Journal of Lie Theory Vol. 14, No. 1, pp. 73--109 (2004) |
|
On Compactification Lattices of Subsemigroups of SL(2,R)Brigitte E. Breckner and Wolfgang A. F. RuppertB. E. BrecknerBabe\c s-Bolyai University Faculty of Mathematics and Computer Science Str. M. Kog\u alniceanu 1 RO-3400 Cluj-Napoca Romania brigitte@math.ubbcluj.ro and W. A. F. Ruppert Institut für Mathematik und Angewandte Statistik Universität für Bodenkultur Peter Jordanstr. 82 A-1190 Wien Austria ruppert@edv1.boku.ac.at Abstract: Using the tools introduced in [Breckner, B. E., and W. A. F. Ruppert, J. Lie Theory 11 (2001), 559--604], we investigate topological semigroup compactifications of closed connected submonoids with dense interior of Sl(2,R). In particular, we show that the growth of such a compactification is always contained in the minimal ideal, and describe the subspace of all minimal idempotents (typically a two-cell) and the maximal subgroups (these are always isomorphic with a compactification of R). For a large class of such semigroups we give explicit constructions yielding all possible topological semigroup compactifications and determine the structure of the compactification lattice. Keywords: Bohr compactification, lattice of compactifications, asymptotic homomorphism, subsemigroups of Sl(2,R), Lie semigroups, Lie semialgebras, diamond product, rectangular domain, umbrella set, divisible semigroup, UDC semigroup Classification (MSC2000): 22E15; 22E46, 22A15, 22A25 Full text of the article:
Electronic version published on: 29 Jan 2004. This page was last modified: 1 Sep 2004.
© 2004 Heldermann Verlag
|