] , then the
subalgebra Jk of Gk -invariant polynomials is generated by the set {1, f i1i2k | 1 ≤
i1 < i2 ≤ n} . Let Ik = (f i1i2k ) denote the homogeneous ideal in Ak generated by
the 1

2
n(n − 1) homogeneous quadratic polynomials f i1i2k , 1 ≤ i1 < i2 ≤ n . For

k > n , the ideals Ik are shown to be prime in [18, Theorem 1.5, p. 269]. Hence by
Theorem 2.11, I∞ = lim

←
Ik is a prime ideal in A∞ , and we have
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Theorem 4.5. (The Nullstellensatz for the homogeneous ideal of invariants of
Sp∞(C)). Let Xk denote an n × 2k matrix of indeterminates, let Ak = C[Xk],
and A∞ = lim

←
Ak . Let Ik = (f i1i2k ), and I∞ = lim

←
Ik . Let I denote the ideal in

A∞ generated by the 1
2
n(n − 1) invariants f i1i2 , 1 ≤ i1 < i2 ≤ n. Then we have

I(V (I)) = I∞ .

4.4. Invariant theory of the general linear group GL∞(C).

Let Xk (resp. Yk ) denote the matrix of indeterminates Xij (resp. Yik ),
1 ≤ i , 1 ≤ j ≤ k . Let X i

k (resp. Y i
k ) denote the ith row of Xk (resp. Yk ). Let

Ak = C[Xk, Yk] . Set Gk = GLk(C); then the action of Gk on Ak is also given by
Eq. (4.11). Then according to [26, Theorem (2.6.A), p. 45] the subalgebra of Gk -
invariants in Ak is generated by 1 and by the homogeneous quadratic polynomials{

hi1i2k = (X i1
k , Y

i2
k ) = X i1

k (Y i2
k )t,

=
∑k

j=1 Xi1jYi2j, i1, i2 ≥ 1.
(4.14)

If 1 ≤ i1, i2 ≤ n ≤ k then they are algebraically independent. Otherwise, all
relations between them are algebraic consequences of relations of the following
type: ∣∣∣∣∣∣∣

(X i1
k , Y

j1
k ) · · · (X i1

k , Y
jk+1

k )
...

...

(X
ik+1

k , Y j1
k ) · · · (X

ik+1

k , Y
jk+1

k )

∣∣∣∣∣∣∣ . (4.15)

As in the case of Sp∞(C), we let GL∞(C) = G∞ =
⋃
k∈NGk denote the inductive

limit of the inductive system {Gk;λkl} . Then there is a well-defined action of G∞

on A∞ . Set

hi1i2 = (X i1 , Y i2) = X i1(Y i2)t, i1, i2 ≥ 1. (4.16)

Then we have the Fundamental Theorem of Invariants of GL∞(C) acting on A∞ .

Theorem 4.6. (i) The set {1, hi1i2} forms an inverse limit basis for the
subalgebra J of all GL∞(C)-invariants in A∞ .

(ii) If both X and Y have only a finite number of rows then the set {1, hi1i2}
forms an algebraic basis for J .

Proof. Same as in Theorem 4.4.

If Xk is a p × k matrix and Yk is a q × k matrix for all k ∈ N , let
Ik = (hi1i2k ) (resp. I = (hi1i2)) denote the ideal in Ak (resp. A∞ ) generated by
the pq invariants hi1i2k (resp. hi1i2 ), 1 ≤ i1 ≤ p , 1 ≤ i2 ≤ q . For k > max(p, q)
the ideals Ik are shown to be prime in [19, Theorem 5.1, p. 213]. Hence by
Theorem 2.11, I∞ = lim

←
Ik is prime and we have the Nullstellensatz for GL∞(C),

I(V (I)) = I∞ .
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4.5. Invariant theory of the special linear group SL∞(C).

The setup is exactly the same as the general linear group GL∞(C) except
that, in addition to the hi1i2k ’s in Eq. (4.14), the generators of the Gk -invariants
are

[(X i1
k , . . . , X

ik
k )] = det

 X i1
k
...

X ik
k

 , and [(Y j1
k , . . . , Y

jk
k )] = det

 Y j1
k
...

Y jk
k

 . (4.17)

However, the images of the determinants under the truncation homomorphisms µlk ,
l > k , are all zero. The Fundamental Theorem of Invariants and the Nullstellensatz
of SL∞(C) acting on A∞ are exactly the same as those of GL∞(C).

Before studying the co-adjoint action of GL∞(C) we shall discuss the in-
variant theory of the infinite symmetric group since there is an intimate relation
between the invariant theory of Sk and that of the co-adjoint action of GLk(C)
(see, e.g., [16, Theorem 1.5.7, p. 10]).

4.6. Invariant theory of the infinite symmetric group S∞ .

Let R be any commutative ring with unit. Let Ak = R[Xk] denote the
polynomial ring in k variables (x1, . . . , xk) = Xk . Let Sk denote the symmetric
group of all permutations of the set {1, . . . , k} . Then Sk acts on Ak via{

(σ, p) −→ σ · p, σ ∈ Sk, p ∈ Ak, where
(σ · p)(x1, . . . , xk) = p(xσ−1(1), . . . , xσ−1(k)).

(4.18)

Then the subring Jk of Sk -invariant polynomials has an algebraic basis of the form

S0
k = 1,

S1
k =

∑
1≤i≤k xi,

S2
k =

∑
1≤i<j≤k xixj,

...
S3
k =

∑
1≤i1<i2<i3≤k xi1xi2xi3 ,

...
Skk = x1x2 · · ·xk.

(4.19)

The polynomials S1
k , . . . , S

k
k are called the elementary symmetric functions (see

[26, p. 37] or [1, Theorem 3.4, p. 548]). Set

T nk =
∑

1≤i≤k

xni , 1 ≤ n ≤ k; (4.20)

then it can be shown [26, pp. 38–39] that the set {T nk ; 0 ≤ n ≤ k} also forms
an algebraic basis of Jk . In fact, there is a recursive formula expressing {T nk } in
terms of {Snk } , and vice versa [26, p. 39].

We can embed Sk into Sl for k < l by defining λkl : Sk → Sl as follows:

λkl(σ)(i) =

{
σ(i), 1 ≤ i ≤ k,
i, k < i ≤ l,

∀σ ∈ Sk. (4.21)
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Let S∞ =
⋃∞
k=1 Sk be the inductive limit of the inductive system {Sk;λkl} .

Let A∞ denote the inverse limit of the inverse spectrum {Ak;µlk} , where
the connecting homomorphisms µlk : Al → Ak , l > k , are the truncation homo-
morphisms. In fact, µlk can be simply defined by setting

µlk(xi) =

{
xi, 1 ≤ i ≤ k,
0, k < i ≤ l.

Then it is straightforward to verify that

σ · µlk(p) = µlk(λkl(σ) · p).

Set

Sn =
∑

i1<i2<···<in

xi1xi2 · · ·xin , T n =
∑
i∈N

xni , n = 1, 2, . . . ; (4.22)

then Theorem 3.10 implies the following

Theorem 4.7. Each of the sets {1, Sn;n ∈ N} and {1, T n;n ∈ N} forms an
inverse limit basis for the subring J of all S∞ -invariants in the ring A∞ .

See [11, Theorem (3.2), p. 3] for another proof that {Sn} is algebraically
independent.

4.7. Invariant theory of the co-adjoint action of GL∞(C).

Let Xk = (xij) ∈ Ck×k , and let Ak = C[Xk] denote the algebra of all
polynomial functions in the variables xij , 1 ≤ i , j ≤ k . Set Gk = GLk(C); then
the adjoint representation of Gk on Ck×k is defined by

g ·Xk = gXkg
−1, ∀ g ∈ Gk, X ∈ Ck×k. (4.23)

The co-adjoint representation of Gk on Ak is defined by{
(g, p) −→ g · p, where (g · p)(Xk) = p(g−1 ·Xk) = p(g−1Xkg),
∀ g ∈ Gk, p ∈ Ak.

(4.24)

If Xk ∈ Ck×k let χXk(t) = det(I − tXk) denote the characteristic polynomial of
Xk in the indeterminate t . Then we have

χXk(t) = det(I − tXk) (4.25)

= 1− S1(Xk)t+ S2(Xk)t
2 + · · ·+ (−1)kSkk (Xk)t

k,

and it can be shown that

Snk (Xk) =
∑

det

 Xi1i1 · · · Xi1in
...

...
Xini1 · · · Xinin

 ≡∑4i1···in
i1···in(Xk), (4.26)

where the sum is over all n-shuffles (i1, . . . , in), i1 < i2 < · · · < in , 1 ≤ n ≤ k.

If Yk ∈ Ck×k let Tr(Y ) =
∑k

i=1 Yii denote the trace of Y and define

T nk = Tr(Xn
k ), 1 ≤ n ≤ k. (4.27)

Let Jk denote the subalgebra of all Gk -invariant polynomials. Then we have
the following fundamental theorem for the theory of Gk -invariant polynomials.
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Theorem 4.8. The algebra Jk is generated by the constants and the algebraical-
ly independent polynomials S1

k , . . . , S
k
k . The same statement holds for T 1

k , . . . , T
k
k .

Moreover, the following recursive formula also holds:

(−1)n(n+ 1)Sn+1
k =

∑
i+j=n

(−1)iSikT
j+1
k , n = 0, 1, . . . , k − 1. (4.28)

Proof. See [16, Theorem 1.5.7, p. 10] and [26, p. 39].

As in Subsection 4.4., it is easy to verify that there is a well-defined action
of G∞ = GL∞(C) on A∞ .

Let Sn = lim
←
Snk and T n = lim

←
T n . Let X = limXk denote the inductive

limit of Xk . Then Sn and T n can be symbolically represented as

Sn =
∑

i1<i2<···<in

4i1···in
i1···in(X), T n = Tr(Xn), n ∈ N. (4.29)

Then Theorem 3.10 implies the following

Theorem 4.9. Each of the sets {1, Sn;n ∈ N} and {1, T n;n ∈ N} forms an
inverse limit basis for the subalgebra J of all G∞ -invariants in the algebra A∞ .

Remark 4.10. Although they are both bases for J , for practical applications
the basis {1, T n;n ∈ N} is more suitable because of its simpler form (see [22,
Remark 3.12]).

5. Conclusion

In this article we have developed a coherent and comprehensive invariant theory
of inductive limits of groups acting on inverse limits of the categories of modules,
rings, or algebras. On one hand, we have succeeded in generalizing Hilbert’s
finiteness theorem to many cases in our context. On the other hand, there are
many cases in which the bases of the rings of invariants are not finitely generated,
and in these cases the notion of an algebraic basis is not adequate. This led us to
introduce the notion of inverse limit basis which naturally involves a topology on
inverse limits. This is illustrated by examples in Subsections 4.6. and 4.7.. Also,
the example in Subsection 4.7. can be generalized to the case of the inductive
limit G∞ of the chain {Gk} , where each Gk is a semisimple connected complex
analytic group acting on the algebra of polynomial functions on its Lie algebra via
the co-adjoint representation. Then the Chevalley restriction theorem (see, e.g.,
[25, Theorem 4.9.2, p. 335]) gives us a procedure to find a basis for the ring of
Gk -invariants. This was achieved in a more general context by Procesi in [15]. We
hope to generalize these invariants to our context in a future work.

Acknowledgement: The authors wish to thank the technical staff of the
Department of Mathematics of the University of Iowa, Ms. Cymie Wehr and Mr.
Brian Treadway, for their impeccable job and for their patience in preparing the
manuscript.



424 Ton-That and Tran

References

[1] Artin, M., “Algebra,” Prentice-Hall, Englewood Cliffs, NJ, 1991.

[2] Barut, A., and R. Raczka, “Theory of Group Representations and Ap-
plications, ” Polish Scientific Publishers, Warsaw, 1977, 2nd ed., World
Scientific Publishing, Singapore, 1986.
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[13] Ol’shanskĭı, G. I., The method of holomorphic extensions in the theory of
unitary representations of infinite-dimensional classical groups , Functional
Anal. Appl. 22 (1988), 273–285.

[14] —, Representations of infinite-dimensional classical groups, limits of en-
veloping algebras, and Yangians, “Topics in Representation Theory”
(A. A. Kirillov, ed.), Adv. Soviet Math., vol. 2, American Mathematical
Society, Providence, 1991.

[15] Procesi, C., The invariant theory of n×n matrices , Adv. Math. 19 (1976),
306–381.

[16] Springer, T. A., “Invariant Theory, ” Lecture Notes in Math., vol. 585,
Springer-Verlag, Berlin-New York, 1977.

[17] Ton-That, T., Lie group representations and harmonic polynomials of a
matrix variable, Trans. Amer. Math. Soc. 216 (1976), 1–46.

[18] —, Symplectic Stiefel harmonics and holomorphic representations of sym-
plectic groups , Trans. Amer. Math. Soc. 232 (1977), 265–277.



Ton-That and Tran 425
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